
Predicting Accurate Spectral Traces for Astrophysical SOSS Spectra Package Demo

This notebook demonstrates how to use the PASTASOSS package to rapidly generate the trace positions for NIRISS/SOSS observations, in addition we include and example SOSS observation. PASTASOSS uses reference models of trace

positions for commanded position of the GR700XD, for order 1 and 2. We apply a rotation transform to reference models to derive the trace positions for any given pupil wheel position angle that is included in the FITS header using the keyword

PWCPOS . The associate wavelength for each trace positions will be added to the tool at a later date to provide a complete picture with sub-pixel performance. Future iterations of this will include update models for spectral traces positions and

will eventually include support for order 3.

Imports

Downloading data from MAST

First, were going download some NIRISS/SOSS data products from MAST using astroquery for PID 1512 calibration program (PI: Néstor Espinoza) to demonstrate how to use the PASTASOSS to predict the trace positions.

1. Query MAST.

2. Get the data products.

3. Filter the data products to find the observation we want. In this case, we're interest in the RATEINTS .

4. Filter the files with longest integrations (i.e., the files that have the largest file size) and have a the a similar naming pattern to jw01512001001_03102_00001_nis - jw01512001001_03102_00010_nis

5. Download the desired data products from our filtered list of observations. This might take some time ~20 sec.

INFO: Found cached file ./mastDownload/JWST/jw01512003001_03102_00001_nis/jw01512003001_03102_00001_nis_rateints.fits with expected size 104915520. [astroquery.query]
Table length=1

Local Path Status Message URL

str93 str8 object object

./mastDownload/JWST/jw01512003001_03102_00001_nis/jw01512003001_03102_00001_nis_rateints.fits COMPLETE None None

Load and check the downloaded data.

For this step, We're going to use the 'JWST.datamodels' module for to load in the data. You may also use astropy as well.

(10, 256, 2048)

For this demonstration we're going to use a single frame from the loaded dataset, in this instance, the median frame. You may recieve and warning at this step which we can ignore.

/Users/tbaines/miniconda3/envs/pasta-soss-3.9/lib/python3.9/site-packages/numpy/lib/nanfunctions.py:1217: RuntimeWarning: All-NaN slice encountered
 return function_base._ureduce(a, func=_nanmedian, keepdims=keepdims,

(256, 2048)

Now we need to extract the pupil wheel position of the GR700XD from the header given by the appropiate keyword. Also, a JWST datamodel object makes it easy to search keywords but using the search method. The keyword we are interested

in is the pupil_position . Alternatively, if the data is loaded using astropy, one can use the PWCPOS keyword to extract the value from the header, see below:

from astropy.io import fits
pwcpos = fits.getheader(manifest['Local Path'][0])['PWCPOS']
print(pwcpos)

root (AsdfObject)
└─meta (dict)
 └─instrument (dict)
 ├─pupil (str): GR700XD
 └─pupil_position (float): 245.8153380000002

The PWCPOS value for jw01512003001_03102_00001_nis_rateints.fits is 245.815338 degrees

Now let's plot the SOSS Observation data.

/var/folders/29/pjcwvh_13k19wm1ss_cmg68h0005gn/T/ipykernel_32260/3733515596.py:4: RuntimeWarning: invalid value encountered in log1p
 plt.imshow(np.log1p(np.nan_to_num(median_rateints)), vmin=1, vmax=6, origin='lower', aspect='auto',cmap='inferno')

The example observation show the three dispersed spectral orders along with some cross-contamination overlap of dispersed spectral orders from nearby field star. An order 0 of the nearby field star is present in the top right. The 1/f noise is

given by the striped-banding across the image columns in addition to the dispersed zodiacal background given by the sudden jump in counts near pixel column 700.

It is a known issue that have a large number of DO_NOT_USE pixels with the current JWST calibration pipeline and are working to resolve this issues. These pixels were mark as nans . We can ignore these for the demo.

Generate Trace Positions for a NIRISS/SOSS observation using PASTASOSS

We will demonstratte how to use PASTASOSS to generate the spectral traces a NIRISS/SOSS observation where we only require the pupil wheel position or PWCPOS value which we have already extracted from the file header/datamodel.

