
SERENA

ChangeManZMF 8.1
XML Services User’s Guide

Serena Proprietary and Confidential Information

Copyright
Copyright © 2001-2015 Serena Software, Inc. All rights reserved.
This document, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. Except as permitted
by such license, no part of this publication may be reproduced, photocopied, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation
is reproduced in whole or in part, must be accompanied by this copyright statement in its
entirety, without modification.
This document contains proprietary and confidential information, and no reproduction or
dissemination of any information contained herein is allowed without the express
permission of Serena Software.
The content of this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Serena. Serena
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document.

Trademarks
Serena, TeamTrack, StarTool, PVCS, Comparex, Dimensions, Prototype Composer,
Mariner, and ChangeMan are registered trademarks of Serena Software, Inc. The Serena
logo and Version Manager are trademarks of Serena Software, Inc. All other products or
company names are used for identification purposes only, and may be trademarks of their
respective owners.

U.S. Government Rights
Any Software product acquired by Licensee under this Agreement for or on behalf of the
U.S. Government, its agencies and instrumentalities is "commercial software" as defined
by the FAR. Use, duplication, and disclosure by the U.S. Government is subject to the
restrictions set forth in the license under which the Software was acquired. The
manufacturer is Serena Software, Inc., 1850 Gateway Drive, 4th Floor, San Mateo
California, 94404-4061.

Publication date: September 2015

CONTENTS
About This Book 13

Software Versions 13
Audience 13
Scope 14
Related Topics 14
Related Documents 14
Typographical Conventions 15
Manual Organization 15

Chapter 1: XML Services Concepts and Architecture 19

Software Architecture 19
Message Processing Cycle 21

Submitting a Serena XML Request 21
XML Parsing and Data Mapping 22
Generating the Serena XML Reply 22

ChangeMan ZMF Interface Comparison 23

Chapter 2: XML Syntax Basics 25

XML Syntax Standards 26
XML Tag Names 26
 XML Data Elements 26
XML Tag Attributes 27
Comments 27
Character Entities 27
XML Documents as Complex Data Elements 28
Well-Formed Documents 29

XML Document Declarations 30
Identifying XML Documents 30
<?XML?> Declaration Syntax 30

Serena XML Message Documents 32
Serena XML Syntax Example 32
Logical Document Structure 34

High-Level Tags in Serena XML 35
<service> Tag: The Root Data Element 35
<scope> Tag 36
3

4

Contents
<message> Tag 36
<header> Tag 37
<request> Tag 38
<result> Tag 38
<response> Tag 39

Filtering XML Services Messages 40
<includeInResult> Tag 40

Service, Scope, and Message Summary 41
Core XML Services Summary 41
ERO XML Services Summary 47

Chapter 3: Package Management 51

Package Message Syntax 51
Identifying Package Messages 51
Package Naming Conventions 52
Special Tag Syntax for Package Management 52

Package Lifecycle Tasks 53
Create a Package - PACKAGE SERVICE CREATE 53
Delete a Package - PACKAGE SERVICE DELETE 63
Freeze a Package - PACKAGE SERVICE FREEZE 65
Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT 67
Check a Package for Promotion Readiness - PACKAGE CHECK PROMOTE 70
Promote a Package - PACKAGE SERVICE PROMOTE 70
Lock Promotion Site for Package - PACKAGE PROMOTE LOCK 74
Demote a Package - PACKAGE SERVICE DEMOTE 75
Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE 76
 Approve a Package - PACKAGE SERVICE APPROVE 79
List Package Installation Schedule - SCHEDULE SERVICE LIST 82
Hold Package Install Job - SCHEDULE SERVICE HOLD 85
Release Package Install Job - SCHEDULE SERVICE RELEASE 86
Back Out a Package - PACKAGE SERVICE BACKOUT 87
Revert a Package - PACKAGE SERVICE REVERT 90

Package-Level Component Change Management 93
Component Change Description List- CMPONENT CHG_DESC LIST 94
List Staged Components - CMPONENT PKG_COMP LIST 97
Component Description List- PACKAGE CMP_DESC LIST 109
List Components With Promotion Overlays - PACKAGE PRM_OVLY LIST 112
Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE 118
Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE 120
Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE 122
Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE 123

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST 124
Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE 129
Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE 130

Package Validation Tasks 131
List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST 131
Check Component Integrity - PACKAGE CMPONENT INTEGRTY 138
Audit a Package - PACKAGE SERVICE AUDIT 140

Package Information Management Tasks 146
List Package Description - PACKAGE GEN_DESC LIST 146
List General Package Parameters - PACKAGE GEN_PRMS LIST 148
Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE 159
Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE 160
List User-Defined Package Variables - PACKAGE USR_RECS LIST 160
List Package Install Sites - SITE PKG LIST 164
Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE 168
Refreeze Package Install Sites - PACKAGE SITES REFREEZE 169
List Package Installation Dependencies - PACKAGE SCH_RECS LIST 169
List Package Implementation Instructions - PACKAGE IMP_INST LIST 173
List Package Approvers - APPROVER PKG LIST 174
List Affected Applications - PACKAGE AFF_APLS LIST 180
List Participating Packages - PACKAGE PRT_PKGS LIST 182
List Linked Packages - PACKAGE PKG_LINK LIST 183
List Package Library Types - LIBTYPE PKG LIST 187
List Package Promotion History - PACKAGE PRM_HIST LIST 193
Package Promoted Component List - PACKAGE PRM_CMP LIST 199
List Reasons for Backout or Revert - PACKAGE REASONS LIST 203

Chapter 4: Component Management 207

Component Management Message Syntax 207
Identifying Component Messages 207

Component Lifecycle Tasks 208
Check Out a Component - CMPONENT SERVICE CHECKOUT 209
Component Service Checkin - CMPONENT SERVICE CHECKIN 214
Check Designated Build Procedures - CMPONENT APL_DPRC CHECK 219
Find Designated Build Procedure - CMPONENT APL_DPRC FIND 223
List Designated Build Procedures - CMPONENT APL_DPRC LIST 224
List Global Designated Build Procedures - CMPONENT GBL_DPRC LIST 229
Component Service Build - CMPONENT SERVICE BUILD 229
Recompile a Component - CMPONENT SERVICE RECOMP 235
Relink a Component - CMPONENT SERVICE RELINK 240
Browse a Component - CMPONENT SERVICE BROWSE 246
5

6

Contents
Compare Components - CMPONENT SERVICE COMPARE 249
Rename a Component - CMPONENT SERVICE RENAME 252
Scratch a Component - CMPONENT SERVICE SCRATCH 254
Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK 255
List Load Module Subroutines - CMPONENT LOD_SUBR LIST 257
List Copybook Names in Source - CMPONENT SRC_INCL LIST 261

Component Staging Version Management 265
List Component Staging Versions - CMPONENT SSV_VER LIST 265
Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE 270

Component Information Management Tasks 274
List Component Change Description - CMPONENT CHG_DESC LIST 274
Find Component Description - CMPONENT APL_CDSC FIND 277
List Component Description - CMPONENT APL_CDSC LIST 278
List Global Component Description - CMPONENT GBL_CDSC LIST 280
List Component Promotion History - CMPONENT PRM_HIST LIST 281
Component History List - CMPONENT HISTORY LIST 283
List Short Component History - CMPONENT HISTORY LISTSHRT 291
List Current Component History - CMPONENT HISTORY LISTCURR 292
List Concurrent Comp. History - CMPONENT HISTORY LISTCONC 293
List Baselined Component History - CMPONENT HISTORY LISTBASE 294
List Comp. User Worklist Records - CMPONENT PKG_WRKL LIST 294

Component Security Tasks 298
Check Component Security - CMPONENT APL_SECR CHECK 298
Find Component Authorized Users - CMPONENT APL_SECR FIND 300
List Component Authorized Users - CMPONENT APL_SECR LIST 302
List Global Component Authorized Users - CMPONENT GBL_SECR LIST 304

Chapter 5: Search, Summary, and Analysis Tasks 307

Syntax Conventions for Search, Summary, and Analysis 307
Semicolon-Delimited Lists 307
Yes/No Flag Tags 308

Package Search and Summary Tasks 309
General Package Search - PACKAGE GENERAL SEARCH 309
Search for Limbo Packages - PACKAGE LIMBO SEARCH 326
Search for Packages Pending Approval - PACKAGE APPROVE SEARCH 327
Search for Linked Packages - PACKAGE PKG_LINK SEARCH 328
Package Summary Statistics - PACKAGE SERVICE SUMMARY 336

Audit Trail Management 345
Create Log File Entry - LOG SERVICE CREATE 345
List Activity Log File Entries - LOG SERVICE LIST 349

Impact Analysis Functions 350
IMPACT BUN LIST 351

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMPACT CMPONENT LIST 353
IMPACT TABLE LIST 355

Chapter 6: Dataset Management 361

Dataset Lifecycle Tasks 361
Allocate a Dataset - DSS SERVICE ALLOCATE 362
Delete a Dataset - DSS SERVICE DELETE 364
Delete a Dataset Member - DSS SERVICE MBRDEL 365
List Dataset Allocation Information - DSS SERVICE INFO 366
List Dataset Member Directory - DSS SERVICE LIST 369
List ISPF Dataset Allocation Information - DSS ISPFILE INFO 372
List Statistics for Baseline Members - DSS SERVICE BASESTAT 374
Expand Member in SRD Format - DSS SERVICE EXPAND 376

Chapter 7: Hierarchical File System Services 379

Overview 379
Hierarchical File System Functions 379
High-Level Syntax 379
Related Services 380

HFS Directory Services 380
Create a Directory — FILE SERVICE MKDIR 380
Delete a Directory — FILE SERVICE RMDIR 382
Rename a Directory — FILE SERVICE RENAME 382
List All Directory Contents — FILE SERVICE LIST 383
List Files in a Directory — FILE FILES LIST 387
List Directories in a Directory — FILE DIRS LIST 390

HFS File Lifecycle Services 393
Create a File — FILE SERVICE CREATE 393
Delete a File — FILE SERVICE DELETE 394
Rename a File — FILE SERVICE RENAME 395
Copy a File — FILE SERVICE COPY 396
Create a Link or Alias to a File — FILE SERVICE LINK 397
Change File Attributes — FILE SERVICE CHANGE 398
Check Access to a File — FILE SERVICE ACCESS 399
Scan Files for Strings — FILE SERVICE SCAN 401

File Conversion Services 402
Import a PDS Member into HFS — FILE SERVICE IMPORT 402
Export an HFS File to a PDS Library — FILE SERVICE EXPORT 403

Chapter 8: Database Management 405

IMS Development and Administration 405
7

8

Contents
IMS Control Region Package Records - PACKAGE IMS_CRGN LIST 407
Package IMS ACB List - PACKAGE IMS_ACB LIST 413
IMS DBD Package Overrides - IMSOVRD PKG_DBD LIST 417
IMS PSB Package Overrides - IMSOVRD PKG_PSB LIST 421
IMS DBD Application Overrides - IMSOVRD APL_DBD LIST 424
IMS PSB Application Overrides - IMSOVRD APL_PSB LIST 427
IMS DBD Global Overrides - IMSOVRD GBL_DBD LIST 429
IMS PSB Global Overrides - IMSOVRD GBL_PSB LIST 431
IMS Control Region Application Defaults - IMSCRGN APL LIST 433
IMS Control Region Global Defaults - IMSCRGN GBL LIST 435

DB2 Development and Administration 436
DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST 436
DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST 439
DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST 443
DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST 447

Chapter 9: Online Forms Management 453

Online Forms Lifecycle Tasks 453
Unfreeze Online Forms - PACKAGE FORMS UNFREEZE 453
Refreeze Online Forms - PACKAGE FORMS REFREEZE 455
Submit a Form for Approval - FORMS PKG SUBMIT 456
Approve a Form - FORMS PKG APPROVE 458
Reject a Form - FORMS PKG REJECT 459
Add Comments to a Form - FORMS PKG COMMENT 460

Forms Information Management 462
List Global Online Forms - FORMS GBL LIST 462
List Package Online Forms - FORMS PKG LIST 465
List Package Online Form Details - FORMS PKG DETAIL 468

Chapter 10: ChangeMan ZMF Administration Tasks 471

Change Library Administration 471
List Baseline Library Datasets - BASELIB SERVICE LIST 471
List Promotion Library Datasets - PROMLIB LIBRARY LIST 475
List Promotion Site Configuration Records - PROMLIB SITE LIST 479
List Production Library Datasets - PRODLIB SERVICE LIST 481

Site Administration 483
List Globally Defined Remote Sites - SITE GBL LIST 483
List Remote Sites for Application - SITE APPL LIST 486
List Install Calendar for Site - CALENDAR SERVICE LIST 487

Developer Environment Administration 489
List Global Library Types - LIBTYPE GBL LIST 490
List Application Library Types - LIBTYPE APL LIST 497

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Global Language Parsers - LANGUAGE GBL LIST 503
List Application Language Parsers - LANGUAGE APL LIST 505
List Global Build Procedures - PROCS GBL LIST 506
List Application Build Procedures - PROCS APL LIST 508
List Global Parameters - PARMS GBL LIST 509
Parameters Application List - PARMS APL LIST 523
 List Global Reason Codes - REASONS SERVICE LIST 532

Approver and Notification Administration 533
List Application Approvers - APPROVER APL LIST 534
Download Global Notification File - NOTYFILE SERVICE DOWNLOAD 536
Upload Global Notification File - NOTYFILE SERVICE UPLOAD 537
Notify User - USER SERVICE NOTIFY 538

Chapter 11: System Environment Information 545

System Setup Parameter List - SYSTEM SERVICE LIST 545
SERNET Environment Parameter List - SYSTEM ENVIRON LIST 549
SERNET Security Group List - SYSTEM SECGROUP LIST 552
ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST 553
ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST 558

