Coverage for nilearn/reporting/tests/test_html_report.py: 23%

287 statements  

« prev     ^ index     » next       coverage.py v7.9.1, created at 2025-06-20 10:58 +0200

1from collections import Counter 

2 

3import numpy as np 

4import pytest 

5from nibabel import Nifti1Image 

6from numpy.testing import assert_almost_equal 

7 

8from nilearn._utils.data_gen import generate_random_img 

9from nilearn._utils.helpers import is_matplotlib_installed, is_plotly_installed 

10from nilearn._utils.html_document import WIDTH_DEFAULT, HTMLDocument 

11from nilearn._utils.testing import on_windows_with_old_mpl_and_new_numpy 

12from nilearn.conftest import _img_maps 

13from nilearn.image import get_data 

14from nilearn.maskers import ( 

15 MultiNiftiLabelsMasker, 

16 MultiNiftiMapsMasker, 

17 MultiNiftiMasker, 

18 NiftiLabelsMasker, 

19 NiftiMapsMasker, 

20 NiftiMasker, 

21 NiftiSpheresMasker, 

22 SurfaceMapsMasker, 

23 SurfaceMasker, 

24) 

25from nilearn.surface import SurfaceImage 

26 

27# ruff: noqa: ARG001 

28 

29# Note: html output by nilearn view_* functions 

30# should validate as html5 using https://validator.w3.org/nu/ with no 

31# warnings 

32 

33 

34def _check_html(html_view, reports_requested=True, is_fit=True): 

35 """Check the presence of some expected code in the html viewer. 

36 

37 Also ensure some common behavior to all reports. 

38 """ 

39 assert isinstance(html_view, HTMLDocument) 

40 

41 # resize width and height 

42 html_view.resize(1200, 800) 

43 assert html_view.width == 1200 

44 assert html_view.height == 800 

45 

46 # invalid values fall back on default dimensions 

47 with pytest.warns(UserWarning, match="Using default instead"): 

48 html_view.width = "foo" 

49 assert html_view.width == WIDTH_DEFAULT 

50 

51 if reports_requested and is_fit: 

52 assert "<th>Parameter</th>" in str(html_view) 

53 if "Surface" in str(html_view): 

54 assert "data:image/png;base64," in str(html_view) 

55 else: 

56 assert "data:image/svg+xml;base64," in str(html_view) 

57 assert html_view._repr_html_() == html_view.body 

58 

59 

60@pytest.fixture 

61def niftimapsmasker_inputs(): 

62 return {"maps_img": _img_maps(n_regions=3)} 

63 

64 

65@pytest.fixture 

66def labels(n_regions): 

67 return ["background"] + [f"region_{i}" for i in range(1, n_regions + 1)] 

68 

69 

70@pytest.fixture 

71def input_parameters(masker_class, img_mask_eye, labels, img_labels): 

72 if masker_class in (NiftiMasker, MultiNiftiMasker): 

73 return {"mask_img": img_mask_eye} 

74 if masker_class in (NiftiLabelsMasker, MultiNiftiLabelsMasker): 

75 return {"labels_img": img_labels, "labels": labels} 

76 if masker_class in (NiftiMapsMasker, MultiNiftiMapsMasker): 

77 return {"maps_img": _img_maps(n_regions=2)} 

78 if masker_class is NiftiSpheresMasker: 

79 return {"seeds": [(1, 1, 1)]} 

80 

81 

82@pytest.mark.parametrize( 

83 "masker_class", 

84 [NiftiMasker, NiftiLabelsMasker, NiftiMapsMasker, NiftiSpheresMasker], 

85) 

86def test_warning_in_report_after_empty_fit(masker_class, input_parameters): 

87 """Tests that a warning is both given and written in the report \ 

88 if no images were provided to fit. 

89 """ 

90 masker = masker_class(**input_parameters) 

91 masker.fit() 

92 

93 warn_message = f"No image provided to fit in {masker_class.__name__}." 

94 with pytest.warns(UserWarning, match=warn_message): 

95 html = masker.generate_report() 

96 assert warn_message in masker._report_content["warning_message"] 

97 _check_html(html) 

98 

99 

100@pytest.mark.parametrize("displayed_maps", ["foo", "1", {"foo": "bar"}]) 

101def test_nifti_maps_masker_report_displayed_maps_errors( 

102 niftimapsmasker_inputs, displayed_maps 

103): 

104 """Tests that a TypeError is raised when the argument `displayed_maps` \ 

105 of `generate_report()` is not valid. 

