1 Mining Functional Dependencies

1.1 the closure algorithm

In our implementation we have collected together functional dependencies
with the same left side. This style of data organizations allows for the simple
storage as dictionary or map of attribute sets where the antedecent becomes the
dictionary key an the different consequents with same antecedent make up the
value. Both key and value of the dictionary consist of attribute sets.

This style of data organization has made the implementation of the closure
algorithm more efficient since the current attribute set needs to be only tested
once for the containment of the antecedent in order to acquire all the consequents
which have a common left side. In general bundling rules with same left side is
more efficient whenever these rules are used together. In cases where individual
rules split by each attribute of a right side are needed like in the mincoverage
algorithm there was no runtime penalty either although the implementation
became a bit more intricated as the rules are split by runtime logic rather than
by generating a datastructure to hold split rules. We will show later on when
it comes to the implementation of the mincoverage algorithm how this is done.

For now let us consider the implementation of the closure algorithm:

01 function closure(attrs,dependencies) :
02 haschanged := true;

03 while haschanged :

04 haschanged := false;

05 foreach li — re € dependencies :
06 if i Cattrs A re ¢ attrs :

07 attrs := attrs Ure;

08 haschanged := true;

09 return attrs;

There are a couple of lemmata about the closure algorithm which we will
use:

(i) IeAf Y Iecclosure(AE) & E-A—1
we will prove now: @ = (AB)}, = E+F AB = Q
assume that: {A — C,C — D} € E then follows
AB — ABC,ABC — ABCD (augmentation)
AB — ABCD (transitivity)

If I7 C attrs then both sides of the rule are augmented for all attributes in
attr. Finally the new attribute set attrs U re can be inferenced by applying
transitivity. After having successfully applied the closure algorithm we may
split a singleton right side out of the closure by the rule of decomposition which
we will show later on: [ € AL, = E+ A— 1.

(ii) AJKLC AL, = (AJKL)}, = A},
The given property directly follows out of the closure algorithm: As AJKL

can become an intermediate step of calculating A7, the final result will be the
same.




(iii) G =E\{M — JKL} = (AJKL)},=(AJKL){,

As the rules we are leaving out do only inference attributes which are already
in our base set that will not make a difference for the closure algorithm as
re C attrs.

1.2 an algorithm for calculating the minimum coverage

The minimum coverage of a set of functional dependencies is a ruleset that
can no more be reduced by leaving out any left or right side attribute of any
rule. There may be multiple minimum coverages for a given ruleset which
can be gained depending on the order in which the algorithm tests for leaving
out individual rules with singleton right side attribute or leaving out left side
attributes.

01 function mincoverage(dependencies) :
02 foreach li — re € dependencies :
03 reddep := dependencies \ {li — re}

04 othersclosure := closure(li, reddep);
05 newre := re \ othersclosure;

06 precond :=li Ure

07 foreach r € newre :

08 precond := precond \ {r};

09 if r € closure(precond, reddep) :

10 newre := newre \ {r};

11 else :

12 precond := precond U {r};

13 foreach l €li:

14 tryred := i\ {l};

15 redcl := closure(tryred, reddep);

16 if li Credcl :

17 li:=1i\ {l}

18 if dx:li — x € reddep :

19 dependencies := reddep \ {li — z} U {li — zUre};
20 else :

21 dependencies = reddep U {li — re};

22  return dependencies;

At first we select a whole rule bundle with common left side and individually
different consqeuents collected to a singleton right side (line 2). We remove the
current rule bundle from the dependencies (line 3) and test which right sides can
still be inferenced from the given left side (line 4). Those right sides which can
be inferenced also without the current rule bundle are redundant and may be
removed (line 5). This is because a rule may be decomposed and re-composed
by the attributes of its right side when the left side matches.

toshow: {A—IJKL}eE
F=E\{A—IJKL}U{A— KL} NIJC AL = ET=F*
decomposition:

FrCEY: A= IJKL, IJKL—1J, IJKL— KL (refl.)
A—1J, A—- KL (trans.)




composition:

EtCFt: IJCAf e A—1J, A—> KL
A— AlJ, AlJ — IJKL (augm.)
A—IJKL (trans.)