Appendix A: XMLSERV – Interactive XML Prototyping Tool 561

XMLSERV Functional Overview 562
Main Screen Menu Options 563
Main Screen Primary Commands 563
XML Input and Output Documents 566
Usage Notes 567

Sample XMLSERV Session 567
Step 1: Start XMLSERV 567
Step 2: Select an XML Service 568
Step 3: Edit the XML Input Document 569
Step 4: Execute the Edited XML Request 571
Step 5: Browse the XML Output Document 571
Step 6: Return to the XML Input Document and Exit 573

Appendix B: SERXMLBC – Executing Native XML Service Calls 575

Input Requirements 575
Output Requirements 575
JCL Requirements 576
Return Codes and ABENDs 576
9

10

Contents
Appendix C: SERXMLAC – Calling XML Services From Assembler 579

SERXMLAC Parameter List 579
Return Codes and Reason Codes 580
Sample Call to APPROVER PKG LIST 580

Setting SERXMLAC Parameter List Values 580
Building the XML Services Request Buffer 581
Calling SERXMLAC 582
Processing the Reply Buffer 583

Appendix D: SERXMLCC - Calling XML Services from COBOL 587

COBOL-to-XML Copybooks 587
Copybook Member Names 587

COBOL Variable Names 588
Control Variables 588
Content Variables 588
Data Types, Values, and Constraints 589

Input/Output Buffers 590
COBOL Batch Subroutine Client SERXMLCC 591

Compiling Programs That Call SERXMLCC 591
Running Programs That Call SERXMLCC 591
Return Codes 592

Sample COBOL Program CMNOPSCH 592
Compile, Link, and Execution JCL for CMNOPSCH 593
 Display from Sample Program CMNOPSCH 594

Appendix E: SERXMLRC - Calling XML Services From REXX 595

SAMPLE JCL TO INVOKE XML REXX EXEC 595
SAMPLE REXX EXEC CMN010 PROLOGUE 596
SAMPLE REXX EXEC CMN010 MAINLINE 597
SAMPLE REXX EXEC CMN010 XML SETUP and CALL 598
SAMPLE REXX EXEC CMN010 XML PRINT OUTPUT 599
SAMPLE REXX EXEC CMN010 XML DIAGNOSE ERROR 599
SAMPLE REXX EXEC CMN010 XML DISCONNECT CODE 600
Calling SERXMLRC From Panel Exits 601

Appendix F: Problem Analysis and Troubleshooting Tools 603

Warn - XML Tag Name Warning 603
Warn Tag Name Error Examples 603
Enabling XML Tag Name Error Warning 606
Hierarchy of Warn Facility Controls 607

TEST - XML Batch Client Trace 607

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
TRACE and NETTRACE in the SERNET Started Task 608
Troubleshooting Tips 608

 rc=08, reason code = 8130 error 608
Troubleshooting Variable Length Name Issues 609

Index 611
11

12

Contents

About This Book
The XML Services User’s Guide documents the most commonly used features of the

XML Services application programming interface (API) to Serena® ChangeMan® ZMF.
Tutorials, code examples, use cases, and tips and techniques for applications supplement
detailed data structure tables covering 162 functions available for general customer use.

Services used with the Enterprise Release Option (ERO) are not described in this manual but
are listed for reference in ERO XML Services Summary in Chapter 2, “XML Syntax Basics”.
Refer to the ChangeMan ZMF ERO XML Services User’s Guide for information on using
these services.

After reading this manual, you should be able to do the following:

• Understand the software architecture that underlies ChangeMan ZMF XML Services.

• Create a well-formed XML document that complies with Serena XML syntax.

• Use the Serena XML markup language to build reusable XML documents that invoke
functions and retrieve data from ChangeMan ZMF.

• Use the XML batch execution client to issue Serena XML service requests to
ChangeMan ZMF and receive Serena XML replies.

• Experiment with the XMLSERV interactive prototyping tool to learn Serena XML
syntax, generate prototype request messages, and browse Serena XML replies.

Software Versions

This manual discusses Serena Software’s XML Services as implemented in
ChangeMan ZMF version 8.1 (GA) and ChangeMan ZDD 8.1 (GA).

Audience

This manual targets experienced ChangeMan ZMF programmers, multi-platform systems
integrators, and ChangeMan ZMF administrators.

You should be familiar with your mainframe operating system and security system, and you
should understand the operation and administration of ChangeMan ZMF. Some familiarity
with basic XML syntax and schemas is helpful. Familiarity with PCs is assumed.
13

14

About This Book
Scope

The XML Services features described in this manual are limited to services and functions
available for general customer use. These are sometimes called the “Green” services.
“Green” functions address package and component lifecycle management, complex
searches and queries, data set management functions, change library management
functions, and detailed information retrieval from the ChangeMan ZMF database.

Additional services and functions exist to support advanced systems integration needs. The
latter features are known as the “Yellow” services because they pose some risk of database
corruption and should be used with caution. These are documented in quick-reference form
for customers who attend advanced training in XML Services. This information is available
from Serena Customer Support.

Related Topics

You need not become an XML expert to use XML Services. To master its advanced
capabilities, however, sound knowledge of XML standards is advised. The authoritative
source for this information is the World Wide Web Consortium (W3C). You can find the latest
XML specifications on the Web at http://www.w3c.org.

The eXtensible Markup Language (XML) standard consists of many components in various
stages of development, change, and ratification. Of these, you should become familiar with
the core XML specifications that cover XML syntax and schemas. If you want to manipulate
and reformat the XML output from XML Services (e.g., for custom reports), you should also
study the XML stylesheet (XSL) specifications.

Related Documents

Title Description

Serena® ChangeMan® ZMF
ERO XML Services User’s Guide

Documents the most commonly used ERO features
of the XML Services application programming
interface to ChangeMan ZMF.

Serena® ChangeMan® ZMF
XML Reference Tables

HTML cross-reference tables for “green” and
“yellow” service/scope/message combinations
supported by XML Services, including ERO, and the
XML tags for each. If you have taken Serena’s
advanced training course in XML Services, you can
contact Customer Support for access to this guide.

Serena® ChangeMan® ZMF
Installation Guide

Step-by-step instructions for the initial installation of
ChangeMan ZMF. Includes installation instructions
for XML Services working data areas.

http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Typographical Conventions

The following textual conventions are used throughout this document to highlight special
information:

MANUAL ORGANIZATION

Serena® ChangeMan® ZMF
Administrator’s Guide

Includes information on customizing exits to call
XML Services.

Serena® ChangeMan® ZMF
Web Services Getting Started Guide

Documents the Web Services application
programming interface to ChangeMan ZMF

This convention . . . Represents . . .

Monospace Serena XML code or keyword.

Bold Monospace Serena XML required tag.

< > Delimiters for XML tag name (e.g., <package>).

 .
 .
 .

Tags omitted from example for clarity.

Italic URL, file name, function name, or book title.

Blue Italic Clickable cross-reference or active hyperlink in document.

This
chapter . . . Contains this information . . .

1 Introduction and architecture overview. Introduction to features,
functions, and benefits of XML Services. Layered software architecture,
dynamic client/server messaging, XML interface language, and modular
service objects. Choice of XML, COBOL copybook, or REXX batch
execution clients.

2 Serena XML basics. XML language extensions and XML schemas. Syntax
and structure of a well-formed XML document. High-level structure and
syntax of Serena XML message documents. Table of Serena XML service,
scope, and message names with corresponding COBOL copybooks.

Title Description
15

16

About This Book
3 Package management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following package-related tasks:

• Package lifecycle functions (e.g., create, delete, freeze, submit, approve,
promote, demote, back out, revert).

• Package-level component change (e.g., unfreeze, refreeze, list).

• Package control and metadata information management (e.g., list).

4 Component management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following component tasks:

• Component lifecycle functions (e.g., checkout, checkin, browse,
compare, build, recompile, relink, scratch, rename, lock, unlock).

• Component staging versions (e.g., list, retrieve).

• Component control and metadata information management (e.g., list).

• Component history information (e.g., selective search and list).

5 Search, summary, and analysis tasks. Information retrieval and statistical
analysis that crosses package, component, and/or application boundaries.
Includes the following:

• Multi-package search (e.g., general and limbo search).

• Multi-package summary statistics.

• Component impact analysis functions.

• Change log creation and listing.

6 Dataset management. XML Services support for managing sequential and
partitioned datasets on the mainframe. Includes PDS/PDSE lifecycle
functions (e.g., create and delete data set, delete data set member, and list
data set information).

7 Hierarchical file system services. XML Services support for managing
HFS files and directories on the mainframe. Includes:

• HFS directory services (e.g., create, delete, rename, or list the contents
of a directory).

• HFS file lifecycle services (e.g. create, delete, rename, or copy an HFS
file, change certain file attributes, or test for file existence and verify user
access permissions).

• File conversion services (e.g., import a z/OS PDS (Partitioned Data Set)
member as an HFS file or export an HFS file as a PDS member).

This
chapter . . . Contains this information . . .

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Change bars in the left margin identify changes in this publication since it was published on
March 21, 2012.

8 Database management for IMS and DB2. Serena XML syntax and data
structures for retrieval of change control metadata about the following:

• IMS package-level, application-level, and global settings and data bind-
ing information (e.g. control region, ACB build statement, DBD and PSB
control statement list.)

• DB2 application-level and global settings and data binding information
(e.g., list records for active DB2 applications, logical files, and physical
files).

9 Online forms management. Serena XML syntax and data structures for
retrieving information and submitting and approving custom online forms
associated with a package.

10 ChangeMan ZMF administration tasks. Serena XML syntax and data
structures for retrieving global and application-level information about
change libraries, sites, languages, library types, and build procedures. XML
access to site calendars and package installer scheduling facilities, approver
maintenance, reason code administration, and notifications are also
discussed.

11 System administration tasks. Serena XML syntax and data structures for
retrieving SERNET and ChangeMan ZMF setup information, environment
parameters, and started task library concatenation.

Appendix A XMLSERV - Interactive TSO/ISPF prototyping tool for XML Services.

Appendix B SERXMLBC – Serena XML native-XML batch execution client.

Appendix C SERXMLAC – Serena XML ASSEMBLER execution client.

Appendix D SERXMLCC – Serena XML COBOL execution client.

Appendix E SERXMLRC – Serena XML REXX execution client.

Appendix F Problem analysis and troubleshooting tools. How to resolve errors when
using XML Services.

This
chapter . . . Contains this information . . .
17

18

About This Book

XML SERVICES CONCEPTS AND
ARCHITECTURE
 1
XML Services offers ChangeMan® ZMF customers and system integrators an enhanced
application programming interface (API) based on industry-standard XML (eXtensible
Markup Language). XML Services simplifies customization, data interchange, and cross-
product interoperability for ChangeMan ZMF and other products. An integrated feature of the
base ChangeMan ZMF product, XML Services supports all optional product features,
including the DB2 Option, IMS Option, ERO Option, M+R Option, and Load Balancing
Option. XML Services is the preferred API for customers and system integrators who work
with ChangeMan ZMF.

Functionally, XML Services:

• Offers a unified XML programming interface to ChangeMan ZMF functions.

• Provides open access to ChangeMan ZMF package master, component master,
Impact/Analysis repository, and activity log data.

• Interoperates seamlessly with Serena products such as ChangeMan® ZDD and

StarTool® DA.

• Enables integration with third-party development tools, databases, and reporting.

• Includes “software developer kit” (SDK) environments to simplify developer access to
the XML Services API using native-XML, ASSEMBLER, COBOL, or REXX.

SOFTWARE ARCHITECTURE

XML Services comprises much more than syntax. It is fully integrated with ChangeMan ZMF
and builds on the following architectural keystones:

• A layered software architecture provides application independence from technology
changes in ChangeMan ZMF internals. The low-level “Extended Services” that perform
basic ChangeMan ZMF functions are isolated from higher-level interfaces.

• Modular service objects within the “Extended Services” layer provide a single point of
access to ChangeMan ZMF functions. The set of low-level service objects is both
comprehensive and extensible.

• Dynamic client/server messaging uses a shared object-request broker for all
ChangeMan ZMF communications. This approach supports asynchronous, stateless,
message-based transactions between XML client and server — ideal for network
environments and Web-enabled services.
19

20

Chapter 1: XML Services Concepts and Architecture

• A tag-based XML markup language built on industry-standard XML is easily recognized
and processed by third-party software. Tag-based markup frees data interchange from
bit-offset dependencies and wireline sequence dependencies. It is also inherently
extensible, so that custom programs that use the XML Services interface need not be
changed when new features or functions are added to ChangeMan ZMF.

• Developer-friendly SDK clients support COBOL-to-XML, ASSEMBLER-to-XML, and
REXX-to-XML API calls as well as interactive XML prototyping.

An overview of the layered XML Services architecture appears in Exhibit 1-1.

Exhibit 1-1. XML Services Architecture

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
MESSAGE PROCESSING CYCLE

The architectural building blocks of XML Services come together in the Serena XML
message processing cycle. The message processing cycle flows through the following steps:

• Serena XML request message issued from client to server

• XML message parsed

• XML data mapped to internal ChangeMan ZMF data formats

• Requested task performed by low-level service object

• Service object success/failure codes and output data mapped to XML data elements

• Serena XML reply message sent by server to client

Every Serena XML request message that reaches the server triggers a Serena XML reply. At
minimum, the reply includes a result code that informs the requesting program whether the
requested task succeeded, generated a warning message, or failed. Successful requests
may trigger several result messages as well — each result representing, for example, a
record in a data set or a line in a report. All results generated by a single XML request
document are returned in a single XML reply document.