106 """ 

107 masker = NiftiMapsMasker(**niftimapsmasker_inputs) 

108 masker.fit() 

109 with pytest.raises(TypeError, match=("Parameter ``displayed_maps``")): 

110 masker.generate_report(displayed_maps) 

111 

112 

113@pytest.mark.parametrize("displayed_maps", [[2, 5, 10], [0, 66, 1, 260]]) 

114def test_nifti_maps_masker_report_maps_number_errors( 

115 niftimapsmasker_inputs, displayed_maps 

116): 

117 """Tests that a ValueError is raised when the argument `displayed_maps` \ 

118 contains invalid map numbers. 

119 """ 

120 masker = NiftiMapsMasker(**niftimapsmasker_inputs) 

121 masker.fit() 

122 with pytest.raises( 

123 ValueError, match="Report cannot display the following maps" 

124 ): 

125 masker.generate_report(displayed_maps) 

126 

127 

128@pytest.mark.parametrize("displayed_maps", [[1, 2], np.array([0, 1, 2])]) 

129def test_nifti_maps_masker_report_list_and_arrays_maps_number( 

130 niftimapsmasker_inputs, displayed_maps 

131): 

132 """Tests report generation for NiftiMapsMasker with displayed_maps \ 

133 passed as a list of a Numpy arrays. 

134 """ 

135 n_regions = niftimapsmasker_inputs["maps_img"].shape[-1] 

136 

137 masker = NiftiMapsMasker(**niftimapsmasker_inputs) 

138 masker.fit() 

139 html = masker.generate_report(displayed_maps) 

140 

141 assert masker._report_content["number_of_maps"] == n_regions 

142 assert masker._report_content["displayed_maps"] == list(displayed_maps) 

143 msg = ( 

144 "No image provided to fit in NiftiMapsMasker. " 

145 "Plotting only spatial maps for reporting." 

146 ) 

147 assert masker._report_content["warning_message"] == msg 

148 assert html.body.count("<img") == len(displayed_maps) 

149 

150 

151@pytest.mark.parametrize("displayed_maps", [1, 3, 4, "all"]) 

152def test_nifti_maps_masker_report_integer_and_all_displayed_maps( 

153 niftimapsmasker_inputs, displayed_maps 

154): 

155 """Tests NiftiMapsMasker reporting with no image provided to fit \ 

156 and displayed_maps provided as an integer or as 'all'. 

157 """ 

158 n_regions = niftimapsmasker_inputs["maps_img"].shape[-1] 

159 

160 masker = NiftiMapsMasker(**niftimapsmasker_inputs) 

161 masker.fit() 

162 expected_n_maps = ( 

163 n_regions 

164 if displayed_maps == "all" 

165 else min(n_regions, displayed_maps) 

166 ) 

167 if displayed_maps != "all" and displayed_maps > n_regions: 

168 with pytest.warns(UserWarning, match="masker only has .* maps."): 

169 html = masker.generate_report(displayed_maps) 

170 else: 

171 html = masker.generate_report(displayed_maps) 

172 

173 assert masker._report_content["number_of_maps"] == n_regions 

174 assert masker._report_content["displayed_maps"] == list( 

175 range(expected_n_maps) 

176 ) 

177 msg = ( 

178 "No image provided to fit in NiftiMapsMasker. " 

179 "Plotting only spatial maps for reporting." 

180 ) 

181 assert masker._report_content["warning_message"] == msg 

182 assert html.body.count("<img") == expected_n_maps 

183 

184 

185def test_nifti_maps_masker_report_image_in_fit( 

186 niftimapsmasker_inputs, affine_eye 

187): 

188 """Tests NiftiMapsMasker reporting with image provided to fit.""" 

189 n_regions = niftimapsmasker_inputs["maps_img"].shape[-1] 

190 

191 masker = NiftiMapsMasker(**niftimapsmasker_inputs) 

192 image, _ = generate_random_img((13, 11, 12, 3), affine=affine_eye) 

193 masker.fit(image) 

194 html = masker.generate_report(2) 

195 

196 assert masker._report_content["number_of_maps"] == n_regions 

197 

198 assert html.body.count("<img") == 2 

199 

200 

201@pytest.mark.parametrize("displayed_spheres", ["foo", "1", {"foo": "bar"}]) 

202def test_nifti_spheres_masker_report_displayed_spheres_errors( 

203 displayed_spheres, 

204): 

205 """Tests that a TypeError is raised when the argument `displayed_spheres` \ 

206 of `generate_report()` is not valid. 