Now that we have already tested for which attributes leaving out the whole
rule bundle does not matter we need to test for indiviual rules with singleton
right side attribute whether they could still be left out. We could have done
by creating a datastructure of split rules and then we could have tried to leave
out any singleton rule of these. However this would have come with a runtime
penalty and additional implementation complexity.

The trick about doing this without creating split rules is to include the
consequents of individual rules which are considered to be necessary by the
current test in the source attribute set of the closure call. We know these
attributes would be inferenced any way by our additional split rules so we just
include them in the source argument rather than letting the closure call derive
them from singleton rules on its own. Arguments in the source attribute set of
the closure call will always appear in the output set.

G=FE\{A—IJKL}, F=E\{A— I}
to show: 1€ (AJKL)L & 1€ Ak

G=E\{A—-I}\{A— JKL}

G=F\{A— JKL}

F=GU{A— JKL}

= AJKL C A},

= (AJKL)} = A},

=" (AJKL){, = (AJKL)},

=1eAL <1 (AJKL)

While F is the set of dependencies we wanna test for G is the set of reduced
dependencies we have already calculated in line 3 by removing the whole rule
bundle. We now wanna show how to do the same calculation with G rather than
F when it comes to remove individual rules. As A — JKL is in F adding these
attributes to the source argument of the closure call in addition to attribute A
does not change its result. Finally we do not need the attributes now added to
the source argument as right sides in our rules any more.

The reason why we have checked to remove rules by leaving out the whole
rule bundle prior to checking for rules with individual right side is that this
is generally the faster way to get rid of redundant attributes. Otherwise the
checks with simulated individual right side would suffice.

In lines 13 to 17 we test whether we can leave out individual attributes on
the left side of a rule. This is the case if one of the attributes on the left side can
be inferenced by the other attributes. Consequently we try to leave out every
singleton attribute once. The fact that it is legal to leave out an attribute on
the left side implied by others can easily be verified based on the Armstrong
axioms:



{ABC 5 IJKL} € E A AB—C € EF,
F = E \ {ABC > IJKL} U {AB — IJKL}
= Bt = Ff

EtYCFt: AB—I1JKL
ABC - IJKLC, IJKLC —I1JKL (aug.,refl.)
ABC - IJKL (trans.)

Ft CEY: ABC - IJKL, AB—C
AB — ABC (aug.)
AB - IJKL (trans.)

You may still believe that there is a possible flaw in the given implementation
to reduce the left side so that it becomes minimal: It tries to reduce the left
side for the whole rule bundle only. However leaving out the other rules of the
same rule bundle is 0.k. since these rules will never execute as long as their left
side is not fully covered. However if it is fully covered we have shown that we
can already reduce the left side for the whole rule bundle.

The final statements of the algorithm (lines 18 to 21) do contain code in order
to replace the previous rule bundle with the newly generated rule containing a
reduced left and reduced right side.

As we have effectively tried to leave out any rule split by singleton right side
attribute and every attribute of a left side of any rule we have tried through all
the given possibilities to reduce the existing ruleset. As we have now success-
fully completed this task we may not only assume that the returned closure is
equivalent to the input closure but also that it is a minimum coverage of the
given ruleset.

The actual code for calculating the minimum coverage of a ruleset does also
contain some code to reorder the input rules because il there are more than one
minimum coverage of functional dependencies we wanna be able to return them.
This is less important for calculating keys upon a given ruleset but it may be
useful when it comes to normalize the given database schema later on.