Submitting a Serena XML Request

Serena XML service request messages are issued from the client to the server via a software
developer’s “kit” (SDK) or environment optimized for a particular programming language.
Batch XML is submitted via the SERXMLBC batch client. Interactive XML can be prototyped
in XMLSERV with prompts for required tags and other ease-of-use features, then submitted
for execution through SERXMLBC.

The SERXMLCC COBOL-to-XML batch execution client, together with a collection of COBOL
copybooks, facilitates XML Services API requests using native COBOL data formats and
program calls. Each copybook wraps the proper Serena XML syntax around the contents of
predefined COBOL variables populated by your custom COBOL program. Your COBOL
program then calls SERXMLCC to generate a true Serena XML request document and place
it in the normal XML message processing stream.

The SERXMLRC REXX-to-XML batch execution client similarly facilitates XML Services API
requests using native REXX stem data formats and program calls. Your REXX program
populates an approximate REXX stem structure, then calls SERXMLRC to generate a
Serena XML request document and place it in the normal XML message processing stream.

The SERXMLAC ASSEMBLER-to-XML batch execution client facilitates XML Services API
requests using native ASSEMBLER data formats and program calls.

Service, Scope, and Message Syntax

Every Serena XML service request uses a high-level XML syntax that identifies the
ChangeMan ZMF service, scope, and message names for the task requested. These values,
in combination, uniquely identify the modular service object on the server that must process
the request. They also identify the function to be performed and the category of information to
21

22

Chapter 1: XML Services Concepts and Architecture
perform it against. Their values also must be specified with CAPITAL letters. The batch
execution client that submits your request first preprocesses it to ensure that the combination
of service, scope, and message names is valid.

Message Routing

If the XML Services service, scope, and message names are valid, the execution client calls
the appropriate client messaging program — either SERCLIEN on the mainframe or
SERNET Connect on distributed platforms — to initiate a connection to ChangeMan ZMF.
The preferred communications protocol for this connection is TCP/IP, but cross-memory
services (XMS) is also supported if the client and server both reside on the same mainframe
LPAR. The messaging client performs any necessary data compression and packages the
XML message with appropriate headers for network addressing, handshaking, and
mainframe logon. It then requests a communications session to ChangeMan ZMF via the
SERNET messaging server.

The SERNET messaging server resides on the host in the ChangeMan ZMF server address
space, where it listens on one or more communication ports for incoming messages. When a
message arrives, SERNET completes any network handshaking needed, processes the
communications headers, and establishes a conversation. SERNET also decompresses
messages and performs any needed data format conversions (e.g. from ASCII to EBCDIC).

If the inbound message contains Serena XML, the SERNET messaging server calls the XML
Services input handler to transform that data into internally readable form. The XML input
handler then returns the transformed data to the SERNET messaging server, which routes it
to the appropriate low-level service object for action.

XML Parsing and Data Mapping

At the core of XML Services are its XML parsing and bidirectional data mapping processes.
These interpret Serena XML message streams and map the identified XML data structures of
a request to the internal assembler DSECT formats used by the low-level service objects in
ChangeMan ZMF. In the reverse direction, the low-level service objects return results that are
mapped from their internal assembler DSECT formats to Serena XML data elements, then
marshalled into Serena XML reply messages. Serena uses proprietary parsing to achieve
faster XML processing.

Generating the Serena XML Reply

After the XML input handler has parsed the Serena XML request message and mapped its
data to an appropriate DSECT structure, SERNET queues that DSECT request block for
input to the requested low-level service object. The service object receives the request block,
performs the requested task, and generates (at minimum) a numeric return code. It may also
generate an output message, a report listing, or a set of search results. This output data is
stored in one or more output DSECTs populated by the low-level service object. The output is
then returned to SERNET for routing to the XML output handler.

The XML output handler marshals a Serena XML reply document from one or more of these
output DSECTs. Guided by the permanent object mapping table, the XML output handler

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
maps each field in the DSECT to its corresponding XML tag and creates a document content
model for the reply document in a temporary hashed tag pool. The output handler then
transforms the document content model into well-formed XML and places the resulting
document in a user response area known to the SERNET messaging server.

Control then returns to SERNET, which compresses the XML reply message, packages it
with appropriate communications headers, and routes it to the requesting client. Note that, for
distributed clients, the SERNET messaging server echoes the original XML request in the
XML reply document. For ChangeMan ZMF clients, however, the original XML request is not
echoed.

CHANGEMAN ZMF INTERFACE COMPARISON

ChangeMan ZMF supports following interfaces:

• Interactive ISPF end-user and administrator panels

• Interactive and batch-mode programming clients (SDKs) for XML Services —
including SERXMLAC, SERXMLBC, SERXMLCC, SERXMLRC, and XMLSERV

Of these, the interactive ISPF interface is functionally comprehensive. User tasks are
presented at a high level; many low-level software functions might take place behind the
scenes to accomplish a “simple” high-level ISPF request. The ISPF interface also builds in
robust data validation features on every panel. No other interface provides this level of data
validation support.

No one-to-one mapping exists between XML Services interface functions and ISPF interface
functions, although similarities are apparent. The XML Services interface targets a lower level
of internal function than does ISPF, and is more directly shaped by underlying database
implementations and service object technology. Consequently, ISPF-based intuitions may not
always apply to XML Services. In addition, XML Services includes no built-in data validation.

 Caution

Data validation is the responsibility of XML Services customers. XML Services
provides no built-in data validation. All ISPF tables that are available to the ISPF
interface to ChangeMan ZMF are not necessarily available to the corresponding
functions that are performed with the Serena XML Services. Furthermore, the target
XML Services do not need these tables to perform their functions correctly. Using the
XMLWARN facility can provide further information concerning data validation, as
documented in “Warn - XML Tag Name Warning” on page 603.
23

24

Chapter 1: XML Services Concepts and Architecture
ChangeMan ZMF interface differences are summarized in Exhibit 1-2.

Exhibit 1-2. ChangeMan ZMF Interface Comparison

Interface Interactive
Reusable

Batch Jobs
Functional
Coverage

Data
Validation

ISPF Yes No Complete,
high-level

Yes

XML Services batch clients (SERXMLAC,
SERXMLBC, SERXMLCC, SERXMLRC)

No Yes XML, COBOL,
REXX, Assembler

No

XML Services interactive client
(XMLSERV)

Yes Yes XML No

XML SYNTAX BASICS
 2

Serena XML is SERENA Software’s markup language for Enterprise Change Management
(ECM). It is standard XML extended to support the customization, data interchange, and
interoperability needs of ChangeMan ZMF customers as they implement change
management solutions. Serena XML is the most visible component of XML Services.

The Serena XML markup vocabulary consists of more than a thousand special-purpose XML
tags used to delimit values in a text file. These tags are defined according to XML’s rules for
adding new tags to itself. The particular mechanism for defining these special-purpose tags is
called an XML schema. The Serena XML schemas define not only the tag vocabulary of
Serena XML, but also the structure of each data element named by these tags and the syntax
used when populating these data elements in an XML document.

Is Serena XML “really” XML, then? The answer is, emphatically, yes. XML stands for
eXtensible Markup Language. Its reason for being is to provide a standard method for
creating special-purpose markup languages — extensions, that is, to the base XML tag set.
There are two points to remember about XML extensions:

• Extensions are not replacements; they are additions. XML imposes a discipline on its
language extensions that makes them systematically extensible over time. Within broad
limits, this discipline prevents the foreclosure of alternatives; future options remain open.
Built-in XML extensibility means that Serena XML can grow and change without forcing
obsolescence on earlier versions of the language.

• Extensions to XML are syntactically consistent with XML. All special-purpose
extensions to XML follow the same basic syntactic and structural rules. Familiarity with
basic XML syntax makes all XML-based markup languages easier to learn and use.

Some knowledge of Serena XML syntax is needed by all users of XML Services. For
example, COBOL programmers working with the COBOL-to-XML copybook interface need to
know about individual copybook functions and predefined COBOL variable names, data
types, and value information — all of which derive from Serena XML. Programmers who work
directly with Serena XML need not only data type and value information, but also detailed
information about XML language syntax and data structures.

This chapter begins with a discussion of general XML syntax and standards as defined by the
World Wide Web Consortium (W3C). It then addresses the basic features of Serena XML.
The features discussed are those that apply to all message documents created in Serena
XML and to all ChangeMan ZMF user tasks performed via Serena XML. The chapter
concludes with a summary of all valid combinations of <service>, <scope>, and
25

26

Chapter 2: XML Syntax Basics
<message> name attributes in Serena XML available to customers for general use. This
summary includes the names of the corresponding COBOL-to-XML copybooks.

XML SYNTAX STANDARDS

The body of standards defining XML is actually quite large, but only two core specifications
directly concern users of Serena XML. These are the XML Version 1.0 syntax specification
and the XML Schema specification. These and other XML specifications are established by
the World Wide Web Consortium (W3C) and are published online at http://www.w3c.org.

To use the Serena XML programming interface to XML Services, you first need a basic
familiarity with this core XML syntax.

XML Tag Names

Programmers familiar with Web markup will note that XML syntax resembles HTML syntax.
Like HTML, XML makes use of tags (of the form <tag>) and attributes (of the form
name="value"). Like HTML tags, XML tags delimit units of content and identify that content
by tag name. Generally, XML statements look something like this:

<tag attribute="value">data value or structured content</tag>

In standard-compliant XML, tag and attribute names are case-sensitive — that is, <tag> is
not the same as <Tag>. Tag and attribute names may include alphanumeric characters,
hyphens, underscores, and periods. Other punctuation marks are generally prohibited, since
they may have special meanings in XML.

 XML Data Elements

Functionally, XML tags mark data elements in text. Data elements are of two types:

• Simple data elements contain basic data types such as integers, dotted decimal
numbers, dates, times, fixed-length or variable-length character strings, or the like.
Simple data elements cannot be decomposed into subordinate XML data elements; they
are, in that sense, “atomic” units of data. Such a tag might look something like this:

<package>ACCT000025</package>

• Complex data elements contain a data structure composed of one or more subordinate
XML data elements, each delimited by its own pair of subtags within the main tag pair.
The subordinate elements may themselves be either simple or complex. Complex tags
may be built up from successively simpler tags to form a hierarchical tree structure. A
complex tag structure with just one level of subtags might look something like this:

 <response>
 <statusMessage>CMN8700I - LIST Package service completed</status
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>

http://www.w3c.org

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The contents of an actual data element must conform to whatever data validation restrictions
are imposed by the tag definition. For simple data elements, such restrictions would include
data type, data pattern, allowable value range, and/or membership in a predefined value list.
For complex data elements, the data structure must also conform to the tag definition.
Restrictions at this level include allowable subtags, subtag sequencing, mutually exclusive
subtag choices, and mandatory subtag inclusion. Restrictions on the minimum and maximum
number of consecutive tag repetitions, if any, must also be met.

XML Tag Attributes

Attributes qualify the manner in which a tag is used or processed. One tag may have multiple
attributes, so each attribute must be explicitly named. The value assigned to an attribute
must appear in double quotes and must be a simple data type — such as a date, a character
string, or an integer.

Attributes are not (or should not be) used to hold application data. That’s what data elements
— i.e., tags and subtags — are for! Attributes are used to:

• Identify the subtype of a tag that is complex enough to have alternative formats,
substructures, or validation requirements.

• Identify a particular tag instance to distinguish it uniquely from other instances of use.

• Set a flag for the target application to use when choosing among several data
interpretations or processing options.

In the case of Serena XML, attributes are used primarily to identify which of many alternative
data structures is intended when a particular tag is used. Depending on the value of the
attribute, the allowed subtag content and sequence may vary.

Comments

In addition to tags and attributes, standard-compliant XML allows comments. XML
comments, like those in HTML, begin with <!-- and end with -->. Multi-line comments are
permitted. The end-of-comment delimiter must be preceded by a blank or be the first item on
a new line. Double hyphens cannot appear anywhere within the comment body.

An XML comment might look something like this:

<!-- This is a comment, line 1.
 This is a comment, line 2. -->

Character Entities

XML relies on reserved characters (e.g., angle brackets and double quotes) to delimit
language-specific constructs (e.g., tags and attribute values). If you include one of XML’s
reserved characters in your tag data or in attribute values, the XML parser will attempt to treat
it as a reserved character — e.g., as the opening angle bracket for a tag name — with
unpredictable results. To get around this difficulty, XML provides a mechanism for escaping
these characters from the special treatment they normally receive, so that they can be
included in ordinary data. This is achieved using character entity codes.
27

28

Chapter 2: XML Syntax Basics
Character entity codes begin with an ampersand (&) and end with a semicolon (;). Between
these delimiters is a character entity name that identifies the character represented by the
entity code. Numeric character entity codes are also allowed in generic XML; however, the
XML Services parser does not support numeric character entities at this time.

Five character entities have predefined names in XML. They are listed in Exhibit 2-1.

For example, you might use ampersands in the names of program modules that you mention
in your package implementation instructions. Simply typing an ampersand, in most cases,
would generate a parser error. To insert the ampersand without generating an error, use the
& character entity where you would normally type an ampersand. For example:

<packageImplInst>Requires prior execution of USR&001.</packageImplInst>

XML parsers vary in their sensitivity to the occurrence of reserved characters in data. You can
usually get away with using a regular apostrophe (‘) instead of the ' character entity
in data strings, for example. But you should always escape any ampersands or angle
brackets in your data strings, and escape all special characters in attribute values.

 Tip

Use character entities instead of special characters in data or attribute values.

XML Documents as Complex Data Elements

XML documents as a whole are themselves defined as complex data elements. The start and
end of the document is identified by a root tag. Nested within the root tag are the subtags that
make up the content of an instance document — that is, an actual XML document containing
data. There is one and only one root element in an XML document, and the overall structure
of the document is always a hierarchical tree. Data structures that loop back upon
themselves are forbidden anywhere in an XML document.

