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1 Overview
Doublets consist of transcriptomes from two different cells. Doublets may be mistakenly considered as new
biology (e.g. rare cell types) due to their distinction from singlets. In addition, doublets introduces noise in
downstream analysis and can worsen the clustering and visualization quality. Thus, identifying and removing
doublets becomes a critical data cleaning step in single-cell and single-nucleus RNA-seq (sc/snRNA-seq) data
analysis. Based on Scrublet [5] paper’s definition, we can classify doublets into two categories: embedded
doublets and neotypic doublets. Embedded doublets are composed of highly similar cells and thus are hardly
distinguishable from singlets. Neotypic doublets are composed of cells with dissimilar transcriptomes. They
are the doublets that cause most trouble. Fortunately, they are also distinguishable from singlets.

Our goal is to identify and remove neotypic doublets. In this manuscript, we will describe a three-step
stragety used in Pegasus to identify and remove neotypic doublets. First, Pegasus calculates doublet scores
per sample using a slightly modified Scrublet [5] method. Second, Pegasus infers a doublet score cutoff
between neotypic and embedded doublets per sample automatically using a method combining Gaussian
mixture model and signed curvature scores. Lastly, Pegasus tests if any cluster consists of more neotypic
doublet than expected using Fisher’s exact test. Clustering should be performed on all samples after batch
correction. Users can determine if they want to mark any statistically significant cluster as a neotypic
cluster and all cells in a neotypic cluster would be marked as neotypic doublets. This last step is inspired
by Pijuan-Sala et al. [3].

In the following sections, we will describe each of the three steps in details.

2 Doublet score calculation

Pegasus reimplements Scrublet [5] with slightly modifications. We reimplemented Scrublet for two reasons:
1) Scrublet source code was not maintained since July 2019; 2) a re-implementation allows us to cut many
unnecessary dependencies and gives us more flexibility on future improvements.

Scrublet has three major steps: preprocessing, doublet simulation and doublet score calculation using a
KNN classifier. The preprocessing step consists of 4 sub-steps (see Default Preprocessing section of the
Scrublet paper): a) data normalization, b) highly variable gene selection, c) data standardization and d)
PCA. In our reimplementation, we replac a) and b) with Pegasus data normalization and log transformation
[log(TP100K+1)], followed by Pegasus-style highly variable gene selection [1]. It is also worth noting that
we directly work on the TP100K matrix in c), instead of log(TP100K+1) matrix.

For the doublet simulation and doublet score calculation steps, we exactly follow the Scrublet method, except
that we built kNN graph using Pegasus’ kNN building functions [1], which utilizes the Hierarchical Navigable
Small World algorithm [2]. For users’ convenience, we also provide a brief derivation of how the doublet
score is calculated below. More details can be found in the Scrublet paper [5].

Let r be the ratio between simulated doublets and observed doublets, P
′

D(x) be the approximated density
function of doublets and Pobs(x) be the density function of observed cells, which can be used as an approxi-
mation of density function of singlets (assuming doublet rate is low). The probability of a simulated doublet
appeared in the neighborhood of cell x becomes

q(x) =
P

′

D(x)r

P
′
D(x)r + Pobs

. (1)

Let ρ̂ be the expected doublet rate, the probability of x is a doublet becomes
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L (x) ≈ P
′

D(x)ρ̂

P
′
D(x)ρ̂+ Pobs(x)(1− ρ̂)

. (2)

Reorganize equation (1), we get

Pobs(x) = P
′

D(x) · r(1− q)
q

· (1− ρ̂). (3)

Plug equation (3) into equation (2), we get

L (x) =
q(x)ρ̂/r

(1− ρ̂)− q(x)(1− ρ̂− ρ̂/r)
. (4)

Following Scrublet notations, we denote k as the average number of observed cell neighbors and kadj as the
total number of neighbors. By default, we have

k = b0.5 ·
√

number of cellse,
kadj = bk · (1 + r)e.

