Grapa

User manual

Summary
GTAPA. . tteeeeiiteee ettt e ettt e e ettt e e ettt e e s ettt e e e unbe e e e e ssb e e e s e a bt e e e e se e e e e e nsb e e e e bt e e e e naaeee e e e e e nnnntnnraneeeeeens 1
USET TNANUAL ... tieeiiieeciieeceieecete ettt e et e e ettt eesate e s ateesseeeessaeesssaaesssaeensseeessseeessseesssssssseeesannnns 1
1.General AeSCIIPLION. ..ccuiieieetieeieisieeete ettt ettt et e st eebeesatesbeesatessbeesseessseessnesnseessaesssesnsseens 3
1.1.DeSCIiPtioN Of GIAPA......ccccvieciieeiieitieiieereeete et e ste et esteeteesaeebeessseessesssesseessseeseesssassseenssens 3
1.2.FEatures OVETIOOK.cc.eiiiriiiiiiieiieeeteet ettt ettt ettt e e st sae e s e e 3
B T 11 o) USSP 4
2.] PrOTOQUISITES. ...ceeieiireeeeeiiieee ettt e e eetteeeertteeeeetreeesesarteeesenraeeeesnnaeeessnssaeeessnseeeessansaeesssnnnaaaeeeens 4
N 1111 721 1 110) o FOR U OO SPPPR 4
3.General organization Of the PACKAGE........cceeriiriiiiiierieeieeeet ettt e e e e 5
Z @) =1 0] 1 1]] [l PO OO PRSPPI 6
4. 1. KeYWOTdS t0 GTAPN.....ccuiiiiiiiieeieeiteee ettt ettt et e st e et esbesbe e st e esbeessneeesasnaeas 6
5. CUIVE ODJOCL.c.uutieitiieeitieeeiteeeite e et e e st e e ettt e e staeeestaeesssaeessseeessseeessseeesaeesssseeansseaansaeansseesnsssesnssaeenssaeenn 9
5.1.Provided Curve Child Classes...........coueruerrieriiniriiinieieetesiee ettt ettt 9
5.2. KEYWOTIAS 10 CUIVE.....uieiiuiiieiiieeeiieeeiteeesieeesiteeesseessseeessaeessseeessseeessseeessseessseessssesessssssssseesens 12
6.Automated data PrOCESSING SCIIPLS....ccverrrerrierriierreriteerteeteesttessteeseesseessressseesseessesssnseessssseesssnees 14
6.1.Load all files from 0ne fOldeT...........ccciieieiiiieieciiecee ettt e e e 14
6.2.JV data fit CElI-DY-Cell....c.eiiiiiiiieieeieeeeee ettt ettt a e e 14
6.3.JV data fit SEPATAtelY......cccvieciiiiiiiiiiieeieeieecee ettt ettt et e b e e ae e be e raeebaesaaeennnes 14
6.4.JV SAIMPLE MNAPS: . eeeeureriieeiieeieeeieesteeteestesiteesttesteesseesseesstessseessaesssessssesssessssessssaessnsseessnssees 14
6.5.JV DOXPIOLS. ...eeiiiieeiieeiieecte ettt ettt e et e e et e e st e e e e be e e te e e at e e e nae e e e nnaaaeeeeenraaaaaean 14
6.6.Processing of C-V data temMPeTratlure SETIeS.........cceeveerierrueeruerrieenieesreenressseessesssneessseeessnees 14
6.7.Processing of C-f data temMpPEerature SEIIeS...........ccveeveerieerieeieesieeireeseeesreeseeesreesseeesseessnesnnes 15
7.CONFIGUIAtION FIlE...c..viieiiiiieeieeeeeecee ettt et e sttt e s b e e sab e e s snsbeeesasbeeennsaeean 16
8.How to read my OWn data files 2........cciieiriieiieiieeie ettt ettt e e 17
ST 052101) L= OO TSP SRRP 17
9.How to define My OWN CUIVE tYPE 2....eicvieerieeiieeiieeiieerieeereesseeesteesseeeseessseeseesssesseesssessssesssseesnnes 19
0. 1L EXAIMNIPIE. ..ttt ettt ettt ettt e s e et e e et e et e et e et b e et e e ate e beenate e sbaeesnraeeenraees 19
10.A fEW SPEITICAIONS.uiiieiieiieeieecieeeteceteeete et te et e e te e teesee e beessbeebeesssaeseessseensseaeesssaessnsseeannes 20
10.1.CUIVESPECIIUIL....eeieuiitieeeeiieeee ettt e et teeeerteeeeeteeeeseearreeesssnseeesesnnsaeesasssaeeeeeesssssssssnnnnssnnnnes 20

Date: 04.02.2018, together with grapa v0.5.0.0

Grapa is a python package providing a graphical interface and the underlying code dedicated to the
visualization, analysis and presentation of scientific data, with a focus on photovoltaic research.