To do this we will use the get_soss_traces function from PASTASOSS .

The get_soss_traces method will use the included trace and wavelength calibration model to predict the trace (x, y) pixel positions and their associated wavelength values in units of microns. This method will return a TraceModel that is a

dataclass object to store the trace properties (i.e., order, x, y, wavelength).

pastasoss.soss_traces.TraceModel

TraceModel(order='1', x=array([4., 5., 6., ..., 2041., 2042., 2043.]), y=array([82.85771157, 82.81537643, 82.77304128, ..., 74.91797489,
 75.10228581, 75.28659672]), wavelength=array([2.82852565, 2.82753881, 2.82655194, ..., 0.85204162, 0.85116324,
 0.85028517]))

You can also called the function in a single line by the follow:

Next, lets plot our traces we just generated for this observation ontop of our image. Let separate our traces into their x-,y-compenents.

Now lets plots traces for orders 1 and 2 on top of our example SOSS observations.

As you can see, we are able to predict the traces positions for orders 1 and 2 very well with sub-pixel performance. Order 1 has full coverage across the detector while order 2 extends from pixel column 1000 to 1750. This was due to the limit data

at the time of producing the trace model and will be updated in the future to span 650 to 1750 and eventually span all of order 2. Order 3 will be supported in the future.

Spectral Extraction
Now that we have our traces positions for spectral order 1 and 2, we can perform a simple aperutre extraction to extract the spectrum.

Let's plot the extracted spectrum for orders 1 and 2.

Conclusion
This concludes the demo (v1.1) of how to use the PASATSOSS Package.

Our goal with PASTASOSS to provide the community with a tool to predict the spectral traces (i.e, their positions on the detector and associated wavelengths for the three GR700XD diffraction orders) given a PWCPOS value.

Future priority updates to include into the PASTASOSS package:

1. Support for order 3 traces and wavelength calibration

2. Update trace and wavelength calibration models when more data becomes available

3. Possible integration into the JWST calibration pipeline (TBD).

Additional features that may be included in the future:

1. integrated method(s) to trace spectral such as:

the applesoss edge-triger algorithm

transitspectroscopy cross-correlation algorithm

2. spatial profiles

3. Background model prediction for Background Subtraction (integrated or standalone)

4. 1/f noise removal

If you use this tool in your work, please cite the tool and author(s). For questions about the tool or interested in contributing to the package in any way, please contact the authors.

Links to Technical Reports:

1. Characterization of the visit-to-visit Stability of the GR700XD Spectral Traces for NIRISS/SOSS Observations

2. Characterization of the visit-to-visit Stability of the GR700XD Wavelength Calibration for NIRISS/SOSS Observations

About this notebook

version: 1.1.0

Author: Tyler Baines, STScI Science Support Analyst

Email: tbaines@stsci.edu

Date Updated: 4/02/2024

Observatory: JWST

Instrument/Mode: NIRISS/SOSS

In []: import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm

from jwst import datamodels

from astroquery.mast import Observations
import pastasoss

In []: # query the data of interest
observation = Observations.query_criteria(instrument_name='NIRISS*',
 proposal_id='1512',
 target_name='BD+60-1753',
 filters="*GR700XD")
observation.show_in_notebook(display_length=5)

In []: data_products = Observations.get_product_list(observation)
data_products.show_in_notebook(display_length=5)

In []: filtered_products = Observations.filter_products(data_products, productType = 'SCIENCE', productSubGroupDescription = 'RATEINTS')
filtered_products.show_in_notebook(display_length=5)

In []: filtered_products = filtered_products[filtered_products['size']== 104915520]
filtered_products.show_in_notebook(display_length=5)

In []: # here you can choose which dataset you want by changing the index.
obs_index = 4

manifest = Observations.download_products(filtered_products[obs_index],)
manifest

Out[]:

In []: rateints = datamodels.open(manifest['Local Path'][0])

In []: rateints.data.shape

Out[]:

In []: median_rateints = np.nanmedian(rateints.data, axis=0)

In []: median_rateints.shape

Out[]:

In []: rateints.search('pupil')

Out[]:

In []: pwcpos = rateints.meta.instrument.pupil_position

print(f"The PWCPOS value for {rateints.meta.filename} is {pwcpos:3f} degrees")

In []: # Plot the image
plt.figure(figsize=(6,3), dpi=200)
plt.title(f'{rateints.meta.filename}')
plt.imshow(np.log1p(np.nan_to_num(median_rateints)), vmin=1, vmax=6, origin='lower', aspect='auto',cmap='inferno')
plt.xlabel('x [pix]')
plt.ylabel('y [pix]')
plt.colorbar()
plt.show()

In []: # get the order 1 traces for the desired PWCPOS
traces_order1 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='1', interp=True)

now for order 2
traces_order2 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='2', interp=True)

In []: type(traces_order1)

Out[]:

In []: print(traces_order1)

In []: # uncomment this line and run the cell
traces_order1, traces_order2 = pastasoss.get_soss_traces(pwcpos=pwcpos, order='12', interp=True)

In []: x1, y1, wave1 = traces_order1.x, traces_order1.y, traces_order1.wavelength
x2, y2, wave2 = traces_order2.x, traces_order2.y, traces_order2.wavelength

In []: plt.figure(figsize=(6,3), dpi=200)
plt.title(f'NIRISS/SOSS GR700XD\ntrace positions at PWCPOS={pwcpos:.3f}')
plt.imshow(np.nan_to_num(median_rateints), vmin=0, vmax=30, origin='lower', aspect='auto', cmap='inferno')
plt.imshow(np.nan_to_num(median_rateints), norm=LogNorm(vmin=1, vmax=1000), origin='lower', aspect='auto', cmap='inferno')
plt.plot(x1,y1, lw=1.5, label=f'order 1', color='cornflowerblue')
plt.plot(x2,y2, lw=1.5, label=f'order 2', color='orangered')
plt.xlabel('x [pix]')
plt.ylabel('y [pix]')
plt.colorbar()
plt.legend()
plt.show()

In []: data = np.nan_to_num(median_rateints.copy())

ignore values less zero
data[data<0] = 0

Define how many pixels we want to set our aperture above and below the trace center
npix = 15

perform a simple aperture extraction via cutout of a desired window size.
flux_order1 = [data[int(y)-npix:int(y)+npix, int(x)].sum() for x, y in zip(x1, y1)]
flux_order2 = [data[int(y)-npix:int(y)+npix, int(x)].sum() for x, y in zip(x2, y2)]

In []: fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6))
fig.suptitle('Extracted SOSS Spectra')
ax1.set_title('Order 1')
ax1.plot(wave1, flux_order1, lw=1.5, label=f'order 1', color='cornflowerblue')
ax1.set_xlabel('wavelength [um]')
ax1.set_ylabel('DN/s')

ax2.set_title('Order 2')
ax2.plot(wave2, flux_order2, lw=1.5, label=f'order 2', color='orangered')
ax2.set_xlabel('wavelength [um]')
ax2.set_ylabel('DN/s')

plt.tight_layout()
plt.show()

In []: plt.figure(figsize=(10,4), dpi=187)
plt.plot(wave1, flux_order1, lw=1.5, label=f'order 1', color='cornflowerblue')
plt.xlabel('Wavelength [um]')
plt.ylabel('DN/s')
plt.text(1.25, 22000, 'Order 1', color='cornflowerblue')
plt.xticks(color="cornflowerblue")
plt.twiny()
plt.plot(wave2, flux_order2, lw=1.5, label=f'order 2', color='orangered')
plt.text(0.7, 12000, 'Order 2', color='orangered')
plt.xticks(color="orangered")
plt.ylabel('DN/s (order 2)')
plt.xlabel('Wavelength [um]')
plt.legend()

plt.tight_layout()
plt.show()

https://arxiv.org/abs/2311.07769
https://arxiv.org/abs/2311.07771
mailto:tbaines@stsci.edu