207 """ 

208 masker = NiftiSpheresMasker(seeds=[(1, 1, 1)]) 

209 masker.fit() 

210 with pytest.raises(TypeError, match=("Parameter ``displayed_spheres``")): 

211 masker.generate_report(displayed_spheres) 

212 

213 

214def test_nifti_spheres_masker_report_displayed_spheres_more_than_seeds(): 

215 """Tests that a warning is raised when number of `displayed_spheres` \ 

216 is greater than number of seeds. 

217 """ 

218 displayed_spheres = 10 

219 seeds = [(1, 1, 1)] 

220 masker = NiftiSpheresMasker(seeds=seeds) 

221 masker.fit() 

222 with pytest.warns(UserWarning, match="masker only has 1 seeds."): 

223 masker.generate_report(displayed_spheres=displayed_spheres) 

224 

225 

226@pytest.mark.parametrize( 

227 "displayed_spheres, expected_displayed_maps", 

228 [("all", [0, 1, 2, 3]), ([1], [0, 2]), ([0, 2], [0, 1, 3])], 

229) 

230def test_nifti_spheres_masker_report_displayed_spheres_list( 

231 displayed_spheres, expected_displayed_maps 

232): 

233 """Tests that spheres_to_be_displayed is set correctly. 

234 

235 report_content["displayed_maps"] 

236 should have one more value than requested 

237 as _report_content["displayed_maps"][0] 

238 is a glass brain with all the spheres 

239 """ 

240 seeds = [(1, 1, 1), (2, 2, 2), (3, 3, 3)] 

241 masker = NiftiSpheresMasker(seeds=seeds) 

242 masker.fit() 

243 masker.generate_report(displayed_spheres=displayed_spheres) 

244 assert masker._report_content["displayed_maps"] == expected_displayed_maps 

245 

246 

247def test_nifti_spheres_masker_report_displayed_spheres_list_more_than_seeds(): 

248 """Tests that a ValueError is raised when list of `displayed_spheres` \ 

249 maximum is greater than number of seeds. 

250 """ 

251 displayed_spheres = [1, 2, 3] 

252 seeds = [(1, 1, 1)] 

253 masker = NiftiSpheresMasker(seeds=seeds) 

254 masker.fit() 

255 with pytest.raises(ValueError, match="masker only has 1 seeds."): 

256 masker.generate_report(displayed_spheres=displayed_spheres) 

257 

258 

259def test_nifti_spheres_masker_report_1_sphere(): 

260 """Check the report for sphere actually works for one sphere. 

261 

262 See https://github.com/nilearn/nilearn/issues/4268 

263 """ 

264 report = NiftiSpheresMasker([(1, 1, 1)]).fit().generate_report() 

265 

266 empty_div = """ 

267 <img id="map1" class="pure-img" width="100%" 

268 src="" 

269 style="display:none;" alt="image"/>""" 

270 

271 assert empty_div not in report.body 

272 

273 

274def test_nifti_labels_masker_report_no_image_for_fit( 

275 img_3d_rand_eye, n_regions, labels, img_labels 

276): 

277 """Check no contour in image when no image was provided to fit.""" 

278 masker = NiftiLabelsMasker(img_labels, labels=labels) 

279 masker.fit() 

280 

281 # No image was provided to fit, regions are plotted using 

282 # plot_roi such that no contour should be in the image 

283 display = masker._reporting() 

284 for d in ["x", "y", "z"]: 

285 assert len(display[0].axes[d].ax.collections) == 0 

286 

287 masker.fit(img_3d_rand_eye) 

288 

289 display = masker._reporting() 

290 for d in ["x", "y", "z"]: 

291 assert len(display[0].axes[d].ax.collections) > 0 

292 assert len(display[0].axes[d].ax.collections) <= n_regions 

293 

294 

295EXPECTED_COLUMNS = [ 

296 "label value", 

297 "region name", 

298 "size (in mm^3)", 

299 "relative size (in %)", 

300] 

301 

302 

303def test_nifti_labels_masker_report( 

304 img_3d_rand_eye, img_mask_eye, affine_eye, n_regions, labels, img_labels 

305): 

306 """Check content nifti label masker.""" 