A wide range of data formats can loaded by default. The produced graphs are saved both as
graphical objects and as text files for later modifications.

The data analysis functions currently focus on photovoltaics and semiconductor material science.
Advanced analysis or fitting functions are notably provided for the following characterization
techniques: EQE, JV, C-V, C-f, TRPL, SIMS (list not exhaustive).

The software has extended capabilities for advanced plotting, and can be used for creating high-
quality figures for scientific publications.

Last, the user can add to the software and to the graphical interface his own specific data loading
functions as well new data types and analysis functions, with no modification of the existing code.

Grapa stands for “GRAphing and Photovoltaics Analysis”.

Cheers!

. Open and merge a wide range of experimental data. Data import possible from clipboard.

. Graphical data presentation and graph customisation.

. Graph export in various file formats with user-defined dpi. Additionally, create a .txt file
containing the raw data for later modifications.

. The supported image formats are the one supported by the savefig function of matplotlib. .emf
is also supported, provided a path to an inkscape executable is provided in the config.txt file.

. Drop-down menu to switch between data-relevant views (e.g. log-view for JV data, Tauc plot
for EQE)

. Drop-down menu to switch between linear or logarithmic data visualisation.

. A data picker allows selecting and storing chosen data points.

. Can colorize a graph using color gradients.

. Some data types can be fitted. The parameters of the fitted curves can be modified afterwards.

. Data can be loaded from other files or from clipboard, then converted to the desired data type

to benefit from data visualisation and processing and fitting options.

Grapa was developed using the Winpython environment, with versions corresponding to python 3.4
and 3.5. Retrocompatibility with earlier versions of python is not ensured.

Grapa was developed using matplotlib 1.5 and should be compatible with version 2.0 and later.

The installation procedure is quite simple. Download grapa and place its content in a folder named
“grapa” somewhere on your hard drive.

The user interface can be started by executing the file GUILpy using your favorite python
distribution.

Grapa can also be used in scripts. To access its code you should include in your sys.path the folder
containing the folder “grapa”.

Enjoy!

The grapa packages comes with a graphical user interface (GUI), which allows handling most
features of the package. Most matplotlib plotting methods are supported, as well as insets and
subplots.

Using grapa in python code allows further customization of the produced graphs. Notably some
matplotlib functions are not fully supported by the package. The Graph.plot() method returns the
produced figure and axes for further modifications. Existing figures and axes can as well be
provided.

The central object of the package is the Graph object. A graph is stored in a Graph object. The
Graph class can be thought as a combination of a dict storing plotting information (axes, text
annotations, etc.) together with a list of Curves which stores the data and the corresponding plotting
information (color, aspect, etc.).

The interfaces are organized as to handle pairs of (x,y) vector data, although this might not always
be true.

The Graph object can notably plot and export itself.

As provided grapa can open a range of file formats. Just have a try on your own files, grapa might
be able to parse it if the data are organized column-wise. Otherwise child classes of Graph can be
implemented in order to read your own files (see the corresponding section of this howto)

A Graph object notably contains a dict storing information related to plotting. Below is a list of
possible keywords arranged bycategories, with a brief explanation of the possible values and
examples.

figsize Figure size (inch).
(6.0, 4.0)
subplots_adjust Margins (relative to figure).