The structure of an XML document and its component data elements is defined externally in
one of two types of files: a Document Type Definition (DTD) or an XML schema. XML
Services uses the schema approach, because schemas support more sophisticated and
rigorous data typing than DTDs. XML documents can be validated against the relevant
schema by an XML parser to ensure data validity.

Exhibit 2-1. XML Character Entities

Entity Code Character Represented

< Less-than symbol or opening angle bracket (<)

> Greater-than symbol or closing angle bracket (>)

& Ampersand (&)

" Straight, double quotation mark (")

' Apostrophe or straight, single quotation mark (‘)

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Well-Formed Documents

The elements of XML syntax must be combined in a way that conforms to XML rules for a
well-formed document. If XML Services receives XML input that is not well-formed, it will
return an error and make no attempt to process the service request.

XML rules for a well-formed document mirror those in the latest version of HTML. Unlike past
practice with HTML, however, the rules for XML are strictly enforced. In particular:

• Only one root tag is allowed in a document. A well-formed XML document must map
to an n-way tree data structure. Such a tree has exactly one root node. The root node
may have multiple branches to lower-level nodes, each of which may also branch
similarly to any depth. Nodes in the tree structure correspond to tags in the XML syntax.

• Every opening tag must be matched by a closing tag. Closing tags have the same tag
name as the opening tag, preceded by a forward slash. For example, the opening tag
<tag> must be paired with the closing tag </tag>.

• Standalone tags must be self-closing. Standalone tags are defined to mark points in a
document rather than contain data; they are explicitly declared to be “empty” in the XML
schema. Since it contains no data, the standalone opening tag is also the closing tag. As
such, it includes a final slash just before the ending angle bracket. For example:

<tagname />

• Attribute values must be enclosed in double quotes. The quotes are never optional.
For example:

<tag attribute=”value”>

• Nested tags must be opened and closed in the proper order. The rules for pairing the
opening and closing tags in a nested data structure are the same as those for pairing the
opening and closing parentheses in a mathematical expression. The first tag opened
must be the last tag closed, the next tag opened must be the next-to-last tag closed, and
the last tag opened must be the first tag closed. Visually:

• XML comments are comments — and nothing else. The frequent HTML practice of
embedding non-markup processing instructions in comments is not allowed in XML.
Instead, non-XML processing instructions and other non-XML declarations should
precede the root tag in the document file.

Strict enforcement of these syntax rules prevents ambiguity when interpreting XML
documents. This is vital in XML, because general-purpose XML parsers, unlike their HTML
counterparts, can’t rely on the names of tags to help resolve ambiguity.

<firstTag><nextTag><lastTag> . . . </lastTag></nextTag></firstTag>
29

30

Chapter 2: XML Syntax Basics
For example, if you see the tag ‘<p>’ in an HTML file, you can assume it marks a
paragraph. This works because HTML predefines what each tag and attribute name means
in advance and all HTML parsers build in at least some of that knowledge.

However, in XML, you cannot assume anything about the tag ‘<p>’. XML leaves the
interpretation of document markup and document content completely to the application that
reads it. Tag meaning is defined externally to the document in either a DTD specification or
an XML schema specification.

XML DOCUMENT DECLARATIONS

An XML document must identify itself as such to the SERNET messaging server in order to
be routed properly to and from XML Services. In addition, once an XML document reaches
an XML parser or similar XML processor on either the server or the client, the document must
declare the type of XML document it is. This allows the XML parser to interpret the document
data structures properly.

Identifying XML Documents

Standard-compliant XML relies on a combination of file naming conventions and declarations
in the XML instance document itself to flag XML documents for processing. Conventions for
doing this differ somewhat on distributed systems and mainframes.

Distributed systems usually identify XML documents by the Web-style .xml file name
extension, which is appended to a base file name of up to 8 characters (or more on modern
systems). The file name extension identifies the document type immediately for Web
browsers and other distributed applications that work with XML. This eliminates the need for
these applications to open each document they receive and inspect the contents to
determine whether it contains XML. If you access XML Services from a distributed client, you
may want to append the .xml file extension to any file names when saving reusable Serena
XML documents in your local development environment. This facilitates the integration of
ChangeMan ZMF with distributed applications.

Mainframes do not support the same file naming conventions used on most distributed
systems. The SERNET messaging server therefore cannot rely on file naming conventions to
identify XML documents. Instead, SERNET inspects the first line of an incoming message to
determine whether or not it contains XML. For this reason, XML Services requires that XML
documents always include an <?xml?> declaration to identify themselves. This requirement
applies regardless of the type of system on which the document originates.

Mainframe users may find it useful to define a library type called “XML” for storing reusable
XML documents. However, this is not a requirement of XML Services.

<?XML?> Declaration Syntax

An <?xml?> declaration is required on the first line of an XML document. Because it is not
properly an XML statement, it precedes the XML root tag of your document. It also precedes
any other non-XML declarations or processing instructions that appear before the root tag.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The <?xml?> declaration looks something like this:

<?xml version=”1.0” encoding=”UTF-8”?>

The version attribute is required. The encoding attribute is optional (the default is UTF-8).

<?XML?> Version Attribute

The version attribute in the <?xml?> declaration refers to the particular W3C syntax
standard followed in your XML document. XML Services recognizes XML Version 1.0,
Second Edition, which was published by the W3C in October 2000. This is the latest version
of XML. Attempts to use other versions will fail. Consequently, your <?xml?> declaration will
always have the following version attribute:

<?xml version=”1.0”?>

<?XML?> Encoding Attribute

The encoding attribute in the <?xml?> declaration identifies the character encoding
standard used to represent text in your XML document. To ensure both cross-platform and
international language compatibility, the W3C specification for XML states that all standard-
compliant XML parsers support Unicode. Support for additional character sets is optional.

Unicode is a superset of the 7-bit ASCII character code, with international language and
special symbol extensions. The most widely supported variant of Unicode is UTF-8, a
variable-length encoding that uses one to four 8-bit bytes to represent characters and
symbols. It yields compact files sizes for Latin-based alphabetic text, yet expands to support
non-Latin alphabets, ideographic characters, and a wide variety of special symbols on
demand. The first 128 code points in UTF-8 — i.e., character codes 0 to 127 — correspond to
the same character codes in 7-bit ASCII.

XML Services supports 7-bit ASCII and the full U.S. EBCDIC character set, as well as the
subset of UTF-8 that happens to match 7-bit ASCII. Any of the following encoding attributes
are therefore valid in the <?xml?> declaration for XML Services:

<?xml version=”1.0” encoding=”UTF-8”?>
<?xml version=”1.0” encoding=”US-ASCII”?>
<?xml version=”1.0” encoding=”EBCDIC-US”?>

 Note

You may also omit the encoding attribute and it will default to UTF-8.

The values for the encoding attribute have the meanings shown in Exhibit 2-2.

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

UTF-8 Variable-length Unicode representation in one to four 8-bit bytes. Supports international
languages, including non-Latin and ideographic scripts. The default encoding for XML.
XML Services accepts documents with this attribute, but interprets them as 7-bit ASCII at
this time. Codes higher than 127 are ignored.
31

32

Chapter 2: XML Syntax Basics
Undefined Character Code Handling

The double-byte variant of Unicode is UTF-16. UTF-16 reserves the range of character codes
E000 – F8FF as the Private Use Area (PUA) range. The PUA range is reserved for private
use by software vendors.

When converting from EBCDIC to UTF-16 or UTF-8, conversion will fail for characters that
are not defined in the EBCDIC code page. To handle characters that fail conversion,
SERNET utilizes PUA range F800 – F8FF. For UTF-16, undefined characters are converted
to F8xx, where xx is the hexadecimal value of the undefined EBCDIC character.

For UTF-8, in binary this corresponds to:

11101111 101000bb 10bbbbbb

where bbbbbbbb is the binary value of the undefined EBCDIC character.

When converting from UTF-16 or UTF-8 back to EBCDIC, SERNET will convert the F8xx
characters back to their original xx form.

SERENA XML MESSAGE DOCUMENTS

Every Serena XML request and reply message is an XML document. From a syntactic point
of view, each document consists of free-format text delimited by nested markup tags. Tags
may be nested to any depth, repeated, or exhibit other forms of structure. The nested tag
syntax of an XML document is logically equivalent to a hierarchical n-way tree structure.

Serena XML Syntax Example

Syntactically, a Serena XML document begins with a document type declaration, then opens
the root <service> tag. The document ends with the closing </service> tag.

The name attribute of the <service> tag determines which <scope> subtags are valid for
nesting within the <service> tag for a particular instance document. Similarly, the name
attribute of the <scope> tag determines which <message> subtags are valid for nesting
within it.

The <message> tag completes the trio of nested tags needed to invoke a low-level service
object in the Extended Services layer of XML Services. The name attribute of the <message>
tag, in the context provided by the superordinate <service> and <scope> tags, determines
which complex data structures are valid within the <message>.

US-ASCII 8-bit ASCII character set. XML Services accepts documents with this attribute, but
interprets them as 7-bit ASCII at this time. Codes higher than 127 are ignored.

EBCDIC-US 1987 standard EBCDIC for U.S. English & IBM 3270 terminals. Fully supported by XML
Services.

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The following Serena XML example illustrates the nested structure of a Serena XML
document. The role of the <service> tag as the root node is clear from the indentation —
although in practice, both indentation and line breaks are optional in XML.

It should also be clear from this example why markup tags in free-format text are so flexible
for data interchange. Adding one more tag to some level in the hierarchy does not change the
meaning of any other tag in the message.

XML Example — PACKAGE SERVICE CREATE:

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="CREATE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>ACTP</applName>
 <createMethod>0</createMethod>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <reasonCode>000</reasonCode>
 <requestorDept>IDD</requestorDept>
 <requestorName>USER24</requestorName>
 <requestorPhone>555 5555</requestorPhone>
 <packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
 <packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
 <packageImplInst>TEST XML PACKAGE SERVICE CREATE</packageImplInst>
 <siteInfo>
 <siteName>SERT8</siteName>
 <installDate>20091231</installDate>
 <fromInstallTime>0100</fromInstallTime>
 <toInstallTime>0200</toInstallTime>
 <contactName>USER24</contactName>
 <contactPhone>555 5555</contactPhone>
 <alternateContactName>USER24</alternateContactName>
 <alternateContactPhone>555 5555</alternateContactPhone>
 </siteInfo>
 </request>
 </message>
 </scope>
</service>
33

34

Chapter 2: XML Syntax Basics
Logical Document Structure

The logical structure of a ChangeMan ZMF XML Services document can be visualized as an
n-way hierarchical tree. This structure is illustrated for the high-level nodes common to all
services in Exhibit 2-3.

Exhibit 2-3. High-Level XML Document Structure

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Diagram conventions for Exhibit 2-3 are as follows. Each node of the tree (shown as a
rectangle) corresponds to a named data element represented in markup by an XML tag. One
or more branches from a node (shown by solid or dashed lines) represent the inclusion of
subsidiary nodes in the higher-level node’s contents. Dashed borders indicate an optional
data element; solid borders indicate that the node is required. Multiple occurrences of a node
are allowed — each occurrence of which includes the node’s subordinate data structure.
Mutually exclusive relationships among nodes is shown by a lozenge-shaped octagon
labeled “XOR,” from which branches extend to the mutually exclusive nodes with their
substructures. Leaf nodes indicate simple data elements containing raw data rather than a
substructure of subordinate data elements. An ellipsis (three consecutive dots) indicates the
omission of subordinate nodes from the diagram for clarity.

Nodes in the structure diagram are annotated according to the following conventions:

• Tag names appear in the blue region of the node.

• If attributes for the tag exist, their names and permitted values appear in a white
region appended to the node.

• If the number of occurrences of a node is variable, the allowed range for the number
of repetitions appears below the lower right corner of the node. The number of
occurrences can range from zero to unbounded.

• A mandatory sequence for nodes in a data structure is shown by sequence numbers
in solid circles at the left of each node in the sequence.

HIGH-LEVEL TAGS IN SERENA XML

A few tags at the highest levels in the Serena XML document hierarchy are used consistently
in all XML instance documents. These consistent usage patterns persist despite variations in
the low-level service object called, the function requested of that object, or the scope of
action requested. These high-level tags are documented below.

<service> Tag: The Root Data Element

The root data element in an XML Services message document is marked by the <service>
tag. The <service> tag identifies the low-level service object that processes the message
— such as the approver maintenance service (name=”approver”) or the package
management service (name=”package”).

The <service> tag represents a complex data element with one attribute and one
subordinate data element (or subtag). All attributes and subtags are required. The
<service> tag data structure is summarized in Exhibit 2-4.
35

36

Chapter 2: XML Syntax Basics

<scope> Tag

The <scope> tag is the sole subtag of the <service> data element. It identifies the types of
objects or class of services to be included in the scope of the service object’s operations.
Example scopes include global records (name=”gbl”), application records (name=”apl”),
package records (name=”pkg”), component records (name=”cmponent”), and service-
wide functions (name=”service”). The chosen scope must be compatible with the
requested service. Valid combinations are listed at the end of this chapter in Exhibit 2-10 and
Exhibit 2-11.

The <scope> tag represents a complex data structure that has one attribute and one subtag.
Both are required. The <scope> data structure is summarized in Exhibit 2-5.

<message> Tag

The XML Services <message> tag occurs as a subtag of <scope>. It identifies the task to be
performed by the requested service within the requested scope of action. Example message
names include create (name=”create”), delete (name=”delete”), update
(name=”update”), list (name=”list”), and approve (name=”approve”). Message names
must be consistent with the higher-level service and scope names. Valid combinations of
service, scope, and message attribute names are listed at the end of this chapter in
Exhibit 2-10 and Exhibit 2-11.