307 masker = NiftiLabelsMasker( 

308 img_labels, labels=labels, mask_img=img_mask_eye 

309 ) 

310 masker.fit_transform(img_3d_rand_eye) 

311 report = masker.generate_report() 

312 

313 assert masker._reporting_data is not None 

314 

315 # Check that background label was left as default 

316 assert masker.background_label == 0 

317 assert masker._report_content["description"] == ( 

318 "This reports shows the regions defined by the labels of the mask." 

319 ) 

320 

321 # Check that the number of regions is correct 

322 assert masker._report_content["number_of_regions"] == n_regions 

323 

324 # Check that all expected columns are present with the right size 

325 assert ( 

326 masker._report_content["summary"]["region name"].to_list() 

327 == labels[1:] 

328 ) 

329 assert len(masker._report_content["summary"]) == n_regions 

330 for col in EXPECTED_COLUMNS: 

331 assert col in masker._report_content["summary"].columns 

332 

333 # Check that labels match 

334 

335 # Relative sizes of regions should sum to 100% 

336 assert_almost_equal( 

337 sum(masker._report_content["summary"]["relative size (in %)"]), 

338 100, 

339 decimal=2, 

340 ) 

341 

342 _check_html(report) 

343 

344 assert "Regions summary" in str(report) 

345 

346 # Check region sizes calculations 

347 expected_region_sizes = Counter(get_data(img_labels).ravel()) 

348 for r in range(1, n_regions + 1): 

349 assert_almost_equal( 

350 masker._report_content["summary"]["size (in mm^3)"].to_list()[ 

351 r - 1 

352 ], 

353 expected_region_sizes[r] 

354 * np.abs(np.linalg.det(affine_eye[:3, :3])), 

355 ) 

356 

357 

358@pytest.mark.parametrize("masker_class", [NiftiLabelsMasker]) 

359def test_nifti_labels_masker_report_cut_coords( 

360 masker_class, input_parameters, img_3d_rand_eye 

361): 

362 """Test cut coordinate are equal with and without passing data to fit.""" 

363 masker = masker_class(**input_parameters, reports=True) 

364 # Get display without data 

365 masker.fit() 

366 display = masker._reporting() 

367 # Get display with data 

368 masker.fit(img_3d_rand_eye) 

369 display_data = masker._reporting() 

370 assert display[0].cut_coords == display_data[0].cut_coords 

371 

372 

373def test_4d_reports(img_mask_eye, affine_eye): 

374 # Dummy 4D data 

375 data = np.zeros((10, 10, 10, 3), dtype="int32") 

376 data[..., 0] = 1 

377 data[..., 1] = 2 

378 data[..., 2] = 3 

379 data_img_4d = Nifti1Image(data, affine_eye) 

380 

381 # test .fit method 

382 masker = NiftiMasker(mask_strategy="epi") 

383 masker.fit(data_img_4d) 

384 

385 assert masker._report_content["coverage"] > 0 

386 

387 html = masker.generate_report() 

388 _check_html(html) 

389 assert "The mask includes" in str(html) 

390 

391 # test .fit_transform method 

392 masker = NiftiMasker(mask_img=img_mask_eye, standardize=True) 

393 masker.fit_transform(data_img_4d) 

394 

395 html = masker.generate_report() 

396 _check_html(html) 

397 

398 

399def test_overlaid_report(img_fmri): 

400 """Check empty report generated before fit and with image after.""" 

401 masker = NiftiMasker( 

402 mask_strategy="whole-brain-template", 

403 mask_args={"threshold": 0.0}, 

404 target_affine=np.eye(3) * 3, 

405 ) 

406 masker.fit(img_fmri) 

407 html = masker.generate_report() 

408 

409 assert '<div class="overlay">' in str(html) 

410 

411 

412@pytest.mark.parametrize( 

413 "reports,expected", [(True, dict), (False, type(None))] 

414) 

415def test_multi_nifti_masker_generate_report_imgs(reports, expected, img_fmri): 

416 """Smoke test for generate_report method with image data.""" 

417 masker = MultiNiftiMasker(reports=reports) 

418 masker.fit([img_fmri, img_fmri]) 

419 assert isinstance(masker._reporting_data, expected) 

420 masker.generate_report() 

421 

422 

423def test_multi_nifti_masker_generate_report_mask( 

424 img_3d_ones_eye, shape_3d_default, affine_eye 

425): 

426 """Smoke test for generate_report method with only mask.""" 