0.15 (bottom only),
[0.125, 0.1, 0.9, 0.9] left,b,r,top,
[1,1,5,3.5, 'abs"]

dpi Resolution dots-per-inch.
300

fontsize Font size of titles, annotations, etc.
12

title Graph title, based on ax.set_title().
My data

['A dataset', {'color':'r'}]

xlim Limits of x axis, based on ax.set_xlim().
[2,9]
['',4]
ylim Limits of y axis, based on ax.set_ylim().
[0,100]
[o,""1]
xlabel Label of x axis, based on ax.set_xlabel().
Axis x [unit]
['My label', {'size':6, 'color':'r'}]
ylabel Label of y axis, based on ax.set_ylabel().
Axis y [unit]
['My label', {'size':6, 'color':'r'}]

xticksstep Value difference between ticks on x axis, or ticks positions. Loosely based on
ax.xaxis.set_ticks()
0.01
[0,1,2]

yticksstep Value difference between ticks on y axis, or ticks positions. Loosely based on

ax.yaxis.set_ticks()
0.01

[0,1,2]
xtickslabels Customized ticks. First is a list of values, then a list of labels, then possibly

options. Loosely based on plt.xticks()
[[0,1],['some', 'value']]
[None, None, {'rotation':45, 'size': 6, 'color':'r'}]"
ytickslabels Customized ticks. First is a list of values, then a list of labels, then possibly

options. Loosely based on plt.yticks()

[[0,1],['some', 'value']]

[None, None, {'rotation':45, 'size': 6, 'color':'r'}]
xlabel_coords Position of xlabel, based on ax.xaxis.set_label_coords().

[8 : é -0.15]
ylabel_coords Position of ylabel, based on ax.yaxis.set_label_coords().

-0.1
[-0.1,0.5]

legendproperties Position, or keywords to ax.legend()

best

SwW

{'bbox_to_anchor':(0.2,0.8), 'ncol':2, 'fontsize':8}
legendtitle Legend title

Some title
['Some title', {'size':25}]

axhline Horizontal line(s), based on ax.axhline().
0
['11 1]
axvline Vertical line(s), based on ax.axvline().
0
['11 1]
text Annotations, use GUI window if possible. Text, textxy, textargs must be elements,

or list with same number of elements.
Some text
['Here', 'There']

textxy Use GUI window if possible.

(0.05, 0.95)
[(0.2, 0.3), (0.8, 0.9)]

textargs Use GUI window if possible.
{'fontsize':15}
[{'horizontalalignment': 'right', 'xytext': (0.4, 0.65), 'arrowprops':
{'shrink': 0.05}, 'xy': (0.46, 0.32)}, {}]

twiny_xlabel Secondary x axis label.

Other axis x [unit]

['My label', {'size':6, 'color':'r'}]
twinx_ylabel Secondary y axis label.

Other axis x [unit]
['My label', {'size':6, 'color':'r'}]

twiny_xlim Secondary x axis limits.
[2,9]
("', 4]

twinx_ylim Secondary y axis limits.

[0,100]
[0,"'"]

alter Data transform keyword, specific to the type of manipulated data.
Linear
["'nmeVv', 'tauc']
typeplot General graph plotting instruction, based on ax.set_xscale() and ax.set_yscale().
plot
semilogx
arbitraryfunctions A list of instructions. Each instruction is a list as:

[method of ax, list of arguments, dict of keyword arguments]

[['xaxis.set_ticks', [[1.5, 5.5]], {'minor':True}],
['set_xticklabels', [['a','b']], {'minor':True}]]

[['set_axis_off', [], {}]]

[['yaxis.set_major_formatter', ['StrMethodFormatter({x:.2f})'], {}11

[['xaxis.set_minor_locator', ['MultipleLocator(0.5)'], {}1]

A Curve object contains the data as well as a dict storing information dedicated to the Curve,
notably plotting information.

Child classes of Curve can be implemented in order to provide you the suitable data analysis tools.

A list of possible keywords to the Curves is presented below.

Parsing of several file formats is provided, and data types are supported for processing of specific
types of measurements.

Every Curve type provides dedicated functions (for analysis, plotting, etc.) as well as specific data
visualizations accessible from a drop-down menu in the GUIL.

The provided Curve types can be organized in two groups. First the Curve types related to data
manipulation and presentation:

Used to create an array of axes in the figure, organized in a grid paving the space available based on
the gridspec formalism of matplotlib. Unless specified otherwise, the next Curves will be displayed
in the newly created axes.

* File subplot: a path to a graph file to be inserted as subplot.
If not provided, the Curve’s data will be showed in the created axis.

* Colspan, rowpan: how many grid locations the subplot will fill

* Update subplot: a dict whose elements will to given to the graph loaded by file subplot

* Number cols: how many columns there are in the grid

* Transpose: by default the grid is filled row-by-row. If set the grid is filled column-by-
column

* Show id: displays small (a), (b) etc. on top-left corner of each created axes. Coordinates
relative to that corner can also be provided (in figure fraction)

* Width ratios, height ratios: list of relative width/heights for the axes in the grid

* Subplots_adjust: margins and spacings of the graphs: [left, bottom, right, top, wspace,
hspace]

Creates new axes in the figure and plot an external graph file inside.
When combining subplots and insets the inset curves must be placed after the subplots.