The <message> tag delimits a complex data element with one attribute and four optional
subtags. Subtags must appear in sequence. The use and/or structure of each subtag
depends on the service/scope/message combination in the XML document.

Exhibit 2-4. Data Structure for Serena XML <service> Tag

Attribute or Subtag Use Occurs
Data Type &
Length Description and Values

name Required 1 String (8),
variable

Attribute. XML service object name.
Actual data length and value fixed for
each service object. See Exhibit 2-10 for
allowed values.

<scope> Required 1 Complex Element. See <scope> tag.

Exhibit 2-5. Data Structure for Serena XML <scope> Tag

Attribute or Subtag Use Occurs
Data Type &
Length Description and Values

name Required 1 String (8),
variable

Attribute. XML scope name. Must be
compatible with service name. Actual
data length & value fixed for each service
& function. See Exhibit 2-10 for values.

<message> Required 1 Complex Element. See <message> tag.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The <message> tag data structure is summarized in Exhibit 2-6.

<header> Tag

The <header> tag is a subtag within the <message> data structure. It contains routing and
test options specific to the ChangeMan ZMF mainframe environment and is required only for
TSO batch jobs. It does not appear in reply messages or in request messages submitted
interactively.

Syntactically, the <header> tag takes the following general form:

<header>
 <subsys>P</subsys>
 <product>CMN</product>
 <test>T</test>
</header>

Note the absence of a name attribute.

Data structure details for the <header> tag appear in Exhibit 2-7.

Exhibit 2-6. Data Structure for Serena XML <message> Tag

Attribute or Subtag Use Occurs
Data Type &
Length Description & Values

name Required 1 String,
variable

Attribute. XML message type name for
service and scope. Actual data length and
value fixed for each service object and
function. Allowed values appear in
Exhibit 2-10.

<header> Required in
mainframe
batch jobs.

0 - 1 Complex Element. Consistent substructure
whenever used. See <header> tag
below.

<request> Required in
requests.

Not used in
replies.

0 - 1 Complex Element. Structure varies with service,
scope, and message. See particular
<request> tag for desired user task
elsewhere in this manual.

<result> Optional in
replies.

Not used in
requests.

0 -  Complex Element. Structure varies with service,
scope, and message. See particular
<result> tag for desired user task in
XML Services User Guide.

<response> Required in
replies.

Not used in
requests.

0 - 1 Complex Element. Consistent substructure
whenever used. See <response> tag
below.
37

38

Chapter 2: XML Syntax Basics

<request> Tag

The <request> tag is a subtag within the <message> data structure. It contains the actual
content of a Serena XML request message and appears in all requests.

The syntax and structure of the <request> tag varies with the service/scope/message
combination used in the XML message document. It takes no attributes, and on occasion it
may even be empty (i.e., contain no subtags). Further information about specific <request>
tag structures appears later in this manual.

<result> Tag

The <result> tag is a subtag within the <message> data structure. It appears only in reply
messages and contains the output data, if any, generated by a low-level service object in
response to a Serena XML request. It takes no attributes.

The <result> tag may be repeated 9,999 times to accommodate multiple result records.
For reasons of performance and to minimize memory demands, ZMF limits the maximum
number of occurrences of any tag -- including the <results> tag -- to 9999. Each <result>
tag in a series may contain, for example, a line of code in a browsed component or an item in
a list of search results. Alternatively, the tag may not appear at all.

All <result> tags in a Serena XML reply message appear before the final <response> tag,
which contains the return code indicating whether or not the service completed successfully.

Exhibit 2-7. Data Structure for Serena XML <header> Tag

Attribute or Subtag Use Occurs
Data Type &
Length Description & Values

<subsys> Required 1 String (1) Element. One-byte identifier for
ChangeMan ZMF instance or subsystem
to which request is addressed.

<product> Optional 0 - 1 String (3) Element. Mnemonic for product to run
under subsystem in <subsys> tag.
Values:

CMN = ChangeMan ZMF (default)

XCH = Exchange (ZDD)

<test> Optional 0 - 1 String (1) Element. Used only at request of Serena
Customer Support personnel for
diagnostic purposes. Values:

T = Enable test mode

<warn> Optional 0 - 1 String (1) Element. Used to enable XML WARN
Facility for this XML request. See “Warn -
XML Tag Name Warning” on page 603.
This overrides the XML WARN Facility
specification for the started task. Values:

Y = Enable XML Warning

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The syntax and structure of the <result> tag varies by the service/scope/message
combination used in the document.

Further information about specific <result> tag structures appears later in this manual.

<response> Tag

The <response> tag is a subtag of the <message> data structure. It contains a mainframe
return code, reason code, and/or message concerning the success or failure of your request.
The <response> tag appears in every reply message issued by XML Services.

The structure of the <response> tag is consistent across all service objects and functions,
all client environments, and all client products. It contains one required subtag and two
optional subtags in a fixed sequence. It takes no attributes.

Syntactically, the <response> tag takes the following general form:

<response>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>0000</statusReasonCode>
 <statusMessage>Contents of message.</statusMessage>
</response>

You should always monitor the contents of the <statusReturnCode> tag to trap error
conditions. The value returned will be ‘00’ if your request executed successfully. Successively
higher numeric values correspond to increasingly severe error conditions. System error
codes and ABENDs may append an alphanumeric prefix to the code. You should familiarize
yourself with ChangeMan ZMF return codes and messages before taking action on the
<statusReturnCode> subtag or other elements of the <response> tag.

Data structure details for the <response> tag appear in Exhibit 2-8.

Exhibit 2-8. Data Structure for Serena XML <response> Tag

Subtag Use Occurs
Data Type &
Length Description & Values

<statusReturnCode> Required 1 String (4),
variable

Element. ChangeMan ZMF return code
indicating successful completion or class
and severity of error. Typical values:

00 - Execution successful
04 - Warning message
08 - Processing error (e.g.,
 package does not exist)
16 - Syntax error (e.g.,
 unrecognized tag, possibly because
 of incorrect case)

NOTE: Higher values indicate more
severe errors. Abend or system error
return codes may exceed 2 bytes &
include alphanumerics.

NOTE: Always check this tag to
determine success of XML request.
39

40

Chapter 2: XML Syntax Basics
FILTERING XML SERVICES MESSAGES

The ChangeMan ZMF XML Services API, like all text markup languages, is verbose.
Occasionally, when large volumes of data are returned in response to a request, the verbosity
of XML can overwhelm working storage capacity or severely degrade performance. To
address this issue, Serena XML supports custom result filtering for XML services that accept
<request> subtags in the request message and return <result> tags in the reply. This is
accomplished by using the optional <includeInResult> tag in the <request> data
structure.

<includeInResult> Tag

The <includeInResult> tag applies to all XML services with explicit <request> subtags
in the request message and explicit <result> subtags in the reply.

The <includeInResult> tag explicitly identifies the subtags to include in the <result>
tags returned in the XML reply message. The tag is repeatable to accommodate multiple
<result> subtags. If used, only the subtags explicitly named in an instance of
<includeInResult> will be returned. All other subtags normally returned in the <result>
by the service are suppressed.

The <includeInResult> tag filters returned tags only. XML Services uses this tag to post-
process reply messages and strip out extraneous tags as it builds each <result> data
element. The <includeInResult> tag has no effect on the filtering applied by a service
when identifying which records to process or include in a report.

An example of the <includeInResult> tag in a package general search follows. This
example requests a search for all packages in frozen status. But the full set of <result>
tags is not desired in the reply; instead, only the <package> tag and <auditReturnCode>
will be returned.

Data structure details for the <includeInResult> tag appear in Exhibit 2-9.

<statusReasonCode> Optional 0 - 1 String (4),
variable

Element. ChangeMan ZMF reason code
indicating type or cause of error, if any.
Generally the status codes in XML
replies are the same as the internal
message numbers. For example, a
status code of 8203 corresponds to
SERNET message SER8203x

<statusMessage> Optional 0 - 1 String (255),
variable

Element. ChangeMan ZMF message
text associated with the return code and
reason code, if any.

Exhibit 2-8. Data Structure for Serena XML <response> Tag (Continued)

Subtag Use Occurs
Data Type &
Length Description & Values

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
XML Example — Filtering a General Package Search with <includeInResult>

<?xml version=”1.0” encoding=”UTF-8”?>
<service name=”PACKAGE”>
 <scope name=”GENERAL”>
 <message name=”SEARCH”>
 <request>
 <searchForFrozenStatus>Y</searchForFrozenStatus>
 <includeInResult>package</IncludeInResult>
 <includeInResult>auditReturnCode</IncludeInResult>
 </request>
 </message>
 </scope>
</service>

SERVICE, SCOPE, AND MESSAGE SUMMARY

Only certain combinations of service, scope, and message name attributes are valid in
Serena XML. The combination chosen must make sense for the low-level service object
invoked and for the task or information desired. Valid service/scope/message combinations
are listed in the following tables:

• Core XML Services Summary

• ERO XML Services Summary

Core XML Services Summary

Valid combinations of service, scope, and message names for the core XML Services
functions are listed in Exhibit 2-10. Names of the corresponding COBOL copybooks are also
listed for each function.

Exhibit 2-9. <includeInResult> Data Structure

Subtag Use Occurs
Data Type &
Length Description & Values

<includeInResult> Optional in any
<request> tag

0 -  String (255),
variable

Contains desired <result> subtag
name without angle brackets.

NOTE: Value is case-sensitive.

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

approver apl • list • List default approver list for application • XMLCAAPR

pkg • list • List package approvers • XMLCPAPR
41

42

Chapter 2: XML Syntax Basics
baselib service • list • List baseline library records • XMLCBASL

calendar service • list • List calendar records by site • XMLCCLDR

cmponent apl_cdsc • find
• list

• Find application-level component description
• List application-level component description

• XMLCACGD
• XLMCACGD

apl_dprc • check
• find
• list

• Check designated build procedure for component
• Find components with designated build procedures
• List designated build procedures for component

• XMLCADCP
• XMLCADCP
• XMLCADCP

apl_secr • check
• find
• list

• Check security authorization for component
• Find security entity for component
• List security entities for component

• XMLCACSC
• XMLCACSC
• XMLCACSC

chg_desc • list • List active component change description • XMLCPSVD

gbl_cdsc • list • List global component description • XMLCGCGD

gbl_dprc • list • List global component build procedure • XMLCGDCP

gbl_secr • list • List global component member-level security setting • XMLCGCSC

history • list
• listbase
• listconc
• listcurr
• listshrt

• List comprehensive component history
• List baselined component history
• List concurrent development history of component
• List current component history
• List active component history (short list)

• XMLCCHIS
• XMLCCHIS
• XMLCCHIS
• XMLCCHIS
• XMLCCHIS

lod_subr • list • List component subroutines • XMLCPINC

pkg_comp • list • List source/copybook relationship (ISAL/ICPY)
records for components in package

• XMLCPSCC

pkg_lod • list • List load-to-source relationship (ILOD) records for
components in package

• XMLCPILC

pkg_util • list • List scratch/rename (IUTL) records for components
in package

• XMLCPUTL

pkg_wrkl • list • List users working on component (ICWK) • XMLCPCUW

prm_hist • list • List component promotion history • XMLCPPCH

service • browse
• build
• checkin
• checkout
• compare
• lock
• recomp
• relink
• rename
• scratch
• unlock

• Browse (or download) component
• Build component (with stage & compile options)
• Check in component
• Check out component
• Compare component in package vs baseline
• Lock component
• Recompile component from baseline
• Relink component from baseline
• Rename a component/member
• Scratch a component/member
• Unlock component

• XMLCCBRW
• XMLCBULD
• XMLCCKIN
• XMLCCKOT
• XMLCCMPR
• XMLCCLCK
• XMLCRCMP
• XMLCRLNK
• XMLCSCRN
• XMLCSCRN
• XMLCCLCK

src_incl • list • List source-to-included-copies relationship records
for components in package

• XMLCPISC

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
 (Continued)

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
ssv_ver • list
• retrieve

• List component staging version change description o
• Retrieve staging version of component

• XMLCPSSV
• XMLCPSSV

db2admin apl_actv • list • List active DB2 records for application • XMLCAAD2

apl_logl • list • List logical DB2 records for application • XMLCALD2

gbl_logl • list • List global DB2 logical records • XMLCGLD2

gbl_phys • list • List global DB2 physical records • XMLCGPD2

dss ispfile • list • List ISPF file • XMLCDSIN

service • allocate
• basestat
• delete
• expand
• info
• list
• mbrdel
• stclist

• Allocate dataset
• List statistics for baseline library member
• Delete dataset
• Expand baseline member in SRD format
• Get dataset allocation information
• List dataset member, directory entries, & hash token
• Delete dataset member
• List datasets allocated to requested DDNAME by the

ZMF started task

• XMLCDSAL
• XMLCDSBS
• XMLCDSDE
• XMLCDSEX
• XMLCDSIN
• XMLCDSLI
• XMLCDSMD
• XMLCDSST

environ service • list • List ChangeMan ZMF environment parameters • XMLCENVR

file dirs • list • List HFS directories • XMLCFILL

files • list • List HFS files in a directory • XMLCFILL

service • access
• change
• copy
• create
• delete
• download
• export
• import
• link
• list
• mkdir
• rename
• rmdir
• scan
• upload

• List HFS (Hierarchical File System) file access
• Change HFS file attributes
• Copy HFS file
• Create HFS file
• Delete HFS file
• Download HFS file
• Export HFS file
• Import HFS file
• Link HFS file
• List HFS file contents
• Make an HFS file directory
• Rename an HFS file or directory
• Remove an HFS file directory
• Scan HFS files for requested strings
• Upload HFS files