If we put a non-informative prior Beta(1, 1) on q(x), the expectation of q(x) becomes

〈q(x)〉 =
kd(x) + 1

kadj + 2
, (5)

where kd(x) is the number of simulated doublets in cell x’s neighborhood. Note that the neighborhood here
does not include x itself.

Plug equation (5) into equation (4), we get the formula for doublet score as

〈L (x)〉 ≈ 〈q(x)〉ρ̂/r
(1− ρ̂)− 〈q(x)〉(1− ρ̂− ρ̂/r)

. (6)

2.1 Estimate doublet rate prior automatically for 10x Genomics data

In Scrublet, users need to set a doublet rate prior parameter manually, which might be challenging. In
Pegasus, we have developed a method to automatically estimate this prior based on total number of cells.

We assume the number of cells n entering a droplet or microwell follow a Poisson distribution parameterized
by λ, i.e. n ∼ Pois(λ). Then we can estimate the doublet rate ρ as

ρ =
P (n > 1)

P (n > 0)
=

(1.0− e−λ − λe−λ)

1.0− e−λ
. (7)

λ can be interpreted as the rate of an event happening in an interval of time, where the event is a cell
entering the droplet or microwell. If we denote N as the total number of cells, it is intuitive to assume that
λ(N), the rate parameter for capturing N cell in one channel, is proportional to N , or

λ(N) = c ·N. (8)

Based on equations (7) and (8), we can estimate λ(N) for 10x Genomics data from the multiplet rate table
available at 10x Genomics website. Based on the table, we estimated

λ̂(N) =
0.00785

500
·N,
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where 0.00785 is the estimated λ for 500 cells.

If other protocols also provide multiplet rate tables similar to 10x Genomics, we can easily estimate λ(N)
using equations (7) and (8).

In Pegasus, if users do not provide a doublet rate prior value, we automatically set ρ̂ as

ρ̂ =
(1.0− e−λ̂(N) − λ̂(N)e−λ̂(N))

1.0− e−λ̂(N)
.

Note that if the data are not 10x Genomics, users may consider to provide a prior value instead of using this
automatic feature.

3 Doublet cutoff inference
Scrublet provides a method to determine doublet score cutoff between embedded and neotypic doublets based
on simulated doublets. However, this method is far from ideal. Figure 1 showed the Scrublet histograms
generated for bone marrow donor 3, channel 1 from the Immune Cell Atlas dataset. We ran Scrublet using
default parameters except setting ˆrho = 0.0031. We can observe that the ”ideal” cutoff should be around
0.2, while Scrublet set the threshold in the middle of the ”neotypic” doublet peak.

Figure 1: Scrublet histograms for observed cells (left) and simulated doublets (right). The
vertical line indicates the cutoff.

Thus, we developed a novel method to automatically determine the cutoff in Pegasus. Our method is based
on several observations from real data, which we will describe in the following.

First, we observed that log-transforming the doublet scores helps us to push neotypic doublets together and
have a clearer distinction between embedded and neotypic doublets. For example, we performed Kernel
density estimation (KDE) on both doublet scores and log-transformed doublet scores for simulated doublets
(Figure 2). We can clearly observe two peaks on the KDE plot generated from log-transformed scores. Thus,
we will work on log-transformed (log x) doublet scores for determining the cutoff.

Figure 2: KDE plots on doublet scores (left) and log-transformed doublet scores for simulated
doublets.
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Input: sim scores: doublet scores for all simulated doublets;
KDE(x): a Kernel density estimation function return densities at values in vector x;
RANGE(start, end, step): this function return a seqeunce of points in [start, end] with a
increment of step between adjacent points;
αf = 1

3 , αm = 0.06
Output: merged peaks: merged major peaks;

major peaks: all major peaks before merging;
minor peaks: minor peaks;
sim scores log: log transformed simulated doublet scores;
x: discrete data points in log doublet score space;
y: density value of discrete data points

sim scores log← log sim scores // log transform doublet scores;
min score← min(sim scores log);
max score← max(sim scores log);
// generate discrete data points for evaluating local maxima