* Fileinset: a path to a graph file to be inserted as inset.

If not provided, this and the next curve’s data will be showed in the created axis.
* Coords: where to place the new axis
* Update inset: a dict whose elements will to given to the graph loaded by fileinset

handles pictures as well as display of matrices

* Plot type: imshow, contour, contour. Choose imshow for pictures.

* Data file: indicate path to a picture or to a data matrix file

» Transpose, rotate: seld-explaining. Rotation in degrees for image, by 90° steps for matrices
* Extent: allow zooming on the image. See matplotlib help for imshow for more details

* cmap, vmin, vmax: provides a colormap, and min and max values for matrices

* aspect ratio, interpolation

* Addition, subtraction, multiplication and division with a scalar or a Curve. Operations with
another Curve perform an interpolation of both Curves on the different x values.

* Negation (0 - Curve) and inversion (1 / Curve) operations

* Swap x and y series

The second group of Curve types is related to data analysis, with a focus on photovoltaics and
material science.

Analysis functions Data visualization

* Bandgap from Tauc (E * EQE)A2, manual tuning EQE vs eV instead of nm
of the curve fit possible * Tauc plot (E¥EQE)\2 vs E
* Bandgap from derivative
* Bandgap from exact Tauc method (E * In(1-
EQE))"\2
* EQE current, using the AM1.5G solar spectrum
* Fit of low-energy side exponential decay (Urbach
tail)
* Loading of the Empa 20.4% cell EQE

* Area correction * logarithmic view log(abs(J -
e Calculation of Voc, Jsc, FF, Eff, MPP Jsc))
* Fit of the JV curve using diode with 2 resistors

model

* Manual tuning of the curve fit possible, as well as
resampling to higher number of points.

Jsc-Voc pairs at different light intensities and temperatures

* Area correction. * Logl0 of absolute value
* Fit of Voc vs Jsc: fit the diode ideality factor and

JO, while separating the data according the the

temperature. Limits to Jsc and Voc can be set.
* Separate according to temperature: separate the

data source according to the temperature

10

Add arbitrary offset (a dark is probably more
suited)

Substract dark: dark correction (curve
subtraction)

Convert x axis data from nm to eV

Some curves are automatically hidden at data
loading.

Edge detection on elemental traces

Depth calibration

Adjustment of elemental yield coefficients to
match known elemental ratios over some data
range

Computation of arbitrary elemental ratios
Generation of arbitrary elemental ratio curves
(e.g. GGI, Ga+In, etc.)

Fit Mott-Schottky

nm to eV
nm to cm-1

Sputter time or depth (once
calibrated)

Mott-Schottky plot (1/CA2 vs V)
Carrier density N vs V
N vs apparent depth

Further data processing to be performed by peak selection in derivative visualization and Arrhenius

fitting.

Add temporal offset, add vertical (background
level) offset

Fit decay with constant plus arbitrary number of
exponentials functions, with possibility of fixing

some parameters. The residuals can also be
shown.

11

Semilogx
Derivative

semilogy

Channel to Energy [keV]
conversion

A Curve object contains a dict storing information notably related to plotting. The keywords are not
restricted, and only the keywords corresponding to the signature of the matplotlib plotting function
will be given to the plotting method.

Please have a look to the matplotlib documentation for a list of possible keywords.

Keyword DetailsExamples

type Plotting method of Axes.
Only a few have been extensively tested, but most should work as far as a specific
argument order is not required.
== usual methods ==

'plot', 'fill', 'errorbar', 'scatter', 'boxplot'
== similar to plot ==
'semilogx', 'semilogy', 'loglog', 'plot_date', 'stem', 'step',
'triplot',
== (no linespec) ==
'bar', 'barbs', 'barh', 'cohere', 'csd', 'fill_between',
'fill_betweenx', 'hexbin', 'hist2d', 'quiver', ‘'xcorr',
== 1D vector data ==
'acorr', 'angle_spectrum', 'eventplot', 'hist', 'magnitude_spectrum',
'phase_spectrum', 'pie', 'psd', 'specgram',
== other ==
'spy', 'stackplot', 'violinplot', 'imshow', 'contour', 'contourf'
linespec Format string.
--or
label Curve label to be shown in legend.