• XMLCFILA
• XMLCFILC
• XMLCFILC
• XMLCFILC
• XMLCFILD
• XMLCFILE
• XMLCFILE
• XMLCFILL
• XMLCFILC
• XMLCFILC
• XMLCFILC
• XMLCFILU
• XMLCFILM
• XMLCFILS
• XMLCFILU

forms gbl • list • List global online forms • XMLCGOFM

pkg • approve
• comment
• detail
• list
• reject
• submit

• Approve online form for package
• Add comment or reject reason to form for package
• List online form details for package
• List online form for package
• Reject online form for package
• Submit online form for package

• XMLCPOFM
• XMLCPOFM
• XMLCPOFM
• XMLCPOFM
• XMLCPOFM
• XMLCPOFM

impact bun • list • List BUN library type information • XMLCIABN

cmponent • list • List impact analysis information for component • XMLCIACM

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
 (Continued)

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook
43

44

Chapter 2: XML Syntax Basics
table • list • List impact analysis table • XMLCIATB

imscrgn apl • list • List IMS control region defaults for application • XMLCAICR

gbl • list • List global IMS control region defaults • XMLCGICR

imsovrd apl • apl_dbd
• apl_psb

• List IMS DBD overrides for application
• List IMS PSB overrides for application

• XMLCAIOR
• XMLCAIOR

gbl • gbl_dbd
• gbl_psb

• List global IMS DBD overrides
• List global IMS PSB overrides

• XMLCGIOR
• XMLCGIOR

pkg • pkg_dbd
• pkg_psb

• List IMS DBD overrides for package
• List IMS PSB overrides for package

• XMLCPIOR
• XMLCPIOR

language apl • list • List default programming language for application • XMLCALNG

gbl • list • List global default programming language • XMLCGLNG

libtype apl • list • List library types defined for application • XMLCALTP

gbl • list • List globally defined library types • XMLCGLTP

pkg • list • List library types defined for package • XMLCPLTP

log service • create
• list

• Create activity log entry
• List activity log entries

• XMLCALOG
• XMLCALOG

notyfile service • download
• upload

• Download the global notification file
• Upload the global notification file

• XMLCNTFI
• XMLCNTFI

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
 (Continued)

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
package aff_apls • list • List affected applications • XMLCPAAP

approve • search • Search for packages pending approval • XMLCPSCH

check • promote • Check promotion readiness of package • XMLCPPRM

cleanup • demote • Demote package & clean up promotion libraries • XMLCPPRM

cmponent • integrty • Check component integrity of package • XMLCPINT

cmp_desc • list • List component description records for package • XMLCPCDS

forms • refreeze
• unfreeze

• Refreeze online forms for package
• Unfreeze online forms for package

• XMLCPFRZ
• XMLCPFRZ

gen_desc • list • List general description of package • XMLCPDSC

gen_prms • list
• refreeze
• unfreeze

• List general parameters for package
• Refreeze general parameters for package
• Unfreeze general parameters for package

• XMLCPGPM
• XMLCPFRZ
• XMLCPFRZ

general • search • General package search • XMLCPSCH

imp_inst • list • List implementation instructions • XMLCPIMI

ims_acb • list • List IMS ACB control blocks • XMLCPIAS

ims_crgn • list • List IMS control regions for package • XMLCPICR

limbo • search • Search for limbo packages • XMLCPSCH

non_src • refreeze
• unfreeze

• Refreeze non-source modules in package
• Unfreeze non-source modules in package

• XMLCPFRZ
• XMLCPFRZ

pkg_link • list
• search

• List linked packages
• Search for linked packages

• XMLCPLNK
• XMLCPSCH

prm_cmp • list • List component promotion history for package • XMLCPPRC

prm_hist • list • List promotion history for package • XMLCPPRH

prm_ovly • list • List overlaid components for package promotion • XMLCPPRO

promote • lock • Lock promotion site for a package • XMLCPPLU

prt_pkgs • list • List participating packages • XMLCPPPK

reasons • list • List reasons for backout or revert • XMLCPRBR

sch_recs • list • List installation schedule for package • XMLCPSCD

scr_ren • refreeze
• unfreeze

• Refreeze scratched/renamed member
• Unfreeze scratched/renamed member

• XMLCPFRZ
• XMLCPFRZ

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
 (Continued)

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook
45

46

Chapter 2: XML Syntax Basics
service • approve
• audit
• backout
• create
• delete
• demote
• freeze
• promote
• revert
• submit
• summary

• Package approval action
• Audit a frozen package
• Back out installed package from production
• Create change package
• Memo-delete change package
• Demote a promoted change package (no cleanup)
• Freeze package
• Promote package to next promotion library
• Revert package to development status
• Submit package for file tailoring and JCL build
• List package summary statistics

• XMLCPAPV
• XMLCPAUD
• XMLCPBKO
• XMLCPCRT
• XMLCPMDL
• XMLCPPRM
• XMLCPFRZ
• XMLCPPRM
• XMLCPRVT
• XMLCPFTC
• XMLCPSUM

sites • refreeze
• unfreeze

• Refreeze site records for package
• Unfreeze site records for package

• XMLCPFRZ
• XMLCPFRZ

src_lod • refreeze
• unfreeze

• Refreeze source & load modules in package
• Unfreeze source & load modules in package

• XMLCPFRZ
• XMLCPFRZ

usr_recs • list • List user records for package • XMLCPURC

parms apl • list • List general parameters for application • XMLCAPRM

gbl • list • List global default general parameters • XMLCGPRM

procs apl • list • List application procedures • XMLCAPRC

gbl • list • List global procedures • XMLCGPRC

prodlib service • list • List production libraries • XMLCPRDL

promlib library • list • List promotion library records • XMLCPRLN

site • list • List promotion site records • XMLCPRSN

reasons service • list • List global reason codes for unplanned changes • XMLCGRSN

schedule service • hold
• list
• release

• Hold scheduled package installation
• List installation schedule records
• Release held package installation

• XMLCSCHD
• XMLCSCHD
• XMLCSCHD

site apl • list • List site records for application • XMLCASIT

gbl • list • List global site records • XMLCGSIT

pkg • list • List site records for package • XMLCPSIT

system environ • list • List SERNET environment parameters • SERVSYSO

service • list • List system setup & install parameters • SERVSYSO

user service • notify • Sends notification message to user • XMLCNTFY

util line • print • SERNET print service • XMLCUTIL

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks
 (Continued)

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
ERO XML Services Summary

Valid combinations of service, scope, and message names for the Enterprise Release Option
(ERO) functions supported by XML Services are listed in the following tableExhibit 2-11.
COBOL copybook names are also listed for each function. These services are shown here
for completeness; they are documented in the ChangeMan ZMF ERO XML Services User’s
Guide.

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

package service • attach
• detach

• Attaches a package to a release
• Detaches a package from a release

• XMLCPGPM
• XMLCPGPM

rlsmappl promote • list • Lists release management promotion data • XMLCRPRM

service • list
• release

• Lists application release status
• Lists release data for each release to which an application

is joined

• XMLCRAPL
• XMLCRARL

syslib • list • Lists SYSLIB data for release applications • XMLCRASY

rlsmappr area • list • Lists release area approver data • XMLCRAAP

ascapprv • list • Lists the items that are associated with an approval entity • XMLCRASC

global • list • Lists global release approval entity data • XMLCRGAP

release • list • Lists data for install approval entities • XMLCRAAP

rlsmarea all_chk • syslib • Lists the COPYLIB, LOADLIB, and source concatenation
lists for libraries that are allocated

• XMLCRSYL

all_noc • syslib • Lists all of the COPYLIB, LOADLIB, and source concate-
nation lists, including libraries that are not yet allocated

• XMLCRSYL

cim • list • Lists release area component in motion (CIM) information
from the ERO DB2 CIM table

• XMLCRCIM

cmp_lock • list • Lists the holder of a release component lock • XMLCRCLK

cpy • syslib • Lists the COPYLIB concatenation for a release application • XMLCRSYL

detail • cmp_rlse

• integrty

• test

• Lists all components in a release concatenation and shows
all locations where each component resides

• Checks the integrity of the component-in-motion (CIM)
table against physical members in area libraries. Checks
all versions of all components in the release concatena-
tion.

• Tests the contents of a release area against all of the pack-
ages that may place a component in that area. Lists infor-
mation for failing components and packages.

• XMLCRCML

• XMLCRCHK

• XMLCRTST

hst • list • Lists history from the ERO component history table • XMLCRHST

imp • list • Lists impact data from the ERO DB2 impact table • XMLCRIMP

load • syslib • Lists the LOADLIB concatenation for a release application • XMLCRSYL
47

48

Chapter 2: XML Syntax Basics
scan • cmp_rlse • Scans the latest version of components in a release con-
catenation to find those with content matching a search
string

• XMLCRCML

scanall • cmp_rlse • Scans all components in a release concatenation to find
those with content matching a search string

• XMLCRCML

service • list
• test

• Lists release area definitions
• Tests the contents of a release against all of the packages

that may place a component in that release. Displays a
message describing the status of packages and compo-
nents in the release.

• XMLCRARE
• XMLCRTST

source • syslib • Lists the source SYSLIB information for a library type • XMLCRSYL

start • list • Lists the release area definitions for a starting area • XMLCRARE

summary • cmp_rlse

• integrty

• Lists information for the latest version of each component
in a release concatenation

• Checks integrity of the component-in-motion (CIM) table
against physical members in area libraries.

• XMLCRCML

• XMLCRCHK

syslib • list • Lists SYSLIB data for an application • XMLCRASL

ver_regr • list • Performs a version regression check on components. If a
version regression situation exists between the current
release and a prior release, lists information for the current
and prior versions.

• XMLCRVER

rlsmltyp bun • list • Lists information from the release BUN library-type table • XMLCRBUN

service • list • Lists library security and format information • XMLCRLTP

rlsmrlse cim • list • Lists release area component in motion (CIM) information
from the ERO DB2 CIM table

• XMLCRLCM

detail • test • Tests the contents of a release against all of the packages
that may place a component in that release

• XMLCRTSC

hst • list • Lists release component history from the ERO component
history table

• XMLCRLHT

imp • list • Lists impact data from the ERO DB2 impact table • XMLCRLMP

library • list • Lists release area libraries • XMLCRLLT

prior • list • Lists prior release information • XMLCRLPR

reasons • list • List Backout and Revert reasons for a release • XMLCRRBR

rls_link • list • Lists release management data across a TCP/IP link • XMLCRLLK

service • list
• search
• test

• Lists scheduler dates, times, and status for a release
• Searches for releases and lists information
• Tests the contents of a release against all of the packages

that may place a component in that release. Displays a
status message.

• XMLCRLSM
• XMLCRSRC
• XMLCRTSC

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
sites • list • Lists release/site dates and contacts • XMLCRSTE

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service
Name

Scope
Name

Message
Name Description of Function

COBOL
Copybook
49

50

Chapter 2: XML Syntax Basics

PACKAGE MANAGEMENT
 3

Package management messages in Serena XML fall into four user task categories:

• Package Lifecycle Tasks — Tasks that comprise a major step in the lifecycle of a
change package as a whole. These include package commands such as package create,
delete, freeze, promote, and approve.

• Package-Level Component Change Management — Tasks related to the component
lifecycle but which apply to one or more components of a package as a group. Package-
level component groups include source and load modules, non-source modules, and
scratch/rename records. Commands include unfreeze, refreeze, and list.

• Package Validation Tasks — Tasks that identify dependencies among package
components, verify the integrity of package components, or check for versioning
differences across components in different stages of development. These include
package commands such as list, check component integrity and audit.

• Package Information Management Tasks— Tasks that retrieve or manage descriptive
metadata or control information about a package. Such information includes the package
description, general package parameters, working component descriptions for the
package, participating package records, affected application records, package-level site
records, the package approver list, package promotion history, user-defined variables for
a package, and similar records. Supported commands include list.

PACKAGE MESSAGE SYNTAX

Identifying Package Messages

Serena XML package messages contain syntax that tells ChangeMan ZMF to perform a task
against a package rather than some other object. This occurs in one of two ways. Most
commonly, the name attribute in the <service> takes the value “PACKAGE”, as follows:

<service name=”PACKAGE”>

However, some non-package services — such as the approver maintenance service and the
site maintenance service — support a package-level scope of action. These identify a
package-level task by the name attribute of the <scope> tag, which takes the value “pkg”
or something similar (e.g., “pkg_comp”, “pkg_lod”, and so on). For example:

<service name=”SITE”>
<scope name=”PKG”>
51

52

Chapter 3: Package Management
Finally, some services are only implicitly allied to package management; there is no explicit
syntax to make that relationship clear. For example, the package installation scheduler
service works with install schedules one package at a time. It does not identify its scope as
package-specific, though, because its present design gives the scheduler no other scope
options.

Where explicit syntax exists, the same attributes appear in both request and reply messages.
In requests, they tell ChangeMan ZMF to execute a package-level function. In replies, they
tell your XML message processing software to parse the returned message for package data.

Package Naming Conventions

Package Name Tags

Two methods exist in Serena XML to identify a package to ChangeMan ZMF. The first uses
the <package> tag to supply a complete package name. The second concatenates the
<applName> tag, which identifies the application to which a package belongs, with the
<packageId> tag, which contains the unique number of the package within its application.
Together, the <applName> and <packageId> tags yield the same package identifier as that
supplied in the <package> tag. Either method is acceptable to ChangeMan ZMF.

Embedded Blanks in the <package> Tag

The <package> tag appears as a subordinate data element in nearly all package
management data structures. For ChangeMan ZMF, this tag takes a 10-byte fixed-format
value, as follows:

<package>aaaannnnnn</package>, where:

aaaa = application name. If less than 4 characters, right-fill with blanks.
nnnnnn = package ID number. If less than 6 digits, left-fill with zeroes.