// adjacent data points only contain one unique value in sim scores log

min gap← minimum gap between adjacent scores in sim scores log;
n gap← max(d(max score−min score)/min gape, 200);
gap← (max score−min score)/n gap;
x← RANGE(min score− gap× 5,max score+ gap× 5, gap) // add a margin of gap× 5 at

both sides;
// calculate densities at data points in x
y← KDE(x);
// search for local maxima

lower bound← αf ·max(y), major peaks← ∅, minor peaks← ∅;
for i← 3 to |x| − 2 do // index starts from 1

if y[i− 1] = y[i] and y[i− 2] < y[i− 1] and y[i] > y[i+ 1]
or y[i− 2] < y[i− 1] and y[i− 1] < y[i] and y[i] > y[i+ 1] and y[i+ 1] > y[i+ 2] then

// Determine if major peak or minor peak

if y[i] ≥ lower bound then
major peaks← major peaks ∪ {i}

else
minor peaks← minor peaks ∪ {i}

end

end

end
// merge major peaks that might be produced by noise

curr peak ← {1}, merged peaks← ∅;
for i← 2 to |major peaks| do

min value← min(y[major peaks[i] + 1 : major peaks[i+ 1]]);
max value← max(y[major peaks[i]],y[major peaks[i+ 1]]);
if (max value−min value)/max value ≤ αm then // merge peaks

curr peak ← curr peak ∪ {i}
else

merged peaks← merged peaks ∪ {argmaxj∈curr peaky[j]};
curr peak ← {i}

end

end
merged peaks← merged peaks ∪ {argmaxj∈curr peaky[j]};
Algorithm 1: Algorithm to collect all merged and unmerged major peaks and all minor peaks.

Secondly, we observed that clear two-peaks structure in the log-transformed KDE plot (e.g. Figure 2, right
panel) for many cases. For these cases, it is intuitive to set the cutoff at the position with minimal density
value between the two peaks. In order to determine the appropriate cutoff, we need to identify all peaks
(local maxima) from the log-transformed KDE plot. To do so, we first need to discretize the x axis (log
doublet score) into a series of points. We then check each point to determine if it is a local maximum (i. e.
larger than its neighbor points). We categorize peaks into two groups (Figure 3A) based on their heights: 1)
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major peaks are the peaks with heights larger than or equal to αf fraction (αf = 1
3 ) of the global maximum

value of the KDE plot; and 2) minor peaks are peaks with heights smaller than αf . Major peaks are likely to
represent embedded or neotypic doublet groups and are used to determine the cutoff between peaks. Minor
peaks are more likely to represent a small fraction of one doublet group and are used to determine the cutoff
between peaks. We also observed that in some cases, one major peak may be splitted into two major ”peaks”
due to noise in data (Figure 3B). To make our method robust to this issue, we merge two adjacent major

peaks if max(y1,y2)−ymin

max(y1,y2)
≤ αm (αm = 0.06), where y1 and y2 are the peak density value at the two major

peaks and ymin is the minimal density value between the two peaks. We describe the detailed method for
finding all peaks in Algorithm 1.

A B

Figure 3: Example of peaks. A. KDE plot estimated from a human heart sample. This plot has two
major peaks and one minor peaks. B. KDE plot estimated from a human peripheral blood sample. The red
rectangle indicates the “splitted” major peak.

Thirdly, there are cases where we can only observe one major peak (Figure 4). When we only observe
one major peak, this peak might represent either embedded doublets (Figure 4A) or neotypic doublets
(Figure 4B). If the peak represents embedded doublets, we need to find the cutoff at the right side of the
peak; otherwise, we find the cutoff at the left side of the peak. Thus, in order to determine an appropriate
cutoff, we need to first decide which doublet group the major peak represents. Denote the position of the
major peak in x is peak pos, we can calculate frac right, the fraction of simulated doublets at the right side
of the peak as follows:

frac right =
|{i|sim scores log[i] > x[peak pos]}|

|sim scores log|
,

where | · | denotes the size of a set or vector. To avoid calling false positive neotypic doublets, we only
consider the peak representing neotypic doublets if

frac right < βr, where βr = 0.42.

