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Transfer Matrix Equations

The Transfer Matrix Equations are solved to obtain optical quantities of a multi-layer stack,
including the reflectivity, transmissivity, and emissivity. The Transfer Matrix equatons can

be written as:!
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where Ef" and E; are the incident and reflected field amplitudes, respectively; E} is the
transmitted field amplitude and E; is set to zero. The Transfer Matrix is a product of

matrices for each layer in the multi-layer stack:
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The terminal layers, Layer 1 and Layer L, are taken to be semi-infinite, and the central layers
(Layer 2 - L — 1) have finite thickness. Furthermore, the terminal layers have real refractive

indices, while the central layers may have complex refractive indices. The P matrix is defined

for each of the central layers:
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where
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d; and ny is the thickness and refractive index of layer [, respectively, w is the frequency of
light, 6, is the angle of incidence upon the multi-layer structure, and c is the vacuum speed
of light. We note that n; often depends upon w for materials of interest. The D matrices

are defined for all layers, and depend upon the incident polarization of light. For p-polarized



light:
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and for s-polarized light:
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where 6 is the refraction angle into the I*" layer that satisfies Snell’s law:! §; = arcsin(n, /n;sin(6,)).
From the elements of the Transfer Matrix, the reflection and transmission amplitudes

can be computed as follows:
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The far-field reflectivity is computed from the reflection amplitude as

R=rr" (9)

and the far-field transmissivity is computed from the transmission amplitude and inci-
dent /refraction angles as
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where r* and t* are the complex conjugates of r and t, respectively. The absorptivity and

emissivity of a structure can be computed as

A=e=1-R-T, (11)

where A indicates the absorptivity and e is the emissivity, which are taken to be equivalent

by Kirchoft’s theorem.



The Thermal Emission of a given structure is simply the emissivity multiplied by the
Planck’s blackbody function. We note from the above that the emissivity can be seen to
depend upon frequency/wavelength and angle; it also depends upon temperature through
the blackbody function. Most generally, the thermal emission spectrum as a function of

wavelength, angle, and temperature is
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is Planck’s blackbody spectrum, cos(f) accounts for the angular dependence of the emitted
power of an ideal blackbody, and €,(A,6) and €,(),0) are the emissivities for p- and s-
polarizations, respectively.

In the code, we often make distinctions between quantities which are derived from thermal
emission with explicit angular dependence of the emissivity and quantities that assume that
the emissivity does not change with angle. Strictly speaking, the emissivity is a function
of angle so neglecting the angular dependence is an approximation, but one may choose to
make this approximation to reduce the computational cost associated with computing some
quantities. As an example, consider the total power emitted into a hemisphere by a surface.
If the emissivity depends upon angle, the power radiated into the hemisphere per unit area

of the surface is given by
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If the emissivity does not depend on angle, one can analytically integrate out the angular



components:
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Calculation of the emissivity spectrum, while relatively efficient, constitutes the main com-
putational bottleneck in wptherml, so avoiding the need to compute the spectrum for a range
of different angles and polarizations presents an advantage. In the case that the angular de-
pendence is explicitly considered, we choose a 7th-order Gauss-Legendre grid between 0 and
7/2 over which the emissivity is evaluated; with this approach, the explicit angle quantities
require 14 evaluations of the emissivity functions (7 for each polarization) as opposed to a
single evaluation of the emissivity function when angular dependence is neglected.

With the Transfer Matrix Equations in hand, and their relation to the thermal emission
of a multi-layer structure established, we will now provide a brief overview of the central

equations used for the figures of merit for the various applications wptherml can be used for.

Thermophotovoltaics

A number of figures of merit may be computed to characterize selective thermal emitters for
thermophotovoltaic applications.
Useful Power Density: 2
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where )y, is the bandgap wavelength of the target PV.

Spectral Efficiency:?
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where P is the useful power density previously described, and the denominator is the total
emitted power density, P.,.