427 masker = MultiNiftiMasker( 

428 mask_img=img_3d_ones_eye, 

429 # to test resampling lines without imgs 

430 target_affine=affine_eye, 

431 target_shape=shape_3d_default, 

432 ) 

433 masker.fit().generate_report() 

434 

435 

436def test_multi_nifti_masker_generate_report_imgs_and_mask( 

437 shape_3d_default, affine_eye, img_fmri 

438): 

439 """Smoke test for generate_report method with images and mask.""" 

440 mask = Nifti1Image(np.ones(shape_3d_default), affine_eye) 

441 masker = MultiNiftiMasker( 

442 mask_img=mask, 

443 # to test resampling lines with imgs 

444 target_affine=affine_eye, 

445 target_shape=shape_3d_default, 

446 ) 

447 masker.fit([img_fmri, img_fmri]).generate_report() 

448 

449 

450def test_surface_masker_mask_img_generate_report(surf_img_1d, surf_mask_1d): 

451 """Smoke test generate report.""" 

452 masker = SurfaceMasker(surf_mask_1d, reports=True).fit() 

453 

454 assert masker._reporting_data is not None 

455 assert masker._reporting_data["images"] is None 

456 

457 masker.transform(surf_img_1d) 

458 

459 assert isinstance(masker._reporting_data["images"], SurfaceImage) 

460 

461 masker.generate_report() 

462 

463 

464def test_surface_masker_mask_img_generate_no_report(surf_img_2d, surf_mask_1d): 

465 """Smoke test generate report.""" 

466 masker = SurfaceMasker(surf_mask_1d, reports=False).fit() 

467 

468 assert masker._reporting_data is None 

469 

470 img = surf_img_2d(5) 

471 masker.transform(img) 

472 

473 masker.generate_report() 

474 

475 

476@pytest.mark.parametrize("reports", [True, False]) 

477@pytest.mark.parametrize("empty_mask", [True, False]) 

478def test_surface_masker_minimal_report_no_fit( 

479 surf_mask_1d, empty_mask, reports 

480): 

481 """Test minimal report generation with no fit.""" 

482 mask = None if empty_mask else surf_mask_1d 

483 masker = SurfaceMasker(mask_img=mask, reports=reports) 

484 report = masker.generate_report() 

485 

486 _check_html(report, reports_requested=reports, is_fit=False) 

487 

488 

489@pytest.mark.parametrize("reports", [True, False]) 

490@pytest.mark.parametrize("empty_mask", [True, False]) 

491def test_surface_masker_minimal_report_fit( 

492 surf_mask_1d, empty_mask, surf_img_1d, reports 

493): 

494 """Test minimal report generation with fit.""" 

495 mask = None if empty_mask else surf_mask_1d 

496 masker = SurfaceMasker(mask_img=mask, reports=reports) 

497 masker.fit_transform(surf_img_1d) 

498 report = masker.generate_report() 

499 

500 _check_html(report, reports_requested=reports) 

501 assert '<div class="image">' in str(report) 

502 if not reports: 

503 assert 'src="data:image/svg+xml;base64,"' in str(report) 

504 else: 

505 assert masker._report_content["coverage"] > 0 

506 assert "The mask includes" in str(report) 

507 

508 

509def test_generate_report_engine_error(surf_maps_img, surf_img_2d): 

510 """Test error is raised when engine is not 'plotly' or 'matplotlib'.""" 

511 masker = SurfaceMapsMasker(surf_maps_img) 

512 masker.fit_transform(surf_img_2d(10)) 

513 with pytest.raises( 

514 ValueError, 

515 match="should be either 'matplotlib' or 'plotly'", 

516 ): 

517 masker.generate_report(engine="invalid") 

518 

519 

520@pytest.mark.skipif( 

521 is_plotly_installed() or not is_matplotlib_installed(), 

522 reason="Test requires plotly not to be installed.", 

523) 

524def test_generate_report_engine_no_plotly_warning(surf_maps_img, surf_img_2d): 

525 """Test warning is raised when engine selected is plotly but it is not 

526 installed. Only run when plotly is not installed but matplotlib is. 