Experiment C

color Curve color.
r
purple
[0.5,0,0]
alpha Transparency.
0.5
1
linewidth Linewidth in points
1.5
marker
(0]
S
markersize Size of marker in points.
2.5

markerfacecolor Marker inner color.

-
[0.5,0,0]

markeredgecolor Marker border color.

12

.
[0.5,0,0]

markeredgewidth Marker border with in points.

offset

muloffset

facecolor

cmap

vminmax

colorbar

Xerr

yerr

labelhide
ax_twinx
ax_twiny
linestyle

['key', value]

1.5

Offset to data.

-10

[2,20]

Multiplitcative offset to data.

0.01
[10, 1e2]

Color of "fill" Curve types.

Fill

-

[0.5,0,0]

Colormap, for Curve types which accept this keyword (scatter, etc.)
afmhot

inferno

[[0.91,0.25,1], [1.09,0.75,1], 'hls']

Bounds values for cmap.

[0,7]

[3, "]

If not empty display a colorbar according to keyword cmap.

1

{'ticks': [-1, 0, 2]}

{'orientation':'horizontal', 'adjust':[0.1, 0.1, 0.7, 0.1]}
x error for curve type "errorbar".

1
5

y error for curve type "errorbar".

1
5

Use "1" to hide label in the graph.
1

Plot curve on secondary axis.
True

Plot curve on secondary axis.
True

Use "none" to hide a Curve.

none

User-defined keyword-values pairs. Will be fed to the plotting method if possible.

Only necessary in the GUI.
['fillstyle', 'top']
['comment', 'a valuable info']

13

6. Automated data processing scripts

A few scripts are provided for data processing. Here is a short description of the required input and
of the effect of the scripts.

6.1. Load all files from one folder

Quite obvious

6.2. JV data fit cell-by-cell

e asks for a folder,
* loads all JV data in that folder,
» perform area correction if 2-column cell/area file is found (a search for such file is reported
in console at beginning of script execution),
» for each cell, select one dark and one illuminated curve, if possible,
» fit the data with the 1 diode with 2 resistors model
The output the following:

* For each cell, compiled dark-+illuminated plots. Have a look to the quality of the fit.
* Compiled database files of the cell properties (all, dark only, illuminated only).
* Graphical sample maps of the different JV parameters values.

6.3. JV data fit separately

Similar the JV data fit cel-by-cell. All JV files in a folder are fitted and the results are compiled in a
database file.

6.4. JV sample maps:
Asks for a JV database file (either output of JV setup, or of cell-by-cell script above)

Output a graphical representation of each cells JV parameters

6.5. JV boxplots

Creates boxplot graphs from column-organized data files in a given folder.

¢ asks for a folder,
* open each JV database files present and create boxplots for each relevant JV parameter.
If no file is recognized as a JV database file, tries to aggregate column-wise the data found in each

of the data file.

6.6. Processing of C-V data temperature series

Processes a folder containing C-V data as function of temperature (1 curve per file).
Produces a series of graphs (only the last is shown in the user interface)

* asks for a folder,
» generates the following graphs: C vs V, 1/CA2 vs V (Mott-Schottky), apparent doping vs
depth, built-in voltage versus temperature.

14

6.7. Processing of C-f data temperature series

Processes a folder containing C-f data as function of temperature (1 curve per file).
Produces a series of graphs (only the last is shown in the user interface)

¢ asks for a folder,
» generates the following graphs: C vs f, derivative(C, log(f)) vs f, impedance angle.
From the aggregated data the inflection points can be selected using the data picker, and the defect

energy can be extracted from an Arrhenius relation.

15

Some user preferences can be stored in a configuration file and indicated to the Graph object at
creation. A personalized configuration file can also be provided to the GUI when using a application
launcher as a second argument (it will be retrieved using sys.argv[1])

The configuration file will be opened by grapa as a standard Graph. Whenever needed the software
will query for provided values, and use default settings if no suitable keyword is found.