For example, a package name for ChangeMan ZMF that uses a 3-byte application name
must include an embedded blank to fill out the application name portion of the <package>
tag data, as follows:

<package>TST 123456</package>

Special Tag Syntax for Package Management

Serena XML supports up to 72 user-defined package variables that are established by users
when customizing ChangeMan ZMF on the mainframe. These variables are stored in the
package master.

The Serena XML tag names for these user-defined package variables use the following
naming convention:

<userVarLenxxyy>

where:

• xx = length of variable data in bytes, formatted as 1-digit or 2-digit integer

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
• yy = unique 2-digit integer identifier for this particular variable of length xx

For example, <userVarLen103> represents the third user-defined variable with a length of
one byte. Similarly, <userVarLen4405> is the fifth variable with a length of 44 bytes.

Serena XML provides 16 such tags for variables of 1 byte each in length, 11 tags of 2 bytes
each, 10 tags of 3 bytes each, 10 tags of 4 bytes, 10 tags of 8 bytes, 5 tags of 16 bytes, 5
tags of 44 bytes, and 5 tags of 72 bytes.

PACKAGE LIFECYCLE TASKS

Serena XML supports the following package lifecycle tasks for general use:

Create a Package - PACKAGE SERVICE CREATE

The package create message in Serena XML creates an empty change package in the
staging area. A parent application must already exist to provide default settings for the new
package.

The Serena XML service/scope/message tags and attributes for a package creation
message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”CREATE”>

These tags appear in both requests and replies.

• Create a Package - PACKAGE SERVICE
CREATE

• Demote a Package with Cleanup -
PACKAGE CLEANUP DEMOTE

• Delete a Package - PACKAGE SERVICE
DELETE

• Approve a Package - PACKAGE SER-
VICE APPROVE

• Freeze a Package - PACKAGE SERVICE
FREEZE

• List Package Installation Schedule -
SCHEDULE SERVICE LIST

• Submit a Package for JCL Build - PACKAGE
SERVICE SUBMIT

• Hold Package Install Job - SCHEDULE
SERVICE HOLD

• Check a Package for Promotion Readiness -
PACKAGE CHECK PROMOTE

• Release Package Install Job - SCHED-
ULE SERVICE RELEASE

• Promote a Package - PACKAGE SERVICE
PROMOTE

• Back Out a Package - PACKAGE SER-
VICE BACKOUT

• Lock Promotion Site for Package - PACKAGE
PROMOTE LOCK

• Revert a Package - PACKAGE SER-
VICE REVERT

• Demote a Package - PACKAGE SERVICE
DEMOTE

•

53

54

Chapter 3: Package Management
PACKAGE SERVICE CREATE Requests

The Serena XML syntax for a package creation request varies with the creation method you
select. Three creation methods exist:

• Short Method — Supplies only the minimum information required by the package master
database. Complete information is supplied later via package updates using the
ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

• Copy Forward (or Clone) Method — Copies values from a preexisting model package
into the new package master entry. Changes are made later via package updates using
the ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

• Long Method — Supplies all package master information in a single step. No
subsequent updates are required. If you want to set the values of any user-defined
variables for a package, you must use this method of package creation.

Choose a creation method using the <createMethod> subtag of the <request> message.

Example XML — PACKAGE SERVICE CREATE Request.

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="CREATE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>ACTP</applName>
 <createMethod>0</createMethod>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <reasonCode>000</reasonCode>
 <requestorDept>IDD</requestorDept>
 <requestorName>USER24</requestorName>
 <requestorPhone>555 5555</requestorPhone>
 <packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
 <packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
 <packageImplInst>TEST XML PACKAGE SERVICE CREATE</packageImplInst>
 <siteInfo>
 <siteName>SERT8</siteName>
 <installDate>20091231</installDate>
 <fromInstallTime>0100</fromInstallTime>
 <toInstallTime>0200</toInstallTime>
 <contactName>USER24</contactName>
 <contactPhone>555 5555</contactPhone>
 <alternateContactName>USER24</alternateContactName>
 <alternateContactPhone>555 5555</alternateContactPhone>
 </siteInfo>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 </request>
 </message>
 </scope>
</service>

The foregoing example requests the creation of a simple, planned, permanent package using
the “short” method. The package is part of the “ACTP” application. Installation is scheduled
for one production sites.

As the example illustrates, the <siteInfo> tag represents a complex data element A
complex data element consists of other XML tags, rather than simple data. Such markup
syntax, which potentially nests tags within tags within tags to any depth, is how XML
implements its hierarchical tree data structure in a text data stream.

In addition, <siteInfo> is a repeatable tag. A repeatable tag allows a variable number of
consecutive repetitions to accommodate multiple instances of similarly structured
information. For example, <siteInfo> can be repeated for each site where the newly
created package will be installed. Repeatable tags enhance scalability in XML data
structures.

Note that the XML data structures for package request and reply messages do not specify
any particular order for the occurrence of tags. You must rely on tag name rather than tag
ordinal position in a sequence to convey information to ChangeMan ZMF. Sequence within a
data structure is not preserved.

For example, a package may be installed across multiple sites in any order. This is not
necessarily the order you list your <siteInfo> data elements. Similarly, if you schedule multiple
predecessor jobs to occur before package install, they may execute in any order so long as
they precede package installation. You cannot assume that predecessor jobs will execute in
the order you list them in your XML request.

 Caution

Tag sequence is not preserved in package request and reply messages
using Serena XML. Use tag names rather than tag ordinal position in a
sequence to convey information to ChangeMan ZMF.
55

56

Chapter 3: Package Management
Data structure specifications for the package creation <request> tag appear in Exhibit 3-1.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<affectedApplName> Optional 0 -  String (4),
variable

Name of application affected by one or
more participating packages in this
complex/super package. Repeatable for
multiple applications.

NOTE: Valid only for complex or super
packages.

NOTE: If <partPackageName> used, at
least one instance of this tag is required.

<applName> Required 1 String (4),
variable

Parent application name for new change
package.

<complexSuperPackage> Optional 0 - 1 String (10),
variable

Name of complex/super package to which
a participating package belongs.

NOTE: Valid only when creating a
participating package.

NOTE: Required if <packageLevel>
value is 4.

<complexSuperPackageAppl> Optional 0 -1 String (4),
variable

Application name of model package. Same
as <complexSuperPackage> tag’s first
4 bytes.

<complexSuperPackage-
Number>

Optional 0 -1 Integer(6) Package ID of model package. Same as
<complexSuperPackage> tag’s last
6 bytes.

<createMethod> Required 1 Integer (1) Package creation method code. Values:

0 = Short creation method
1 = Copy forward (clone) method
2 = Long creation method

NOTE: If <createMethod> value is 0, the
following additional tags are required:
<packageTitle>, <packageLevel>,
<packageType>, <schedulerType>,
<requestorPhone>,<requestorName>,
<problemActionCode>, <siteInfo>.

NOTE: If <createMethod> value is 1, you
must name the package to copy from in
<packageModel>.

NOTE: If <createMethod> value is 2, you
must supply all the tags needed when
<createMethod> is 0, plus the following:
<packageDesc>, <packageImplInst>,
<problemActionCode>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<otherProblemAction> Optional 0 -1 String (44),
variable

Text of “Other” instructions if installation
problem occurs.

NOTE: Required when value of
<problemActionCode> = 3.

<packageApplModel> Optional 0 -1 String (4),
variable

Application name of model package. Same
as first 4 bytes of <packageModel>.

<packageDesc> Optional 0 - 46 String (72),
variable

Description of package contents. Multiple
entries of 72 bytes each.

<packageImplInst> Optional 0 - 46 String (72),
variable

Package install & implementation
instructions. Multiple tags of 72 bytes each.

NOTE: Order of repeated tags is not
preserved. Add sequence numbers to text
if steps must be performed in order.

<packageLevel> Optional 0 -1 Integer (1) Code for package complexity or level in
hierarchy. Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package

NOTE: If value = 2 or 3, the names of
participating packages are required in the
<partPackageName> tag.

NOTE: If value = 4, you must supply name
of complex/super package in tag
<complexSuperPackage>.

<packageModel> Optional 0 -1 String (10),
variable

Name of source package from which
entries are copied forward (“cloned”) to
new package.

NOTE: This tag is required if value in
<createMethod> = 1.

<packageNumberModel> Optional 0 -1 Integer(6) Package ID of model package. Same as
last 6 bytes of <packageModel>.

<packageTitle> Optional 0 -1 String
(255),
variable

Working title for package. Appears on most
listings & reports.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
57

58

Chapter 3: Package Management
<packageType> Optional 0 -1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

NOTE: For code values = 2 or 4, the
duration of change is required in
<tempChangeDuration> tag.

NOTE: For values = 3 or 4, a reason for the
unplanned change is required in the
<reasonCode> tag.

<partPackageName> Optional 0 -  String (10),
variable

Name of a participating package pointed to
by this complex/super package record.
Repeatable for multiple participating
packages.

NOTE: Valid only when creating a complex
or super package.

NOTE: Required if <packageLevel>
value is 2 or 3.

NOTE: Tag <affectedApplName> is also
required if this tag is used.

<problemActionCode> Optional 1 Integer (1) Code for action to take if problem occurs in
package install. Values:

1 = Hold production & contact
 developer for instructions
2 = Back out change, then proceed
 with production
3 = Other instructions

NOTE: If value = 3, you must supply
instructions in <otherProblemAction>.

<reasonCode> Optional 0 - 1 String (3),
variable

Customer-defined reason code for
unplanned package installation.

NOTE: Required if <packageType> value
is 3 or 4.

NOTE: Reason codes defined separately
by ZMF administrator.

<release> Optional,
for ERO

0 -1 String (8) Name of ERO release with which package
is associated.

<releaseArea> Optional,
for ERO

0 -1 String (8) Name of starting release area for ERO
release package check-in.

<requestorDept> Optional 0 -1 String (4),
variable

Workgroup or department code for package
creator.

<requestorName> Optional

l

1 String (25),
variable

Name of developer or contact person
responsible for package.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<requestorPhone> Optional 1 String (15),
variable

Phone of developer or contact person
responsible for package.

<schedulerType> Optional 1 Integer (1) Code for type of installation scheduler used
with package. Values:

1 = ChangeMan scheduler
2 = Manual install
3 = Other automated scheduler

<schedulingInfo> Optional 0 -  Complex See <schedulingInfo> subtag.

<siteInfo> Optional 0 -  Complex See <siteInfo> subtag.

<tempChangeDuration> Optional 0 - 1 Integer (3) Number of days for temporary package to
stay installed before automatic backout.

NOTE: Required if <packageType> value
is 2 or 4.

<userVarLen101>
 .
 .
 .

<userVarLen115>

Optional 0 -1
each

String (1) User-defined variables in ZMF. Total of 15
individually named, 1-byte tags supported.

NOTE: See topic “Package User
Information” in the ChangeMan ZMF
Customization Guide.

<userVarLen201>
 .
 .
 .

<userVarLen211>

Optional 0 -1
each

String (2),
variable

User-defined variables in ZMF. Total of 11
individually named, 2-byte tags supported.

<userVarLen301>
 .
 .
 .

<userVarLen310>

Optional 0 -1
each

String (3),
variable

User-defined variables in ZMF. Total of 10
individually named, 3-byte tags supported.

<userVarLen401>
 .
 .
 .

<userVarLen410>

Optional 0 -1
each

String (4),
variable

User-defined variables in ZMF. Total of 10
individually named, 4-byte tags supported.

<userVarLen801>
 .
 .
 .

<userVarLen810>

Optional 0 -1
each

String (8),
variable

User-defined variables in ZMF. Total of 10
individually named, 8-byte tags supported.

<userVarLen1601>

 .

 .

 .

<userVarLen1605>

Optional 0 -1
each

String (16),
variable

User-defined variables in ZMF. Total of 5
individually named, 16-byte tags supported.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
59

60

Chapter 3: Package Management
 Tip

Tags: <userVarLen101> to <userVarLen7205>. See topic “Package User Information”
in the ChangeMan ZMF Customization Guide.

The <schedulingInfo> and <siteInfo> tags both represent complex data elements —
that is, they contain tags within tags. Their subordinate data structures are described below.

<schedulingInfo> Subtag

The <schedulingInfo> tag captures installation scheduling dependencies for a package.
Each instance of the tag names a predecessor job and/or a successor job to run before and/
or after the installation of the newly created package. The <schedulingInfo> tag may be
repeated as many times as needed to ensure that all installation prerequisites and follow-up
tasks occur. Data structure details for the <schedulingInfo> tag appear in the following
exhibit.

<siteInfo> Subtag

The <siteInfo> tag provides the site name, contact information, and scheduled package
installation date for a remote production site. The tag may be repeated as many times as
needed to cover all sites where the newly created package will be installed. At least one
instance of the tag is required in a package creation request that uses either the “short” or

<userVarLen4401>

 .

 .

 .

<userVarLen4405>

Optional 0 -1
each

String (44),
variable

User-defined variables in ZMF. Total of 5
individually named, 44-byte tags supported.

<userVarLen7201>

 .

 .

 .

<userVarLen7205>

Options 0 -1
each

String (72),
variable

User-defined variables in ZMF. Total of 5
individually named, 72-byte tags supported.

<workChangeRequest> Optional 0 -1 String (12),
variable

Work order ID or change request number
for package.

Exhibit 3-2. <schedulingInfo> Subtag Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<successorJobName> Optional 0 - 1 String (8),
variable

Must be valid job name for system where
install takes place.

<predecessorJobName> Optional 0 - 1 String (8),
variable

Must be valid job name for system where
install takes place.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
“long” create method. Data structure details for the <siteInfo> tag appear in the following
exhibit:

PACKAGE SERVICE CREATE Replies

The Serena XML reply message returns, at most, one <result> data structure, which
reports basic information about the newly created package. Most importantly, the <result>
supplies a unique package name assigned to the package by ChangeMan ZMF.