527 """ 

528 masker = SurfaceMapsMasker(surf_maps_img) 

529 masker.fit_transform(surf_img_2d(10)) 

530 with pytest.warns(match="Plotly is not installed"): 

531 masker.generate_report(engine="plotly") 

532 # check if the engine is switched to matplotlib 

533 assert masker._report_content["engine"] == "matplotlib" 

534 

535 

536@pytest.mark.parametrize("displayed_maps", [4, [1, 3, 4, 5], "all", [1]]) 

537def test_generate_report_displayed_maps_valid_inputs( 

538 surf_maps_img, surf_img_2d, displayed_maps 

539): 

540 """Test all valid inputs for displayed_maps.""" 

541 masker = SurfaceMapsMasker(surf_maps_img) 

542 masker.fit_transform(surf_img_2d(10)) 

543 masker.generate_report(displayed_maps=displayed_maps) 

544 

545 

546@pytest.mark.parametrize("displayed_maps", [4.5, [8.4, 3], "invalid"]) 

547def test_generate_report_displayed_maps_type_error( 

548 surf_maps_img, surf_img_2d, displayed_maps 

549): 

550 """Test error is raised when displayed_maps is not a list or int or 

551 np.ndarray or str(all). 

552 """ 

553 masker = SurfaceMapsMasker(surf_maps_img) 

554 masker.fit_transform(surf_img_2d(10)) 

555 with pytest.raises( 

556 TypeError, 

557 match="should be either 'all' or an int, or a list/array of ints", 

558 ): 

559 masker.generate_report(displayed_maps=displayed_maps) 

560 

561 

562def test_generate_report_displayed_maps_more_than_regions_warn_int( 

563 surf_maps_img, surf_img_2d 

564): 

565 """Test error is raised when displayed_maps is int and is more than n 

566 regions. 

567 """ 

568 masker = SurfaceMapsMasker(surf_maps_img) 

569 masker.fit_transform(surf_img_2d(10)) 

570 with pytest.warns( 

571 UserWarning, 

572 match="But masker only has 6 maps", 

573 ): 

574 masker.generate_report(displayed_maps=10) 

575 # check if displayed_maps is switched to 6 

576 assert masker.displayed_maps == 6 

577 

578 

579def test_generate_report_displayed_maps_more_than_regions_warn_list( 

580 surf_maps_img, surf_img_2d 

581): 

582 """Test error is raised when displayed_maps is list has more elements than 

583 n regions. 

584 """ 

585 masker = SurfaceMapsMasker(surf_maps_img) 

586 masker.fit_transform(surf_img_2d(10)) 

587 with pytest.raises( 

588 ValueError, 

589 match="Report cannot display the following maps", 

590 ): 

591 masker.generate_report(displayed_maps=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) 

592 

593 

594def test_generate_report_before_transform_warn(surf_maps_img): 

595 """Test warning is raised when generate_report is called before 

596 transform. 

597 """ 

598 masker = SurfaceMapsMasker(surf_maps_img).fit() 

599 with pytest.warns(match="SurfaceMapsMasker has not been transformed"): 

600 masker.generate_report() 

601 

602 

603@pytest.mark.skipif( 

604 on_windows_with_old_mpl_and_new_numpy(), 

605 reason="Old matplotlib not compatible with numpy 2.0 on windows.", 

606) 

607def test_generate_report_plotly_out_figure_type( 

608 plotly, surf_maps_img, surf_img_2d 

609): 

610 """Test that the report has a iframe tag when engine is plotly 

611 (default). 

612 """ 

613 masker = SurfaceMapsMasker(surf_maps_img) 

614 masker.fit_transform(surf_img_2d(10)) 

615 report = masker.generate_report(engine="plotly") 

616 

617 # read the html file and see if plotly figure is inserted 

618 # meaning it should have <iframe tag 

619 report_str = report.__str__() 

620 assert "<iframe" in report_str 

621 # and no <img tag 

622 assert "<img" not in report_str 

623 

624 

625def test_generate_report_matplotlib_out_figure_type( 

626 surf_maps_img, 

627 surf_img_2d, 

628): 

629 """Test that the report has a img tag when engine is matplotlib.""" 

630 masker = SurfaceMapsMasker(surf_maps_img) 

631 masker.fit_transform(surf_img_2d(10)) 

632 report = masker.generate_report(engine="matplotlib") 

633 

634 # read the html file and see if matplotlib figure is inserted 

635 # meaning it should have <img tag 

636 report_str = report.__str__() 

637 assert "<img" in report_str 

638 # and no <iframe tag 

639 assert "<iframe" not in report_str