TPV Efficiency: %™
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The emitted power density in the denminator is the same as the denominator in the spectral

efficiency; the short circuit current is?™
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where F is the view factor and SP()) is the spectral response of the PV cell (in Amps/Watts);
the spectral response function decays to zero relatively quickly for wavengths greater than
A\bg, SO the integral can be truncated. The Open Circuit Voltage can be approximated as®?
k TC@ JSC
Ve = —“Ln (—) : (21)
q Jo
where kp is Boltzmann’s constant, T, is the temperature of the PV cell, and Jy is the

saturation current density estimated as®?
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The Fill Factor is estimated as??

v —Ln(v+0.72)

FF = 23
p v+1 (23)
where v is the reduced V,.:%3
Voe
v = 24
kEpTeen (24)



and f3 is a parameter (which we take to be 0.96 following Qui et al.?
Absorber Efficiency:
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where the total absorbed power density is given by*
GC Amaz 1
P = 27C / 40 sin(6) cos(6) / S0 0) T a0 AMNAY  (26)
0 >\min

where C' is the solar concentration, AM(\) is the AM1.5 spectrum, and - depends upon
the solar concentration as ¢ = arcsin(C - 68.5 - 1076 /x).*

The explicit angle dependence is always included for the total absorbed power in the
absorber efficiency calculation, and by the user’s option, can be included in all other STPV
figures of merit by performing the integration over the full angle-dependent thermal emission
as defined in Eq. (14). As in the total absorbed power, the explicit angle dependence of the
p- and s-polarized emissivities must be accounted for in explicit integration over 6; the range
of # will be from 0 to 27 for all applications except the total absorbed solar power, where

the 6 range depends upon the solar concentration as discussed above.

Incandescent Lighting

Two figures of merit are commonly used to characterize the efficiency of incandescent sources:
luminous efficiency and luminous efficacy. Both figures of merit quantify the ratio of emitted
power that is visible to the human eye to the total emitted power of the source. The visible
emitted power is taken to be a convolution of the photopic luminosity function and the
thermal emission spectrum. Hence, the luminous efficiency can be defined as:®
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where v(\) is the photopic luminosity function. The Luminous efficacy is simply the luminous
efficiency scaled by 683:
K =683 - Npum. (28)

Color Rendering

Two methods are provided for rendering the color of a given structure: the ThermalColor
method uses the thermal emission spectrum while the AmbientColor method uses the re-
flection spectrum as the basis for the color rendering. With a given spectrum, the color
can be rendered by mapping the convolution of the spectrum with the response functions of
the three color cones of the human eye. For example, for thermal color, the following three

convolutions are taken:
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where C.(\) is the red cone response function, etc. The XY, Z values are linearly related

to r, g, b values which may be directly rendered as color:
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For ambient color calculations, the thermal emission spectra in Eqs. (29)-(31) are replaced

with the reflectance spectra.



Radiative Cooling

The cooling power of the structure is approximated as:®
Pcool(T) - Prad(T) - Patom(Tamb) - Psu’m (33)
where P,,4(T") is the power radiated by the structure at temperature 7"
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where A is the area of the structure, Py, (Tums) is the power absorbed by the structure that
is radiated from the atmosphere, which has a thermal emission spectrum that arises from its
finite temperature (7,,,;) and emissivity. The thermal emission from the atmosphere that is

absorbed by the structure is given by

7T/2 Amaa:
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where €,(A, #) is the p-polarized emissivity of the structure and eu,, (A, #) is the emissivity

of the atmosphere, which can be computed as
Catm(N, 0) = 1 — Ty (X)) (36)

where Ty, (M) is the transmissivity of the atmosphere. The solar power absorbed by the

structure is given by
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We note that this approximation to the cooling power only accounts for radiative heat-

ing/cooling forces, and neglects convection and conduction.



Optical Resonances

Two methods are implemented which can be used to locate surface plasmon polariton (SPP)
and perfectly absorbing (PA) resonances in multi-layer structures. These methods utilize the
fact that the p-polarized reflection amplitude tends towards inifinity as the SPP resonance
and towards zero at the PA resonance.” Therefore, the resonance finders views the p-polarized
reflection amplitude as a function of the real and imaginary components of the wavevector
parallel to the multi-layer surface at a particular wavelength and seeks either a maximum
(SPP) or minimum (PA) as a function of these wavevector components.

SPP Resonance

Max (r(\, Re(k,), Im(k,))) (38)
s.t. (39)
2T < Relk T & Tm(ky) > 0 40
TLL7< e( x)<n07 m( x)> ( )
PA Resonance
Min (r(\, Re(k,), Im(k,))) (41)
s.t. (42)
2T < Relk T & Tm(ky) > 0 43
nL7< e( JU)<n07 m(k,) > (43)
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