A configuration file may look like this one:

graph_labels_units []

graph_labels_symbols False

inkscape_path["C:\Program Files\Inkscape\inkscape.exe"]

GUI_colorscale@0
GUI_colorscale0l

[[1,0,0], [1,1,0.5], [0,1,0]]
[[1,0.3,0], [0.7,0,0.7], [0,0.3,1]]
GUI_colorscale02 [[1,0.43,0], [0,0,1]]
GUI_colorscale03 [[0.91,0.25,1], [1.09,0.75,1], 'hls']
GUI_colorscale04 [[0.70,0.25,1], [0.50,0.75,1], 'hls']
GUI_colorscale05 [[1,0,1], [1,0.5,1], [0.5,0.75,1], 'hls']

[e K W |

GUI_colorscale@7 'inferno'
GUI_colorscalel0 'gnuplot2'’
GUI_colorscalell 'viridis'
GUI_colorscalel2 'afmhot'
GUI_colorscalel3 'Y1lGn'
save_imgformat .png

16

You will need to create in folder datatypes a file with name graphMyfile.py (must start with graph
with a small g). This file contains a class GraphMyfile (capital G, same ending as file name) that
inherits from class Graph.

The class must contain at least 1 attribute and 2 methods:

. FILEIO_GRAPHTYPE: some string identifier, for internal use.

. isFileReadable(cls, fileName, fileExt, line1=", line2=", line3=", **kwargs)
Must return True is the file can be opened using your class, otherwise False

. readDataFromFile(self, attributes, **kwargs)

Actually opens the file, which can be access from self.filename.

attributes is a dict which can be given to the constructor of the Curves.

Let us assume your data file is organized as follows (file howto/example_sinx_x.txt):

This is my own data format

My label

-29.9 -0.033394483
-29.7 -0.033316063
-29.5 -0.03189937
-29.3 -0.029182928
-29.1 -0.025257719
-28.9 -0.020264268
-28.7 -0.014387719
-28.5 -0.007851075

Such a column-organized file can very likely be opened using the provided methods. Still, you may
want to add your own stuff there.
In file howto/graphMydata.py is provided an example how such a file can be parsed. To have to
example work just copy the file into the datatypes folder. The class is organized as follows:

import numpy as np

from grapa.graph import Graph

from grapa.curve import Curve

class GraphMydata(Graph):
FILEIO_GRAPHTYPE = 'MyCurve'
AXISLABELS = [['theta', '\theta', 'unit'], ['value', '', 'unit']]
@classmethod

def isFileReadable(cls, fileName, fileExt, linel='', 1line2='', line3='"',
**kwargs):

17

def

if fileExt == '.txt' and linel == 'This is my own data format':
return True
return False

readDataFromFile(self, attributes, **kwargs):

attrs = {}

f = open(self.filename, 'r')
f.readline()

attrs['label'] = f.readline().strip()
f.close()

data = np.array([[np.nan], [np.nan]])
kw = {'skip_header': 2, 'usecols': [0, 1]}
try:
data = np.transpose(np.genfromtxt(self.filename, **kw))
except Exception as e:
if not self.silent:
print('"WARNING cannot read file', self.filename)

print(type(e), e)

try:
from grapa.datatypes.curveMycurve import CurveMycurve
self.append(CurveMycurve(data, attributes))

except ImportError:
self.append(Curve(data, attributes))

self.curve(-1).update(attrs) # file content may override default attributes

self.update({'ylim': [-1.2, 1.2],
'xlabel': self.formatAxisLabel(GraphMydata.AXISLABELS[0]),
'ylabel': self.formatAxisLabel(GraphMydata.AXISLABELS[1])})

18

9. How to define my own Curve type ?

You’ll need to create in folder datatypes a file named curveMycurve.py (file name must start with
curve with a small c). The file must contain a class CurveMycurve (capital C, same ending as the
file name) inheriting from class Curve.

9.1. Example

An example is provided in file howto/curveMycurve.py. To have the example work just place a
copy of the example files in the folder datatypes. The structure is as follows:

import numpy as np
from grapa.curve import Curve

class CurveMycurve(Curve):

so the Curve class information is retrieved when opening an existing file
CURVE = 'Curve mycurve'

def __init_ (self, data, attributes, silent=False):

nmn

Constructor with minimal structure: Curve._ _init_ , and then set the
'Curve' parameter.