Otherwise, the peak presents embedded doublets.

5



A B

Figure 4: Two types of single peak cases A. KDE plot estimated from a human bone marrow sample.
This plot has one major peak that is likely to represent embedded doublets. B. KDE plot estimated from a
human peripheral blood sample. This plot has one major peak that is likely to represent neotypic doublets.

In addition, we adapt an addition criterion to safeguard us from calling false positive neotypic doublets. Let
us assume the peak represents neotypic doublets, the peak position is peak pos, and the cutoff position at
the left side of the peak is cutoff pos. We define frac left, the fraction of simulated doublets with log scores
smaller than the log score at the cutoff x[cutoff pos] as

frac left =
|{i|sim scores log[i] < x[cutoff pos]}|

|sim scores log|
.

We predict any doublets at the right side of x[cutoff pos] as neotypic doublets if and only if

frac left ≥ βl, where βl = 0.4.

Otherwise, we would set the cutoff at the major peak (i. e. peak pos) instead.

A B

Figure 5: Two scenarios of determing cutoffs for neotypic major peak A. Same KDE plot as in
Figure 4B, with the cutoff indicated as a dashed line. B. KDE plot estimated from a human peripheral
blood sample. The cutoff is set as the peak position of the major peak.
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Suppose we already have a function LocateCutoff to determine the cutoff from one side, we summarize the
overall algorithm described so far in Algorithm 2.

Input: sim scores: doublet scores for all simulated doublets;
LocateCutoff(major peaks, minor peaks, dir, x, y, args): return cutoff position;
βr = 0.42, βl = 0.4

Output: cutoff : a cutoff score applicable to observed data

Run Algorithm 1;
if |merged peaks| ≥ 2 then

i1 ← argmaxi∈merged peaksy[i] // position of the largest peak;

i2 ← argmaxi 6=i1,i∈merged peaksy[i] // position of the second largest peak;

if i1 > i2 then // make sure i1 represents the left peak
swap i1 and i2

end
cutoff pos ← argmini1<i<i2y[i];

else
// only one merged major peak; however, this peak might correspond to multiple

major peaks before merging

cutoff pos ← −1;
for i← 1 to |major peaks| do

frac right← |{j|sim scores log[j]>x[major peaks[i]]}|
|sim scores log| ;

if frac right < βr then
if i = 1 then // left most major peak before merging

cutoff pos ← LocateCutoff(major peaks, minor peaks, −, x, y, ...)
else

cutoff pos ← argminmajor peaks[i−1]<j<major peaks[i]y[j]

end

frac left← |{j|sim scores log[j]<x[cutoff pos]}|
|sim scores log| ;

if frac left < βl then
cutoff pos ← major peaks[i]

end
break;

end

end
if cutoff pos < 0 then // major peak represents embedded doublets

cutoff pos ← LocateCutoff(major peaks, minor peaks, +, x, y, ...)
end

end
cutoff ← exp(x[cutoff pos])

Algorithm 2: Overall cutoff determination algorithm.

Now let us focus on how to determine the actual cutoff from one side of the peak using function LocateCutoff.
Let us assume we only have one major peak and the peak represents the embedded doublets (Figure 6, left).
We need to find the cutoff at the right side of the major peak. In particular, we will use signed curvatures [4]
of the KDE plot to determine the cutoff. The signed curvature Kf (x) can be calculated as

Kf (x) =
f

′′
(x)

(1 + f ′(x)2)1.5
,

where f
′′

and f
′

are the second and first derivaties of the function f (i.e. KDE function). We can approxi-
mate f

′
and f

′′
for data points in x using the five-point stencil method and calculate the signed curvature

using approximated f
′

and f
′′

values (Figure 6, right).