1.3 algorithm for finding keys

01 function keysTreeAlgorithm(attr, dependencies) :

02 foreach a € attr : attrchlal := 0;

03 foreach li — re € dependencies :

04 foreach 1 € li : attrchll] := attrchll] bitwise_or 1;
05 foreach r € re : attrch[r] ;= attrchlr] bitwise_or 2;
06 fori:=0to3: setsi] :=0;

07  foreach a € attr :

08 sets[attrchla]] .= sets[attrchla]] U{a};

09 (independent,left, right, both) := sets]];

08 subkey := left Uindependent;

09 if closure(subkey,dependencies) == attr : return subkey
10 curlvl := 0; keys := 0;

11 foreach m € both :

12 kk = subkey U{m};

13 if closure(kk,dependencies) == attr : keys.add(kk);

14 else : curlvl[kk] := m;

15 while curlvl # 0 :

16 previvl := curlvl; curlvl := 0;

17 for subkey — maxm € previvl :

18 missingattr := 0;

19 foreach a € both : if a > maxm A a & subkey : missingatir == missingatir U{a};
20 foreach m € missingattr :

21 kk := subkey U{m}; isPartOfKey := false;

22 for key € keys :

23 if key C kk: isPartOfKey := true; break;

24 if misPartOfKey :

25 if closure(kk,dependencies) == attr : keys.add(kk);
26 else : curlvl[kk] :==m;

27 return keys;

A key is by definition a minimal set of attributes from which all the other
attributes can be deduced. We check this with a closure call to any key candi-
date. If the closure call succeeds to deduce all other attributes we call the given
base set a superkey as we have not yet verified that the given set of attributes
is minimal; i.e. it could stay a superkey after removing one attribute.

There can be found key search algorithms in literature which start with
the whole set of attributes and reduce them one by one until a key is found.
However we have chosen the other way round to assemble keys by adding one
attribute after another because this is generally the faster way to find a key.
Typically only a few attributes are required to be part of a key as there are
many functional dependencies between the different data items of a table row.

At first we split the attributes in four sets (lines 1-9): Those which are
contained in none of the functional dependencies, those which do only occur at
the left side of a dependency, those only occuring on the right side and finally
attributes which appear in an antecedent as well as in the consequent of a rule.

All attributes which can not be inferenced from others need to be contained
in the key: This comprises the independent and the left-side sets of attributes.



If the resulting set is already a key it is returned since this will then be the only
key. Otherwise we go on with adding attributes of the middle set contained on
both sides of a rule.

The reason why attributes appearing only on a right side do not need to be
considered is that first none of the other attributes can be deduced from them
and second that there are other attributes deducing them. The other attributes
need to be deducible by the key as all attributes need to be deducible by a key.

The algorithm now starts with the minimum set of attributes that need to
be contained in every key (left + independent set). Then in every step one more
attribute is added. If the given attribute set ends up to be a superkey in the first
step it is also a key because we have already checked that no fewer attributes
can serve as a key. In the following step we check whether the newly constructed
attribute set is a superset of an existing key. We can do so successfully because
all keys comprising one element less than the current set have already been
found. If the current set is a superkey and does not contain any key with at
least one element less it is a key since we have added attributes one by one.
Otherwise the set that results from adding one candidate attribute becomes
stored for the next step where new attributes are added subsequently.

Some algorithms found in literature add just any attribute to the new set
which is not yet part of the set. However this is a suboptimal way to do it since
the same set of attributes can be constructed in multiple ways. The consqgeuence
is that one would need to check for duplicate nodes which slowed the needed
execution time down. Nonetheless there is a simple way to avoid this.

You need a strong monotonic ordering of the attributes for this like alpha-
betical comparison is. If you only add attributes which are greater than the
greatest attribute in the current set then there is only one way to construct a
given attribute set. This is because an attribute that has been chosen to be
omitted in step i will never be selected in any subsequent step i+j again. If ev-
ery step makes a choice about some ignored and one added attribute we arrive
at an algorithm that only generates key candidates in ascending attribute order
which is unambiguous and therefore avoids duplicates.