Curve.__init_ (self, data, attributes, silent=silent)
self.update ({'Curve': CurveMycurve.CURVE})

GUI RELATED FUNCTIONS
def funcListGUI(self, **kwargs)
""" Fills in the Curve actions specific to the Curve type """

def alterListGUI(self)
""" Determines the possible data visualisations.

data transform function
def y_derivative(self, index=np.nan, xyValue=None)

data transform function
def y_abs(self, index=np.nan, xyValue=None)

function called by user
def statsAndAddition(self, what)

a Curve type specific function printing help for the user
def printHelp(self)

19

Curve Spectrum offers functions to compute the optical absorption coefficient a from reflectance
and transmittance curves of layers. The resulting curve is in units of [cm™]. The computation of o is
based on the Beer-Lambert law of an estimate of the light absorption in the layer.

Warning: The calculations presented below rely on various assumptions ans simplifications. For
more accurate data treatment, various analytical approaches were developped in the literature. The
use of dedicated optical modelization software is also recommended.

R, A and T denote the reflectance, absorptance and transmittance of the layer, and d the layer
thickness.

xA

T

l=R+A+T

Figure 1: Schematics of the light propagation in a sample consisting of a single layer. The
reflection at surfaces are here negleted.

The Beer-Lambert law describes the attenuation of a propagating beam in a medium, and is

expressed as I(d)=I,exp(—ad) , with I, the initial intensity and o the attenuation coefficient.

Assuming the reflection mostly takes place at the first interface (which is wrong, but here a suitably
good approximation when the light absorption is more important than reflections), one obtains:

T=I(d)=(1-R)exp(—ad)

so="tipn-L
d 1-R

In real-life measurements, the layer of interest is generally on top of a substrate. The reflectance and
transmittance can be characterized for both the naked substrate and the layer on substrate. On would
need to perform a "virtual" measurement, where only the layer of interest would be characterized.
An estimate to the optical absorption coefficient o can be obtained as follows.

20

Again, we assume that the reflectance only occurs at the first interface. This is mostly satisfied if

the refractive index of the layer of interst is higher than that of the substrate: ZnO on soda-lime
glass (SLG) for example. With a relatively low value of n around 1.5, SLG is a relatively good

substrate. Conversely Si has a very high refractive index and thus large amplitude of reflection at

interfaces, and will not well satisfy this hypothesis even far in the infrared.

((b)

substrate

a)
\beubslmlf
lA

Ts’ubstra[e

Actual measurement

RI, ot

; Atot, layer
l Atot, substrate

jj[ol

Actual measurement
1= Rs’ubslra[e + Asubslru[cf + Tsubs[nzle 1= Rtol + AL()L‘ layer + A[U[. substrate + T‘lul,

(c)
Rl ayer

L Alayer

1—}(1"[]67'

Actual measurement
1= Rla'yer + Alayer + T}ayer

Figure 2: Schematics of light propagation in (a) a substrate, (b) a substrate covered with a
layer, and (c) ideal optical measurement on a free-standing layer. The reflection at interfaces
are here neglected.

Then, assuming that fraction of (transmitted light) over (incoming light) in the substrate are equal

for both measurements :

Tsubstrate _ Ttot
]‘ - R substrate]‘ - Rtot - Atot ,layer
T
=-1— .ttt (71—
A Atot,layer =1 Rtot T (1 Rsubstrate)

substrate

Finally, assuming R, ,=R,, ,andassuming A

layer

1-R

_ substrate
layer — ~ tot T

T 1-R

layer = layer -

substrate

It follows that:

Ttot (1-R substrate)
(1 _Rtot) T

_ T _
a="Llp—ter =1
d 1- Rlayer d substrate

layer —

A

tot ,layer 2

Warning: This data treatment only provides an estimation of a. For accurate results please use a

more refined analytical treatment, or a dedicated optical modelization software.

21

	Grapa
	User manual

	1. General description
	1.1. Description of Grapa
	1.2. Features overlook

	2. Installation
	2.1. Prerequisites
	2.2. Installation

	3. General organization of the package
	4. Graph object
	4.1. Keywords to Graph

	5. Curve object
	5.1. Provided Curve child classes
	5.2. Keywords to Curve

	6. Automated data processing scripts
	6.1. Load all files from one folder
	6.2. JV data fit cell-by-cell
	6.3. JV data fit separately
	6.4. JV sample maps:
	6.5. JV boxplots
	6.6. Processing of C-V data temperature series
	6.7. Processing of C-f data temperature series

	7. Configuration file
	8. How to read my own data files ?
	8.1. Example:

	9. How to define my own Curve type ?
	9.1. Example

	10. A few more details...
	10.1. CurveSpectrum