Let us only focus on the right side of the peak for now. We can utilize concave bumps (Figure 6) and minor
peaks to locate the cutoff. Concave bumps are local minima with negative curvature value in the signed
curvature plot (Figure 6, right). We further need to define major concave bumps (Figure 6, left), which
are concave bumps with large enough absolute curvature values compared to either the major peak or the
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largest concave bump (Figure 6, right). The largest concave bump is the concave bump that has the largest
absolute curvature value among concave bumps between the major peak and minor peaks. Let us denote
curv peak and curv glob as the minimal curvature value in the major peak and the largest concave bump
respectively, and define curv right = max(curv glob, curv peak). The major concave bumps are defined as
any concave bumps with the minimal curvature values smaller than γr fraction (γr = 0.4) of curv right.
Note that if curv glob ≥ γd (γd = −0.25), we have no major concave bump.

Figure 6: KDE (left) and signed Curvature (right) plots of a human bone marrow sample. The
dashed lines indicate the cutoff. The red arrows highlight important concepts, such as concave bump, major
concave bump, minor peak, convex region and largest concave bump.

We additionally define a convex region (Figure 6, right) as an interval that the minimal curvature value
within the interval is larger than γp (γp = 0.06). The cutoff should locate at a convex region between the
major peak and the leftmost major concave bump or minor peak. In particular, we pick the cutoff as the
elbow point [4] (the point with maximal curvature value, see dashed vertical lines in Figure 6) among all
convex regions between the major peak and the leftmost major concave bump/minor peak. The algorithm
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to find a cutoff for the one major peak case is illustrated in Algorithm 3.

Function LocateCutoff: // Locate the doublet cutoff for the one major peak case
Argument: major peaks: all major peaks;

minor peaks: all minor peaks;
dir: direction of search, ’+’ searches towards right side and ’-’ searches towards left side;
x,y: x-axis and y-axis of the KDE plot;
γp = 0.06, γr = 0.4;
calc curv(x, y): this function return curvature values using the five-point stencil method;

Return: cutoff pos: the cutoff position in x

curv← calc curv(x,y) ;
if dir = + then

// the major peak represents embedded doublets

// calculate curv peak

s← max{i|i < max(major peaks) and curv[i] ≥ 0.0};
t← min{i|i > max(major peaks) and curv[i] ≥ 0.0};
curv peak ← mins<i<t curv[i];
// calculate curv glob

s← min{i|i > max(major peaks) and curv[i] > γp};
il ← min{i|i ∈ minor peaks and i > max(major peaks)} // locate leftmost minor peak;
t← max{i|i < il and curv[i] > γp};
curv glob← mins<i<t curv[i];
if curv glob < γd then // locate leftmost major concave bump

curv right← max(curv peak, curv glob);
i← s+ 1;
while i < t and not (curv[i] < curv right · γr and curv[i− 1] > curv[i] and
curv[i] < curv[i+ 1]) do
i← i+ 1

end
t← max{j|j < i and curv[j] > γp};

end
cutoff pos ← argmaxs≤i≤tcurv[i]

else
// the major peak represents neotypic doublets

Calculate cutoff pos similarly as in dir = +, use min(major peaks) as the major peak instead
end

end

Algorithm 3: Algorithm to determine cutoff for the one major peak case.

4 Doublet cluster identification
Once we have identified neotypic doublets, we can assess if a cluster is significantly enriched for doublets
using Fisher’s exact test by constructing the follow data table. We conduct Fisher’s exact test for all clusters
and control the False Discover Rate at α = 0.05. Among clusters that are significantly enriched for doublets,
users can determine if they want to mark some clusters in whole as doublets.

Within cluster Outside cluster Row total
Singlets a b a + b
Doublets c d c + d

Column total a + c b + d a + b + c + d

Table 1: Data table for Fisher’s exact test. c+ d is the total number of identified (neotypic) doublets.
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