Following the <result> data structure is the standard <response> data structure, which
indicates the success or failure of the XML request and provides a status message.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example Serena XML package creation reply for a simple, planned, permanent package
follows. Tags in bold always occur in a reply. Repeatable tags appear twice for illustration.
Data structure details for the package creation <result> tag appear in Exhibit 3-4.

Example XML — PACKAGE SERVICE CREATE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="CREATE">
 <result>

Exhibit 3-3. <siteInfo> Subtag Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<siteName> Optional 0 - 1 String (8),
variable

Name of site where package will be
installed.

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned site install date for package. No
punctuation.

<fromInstallTime> Optional 0 - 1 Time,
hhmmss

Start time for period during which site
installation of package is planned. 24-hour
format, no punctuation.

<toInstallTime> Optional 0 - 1 Time,
hhmmss

End time for period during which site
installation of package is planned. 24-hour
format, no punctuation.

<contactName> Optional 0 - 1 String (25),
variable

Name of contact person at remote site to
assist with install.

<contactPhone> Optional 0 - 1 String (15),
variable

Phone of contact person at remote site to
assist with install.

<alternateContactName> Optional 0 - 1 String (25),
variable

Name of alternate contact person at
remote site to assist with install.

<alternateContactPhone> Optional 0 - 1 String (15),
variable

Phone of alternate contact person at
remote site to assist with install.
61

6

Chapter 3: Package Management
 <package>ACTP000012</package>
 <applName>ACTP</applName>
 <packageId>000012</packageId>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <packageStatus>6</packageStatus>
 <installDate>20091231</installDate>
 </result>
 <response>
 <statusMessage>CMN2100I - ACTP000012 change package has been created.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>2100</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-4. PACKAGE SERVICE CREATE <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned install date for package, or
start date of range.

<package> Optional 0 - 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

New package ID number generated
by ZMF. Same as last 6 bytes of
package name.

<packageLevel> Optional 0 -1 Integer (1) Code for package complexity level.
Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Delete a Package - PACKAGE SERVICE DELETE

The package deletion function in Serena XML flags or unflags an entire package for deletion.
Deletion (or undeletion) is logical rather than physical. Physical deletion of flagged packages
occurs at a later time under ChangeMan ZMF control.

The Serena XML service/scope/message tags for a package deletion message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”DELETE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DELETE Requests

Serena XML supports two kinds of delete requests against a package:

• Logical (“Memo”) Delete — Flags a package for physical deletion at a future time.
Package must be in development status prior to memo deletion. To choose this option,
enter “1” in the <processingOption> tag.

• Logical Undelete — Removes deletion flag from a memo-deleted package. Assumes the
package has not been aged past the scheduled, physical delete date and time. To choose
this option, enter “2” in the <processingOption> tag.

<packageStatus> Optional 0 - 1 String (1) Code for status of package in
lifecycle. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
 completed

NOTE: Only values 6 or A should
be returned for package create.

<packageType> Optional 0 - 1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

Exhibit 3-4. PACKAGE SERVICE CREATE <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
63

64

Chapter 3: Package Management
The following example shows how you might code a logical delete request in Serena XML.
Data structure details for the package deletion <request> tag appear in Exhibit 3-5.

Example XML — PACKAGE SERVICE DELETE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="DELETE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <processingOption>1</processingOption>
 <package>ACTP000015</package>
 </request>
 </message>
 </scope>
</service>

PACKAGE SERVICE DELETE Replies

No <result> data structure is returned in the package deletion reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the

Exhibit 3-5. PACKAGE SERVICE DELETE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<processingOption> Required 1 Integer (1),
fixed

1 = Logical delete
2 = Logical undelete

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
package deletion request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

Freeze a Package - PACKAGE SERVICE FREEZE

On ChangeMan ZMF servers, a Serena XML package freeze request does two things:

• It freezes the package against changes.
• It builds the “.X node” staging library containing file-tailored JCL installation code.

For a freeze request to execute successfully, all of the following conditions must be met:

• The package is in development status.
• All components are active and are at the same promotion level.
• Any online forms in the package have been approved.

In addition, ChangeMan ZMF normally requires that a package pass the audit process before
a freeze request can execute successfully.

The Serena XML service/scope/message tags for a package freeze message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”FREEZE”>

These tags appear in both requests and replies.

PACKAGE SERVICE FREEZE Requests

Serena XML allows you to freeze a package with or without prior validation of the staging
library. Unless you are completely certain that all components in the package are ready to be
frozen, you should validate the staging library as part of your package freeze request.

 Tip

To validate the staging library as part of a package freeze request, enter “1” in the
<validationParm> tag.

The example below shows how you might code a package freeze request in Serena XML.
Data structure details for the package freeze <request> tag follow in Exhibit 3-6.

Example XML — PACKAGE SERVICE FREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="FREEZE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
65

66

Chapter 3: Package Management
 <request>
 <package>ACTP000012</package>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

userVariable01 Optional 0 - 8 String (8),
variable

User variable 01

userVariable02 Optional 0 - 8 String (8),
variable

User variable 02

userVariable03 Optional 0 - 8 String (8),
variable

User variable 03

userVariable04 Optional 0 - 8 String (8),
variable

User variable 04

userVariable05 Optional 0 - 8 String (8),
variable

User variable 05

userVariable06 Optional 0 - 72 String (72),
variable

User variable 06

userVariable07 Optional 0 - 72 String (72),
variable

User variable 07

userVariable08 Optional 0 - 72 String (72),
variable

User variable 08

userVariable09 Optional 0 - 72 String (72),
variable

User variable 09

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE SERVICE FREEZE Replies

No <result> data structure is returned in the reply message for a package freeze request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Occasionally, a package may freeze successfully but the subsequent file tailoring and JCL
build step may not complete. If this occurs, Serena XML provides a way of finishing the file
tailoring step on its own.

 Tip

Use Serena XML to submit a package for JCL build if the package freeze step is
successful, but the subsequent file tailoring and JCL build step does not complete.
(See Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT.)

Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT

The package service submit request submits a previously frozen package for stage file
tailoring — that is, it builds (or rebuilds) the “.X node” staging library containing file-tailored
JCL installation and backout code. It performs this task at the package level rather than the
component level.

The Serena XML service/scope/message tags for a package submit message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”SUBMIT”>

These tags appear in both requests and replies.

userVariable10 Optional 0 - 72 String (72),
variable

User variable 10

<validationParm> Optional 0 -1 Integer (1) 1 = Validate package readiness
 prior to freeze operation

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
67

68

Chapter 3: Package Management
When successful, this service submits a JOB with output similar to the following:

 SDSF OUTPUT DISPLAY CMN8ADSP S0786765 DSID 4 LINE 71 CO
 COMMAND INPUT ===> SCR
 IEF285I ZMFA.CMN8ADSP.S0786765.D0000106.? SYSOUT
 IEF285I ZMFA.CMN8ADSP.S0786765.D0000107.? SYSOUT
 IEF373I STEP/ /START 2009065.0630
 IEF374I STEP/ /STOP 2009065.0630 CPU 0MIN 00.47SEC SRB
 IEF375I JOB/CMN8ADSP/START 2009065.0630
 IEF376I JOB/CMN8ADSP/STOP 2009065.0630 CPU 0MIN 00.47SEC SRB
 PROG=CMNASPFT,PARMS=PGMCMNVPIJB
 0032ACTP0000138USER35 Y
 READY
 END
 ChangeMan(R) CMNVPIJB - 6.1.0 File Tailoring

 Function : Package install JCL build
 Subsystem: 8
 Userid : USER24
 Package : ACTP000013
 Schedule : Y
 Date/Time: 2009/03/06 06:30:10

 CMN8700I - ACTP000013 Installation JCL Build service completed

PACKAGE SERVICE SUBMIT Request

The following example shows how you might code a package service submit request using
Serena XML. Data structure details for the packageservice submit <request> tags appear
in Exhibit 3-7.

Example XML — PACKAGE SERVICE SUBMIT Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="SUBMIT">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000013</package>
 <cmnSubSystemId>8</cmnSubSystemId>
 <requestor>USER24</requestor>
 <addSchedulerOption>Y</addSchedulerOption>
 </request>
 </message>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 </scope>
</service>

PACKAGE SERVICE SUBMIT Replies

No <result> data structure is returned in the reply message to a package submit request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Exhibit 3-7. PACKAGE SERVICE SUBMIT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<addSchedulerOption> Optional 0 - 1 String (1) Code to add installation scheduler
record for automated scheduling
system. Values:

Y = Yes, add scheduler record
N = No, don’t add record
C = Conditional, add scheduler
 record only if build succeeds.

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<cmnSubSystemId> Optional 1 String (1) ZMF subsystem ID where package
resides (for batch execution).

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<requestor> Optional 1 String (8),
variable

Must be valid TSO user ID on
mainframe LPAR where ZMF
subsystem resides.
69

70

Chapter 3: Package Management
Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE

The promotion check function determines whether a promote request is valid without
performing the actual promotion. It ensures that the components to be promoted are active,
the requested promotion library is a valid one for the requestor, and the package complies
with administrator-defined promotion business rules.

The Serena XML service/scope/message tags for a promotion check message are:

<service name=”PACKAGE”>
<scope name=”CHECK”>
<message name=”PROMOTE”>

These tags appear in both requests and replies.

PACKAGE CHECK PROMOTE Requests

The syntax of a promotion check message is similar to that of the PACKAGE SERVICE
PROMOTE request, with the following exceptions:

• the name attribute in the <scope> tag has a value of “CHECK”

• the <applName>, <packageId>, <scheduledate>, and <scheduletime> tags are
not used

A code example appears in this chapter under Promote a Package - PACKAGE SERVICE
PROMOTE. Data structure details for the promotion check <request> tag are discussed in
Exhibit 3-8.

PACKAGE CHECK PROMOTE Replies

No <result> data structure is returned in the reply message to a promotion check request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Promote a Package - PACKAGE SERVICE PROMOTE

Package promotion applies the changes in a package to libraries used for testing and other
purposes. All components to be promoted must be active, and business rules for promotion
level transitions, promotion to remote sites, and package freeze must also be met.

The Serena XML service/scope/message tags for a package promotion message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”PROMOTE”>

These tags appear in both requests and replies.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The package promote function validates the promotion readiness of a package prior to
executing the promote. It necessarily file-tailors the package for application to the target
promotion library, as well — a step that can take some time.

 Tip

To check the promotion readiness of a package in Serena XML without file
tailoring for promotion or actually executing the promote, use package/check/
promote. (See Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE.)

PACKAGE SERVICE PROMOTE Request

Serena XML supports all three types of promotion: full promote, selective promote, and “first”
promote. No special XML attribute or tag is required to choose a promotion type.
ChangeMan ZMF determines the appropriate promotion type based on whether or not you
supply an explicit component name (which indicates a selective promote), and on the
business rules defined for promotion by your administrator (which may or may not allow a
“first” promote).

The example below shows how you might code a selective promotion request in Serena
XML. Data structure details for the packageservice promote <request> tag appear in
Exhibit 3-8.

Example XML — PACKAGE SERVICE PROMOTE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="PROMOTE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000012</package>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>C001AUT</promotionName>
 <jobCards01>//XMLX130 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</jobCards01>
 <jobCards02>// TIME=(,10),NOTIFY=USER24</jobCards02>
 </request>
 </message>
 </scope>
</service>
71

72

Chapter 3: Package Management

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<component> Optional 0 - 800 Complex See <component> subtag,
Exhibit 3-9.

NOTE: Required for selective
promote. If used, <listCount>
tag is also required.

<jobCards01> Required 1 String (72),
fixed length

First of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards02> Optional 0 - 1 String (72),
fixed length

Second of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards03> Optional 0 - 1 String (72),
fixed length

Third of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards04> Optional 0 - 1 String (72),
fixed length

Fourth of up to 4 JCL statements
needed to execute the promote in
batch mode.

<listCount> Optional 0 - 1 Integer (3),
variable

Number of components to
selectively promote. Must match
number of <component> tags.

Value range: 1 - 800

NOTE: Required for selective
promote. If used, <component>
tag is also required.

<overlayTargetComponents> Optional 0 - 1 String (1) Option to automatically overlay
package components already in
target library. Values:

Y = Yes, overlay components
N = No, don’t overlay

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

<component> Subtag

In a selective or a “first” package promotion request, you explicitly name each component to
promote. The <component> subtag serves this purpose. It delimits a complex data structure
containing the name and library type of each component to be promoted, and is repeatable
as many times as needed to accommodate the components selected for promotion.

This <component> tag does not stand alone. When used, it requires a <listCount> tag to
precede the first instance of the <component> tag in the message. The <listCount> tag

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<promotionLevel> Required 1 Integer (2),
variable

Sequence number of target
promotion library in promotion
hierarchy.

<promotionName> Required 1 String (8),
variable

Promotion/demotion nickname.

<promotionSiteName> Required 1 String (8),
variable

Name of site where target
promotion library resides.

<scheduledate> Optional 0 -1 String (8) A date with no time (yyyyMMdd)

<scheduletime> Optional 0 -1 String (4) A time (HHmm)

<suppressNotify> Optional 0 -1 String (1) Y = Yes, suppress notify
N = No, don’t suppress

<userVariable01>
 .

 .

 .

<userVariable05>

Optional 0 - 1
each

String (8),
variable

Up to five user-defined variables of
8 bytes each, used to pass
parameters to JCL interpreter.

<userVariable06>
 .

 .

 .

<userVariable10>

Optional 0 - 1
each

String (72),
variable

Up to five user-defined variables of
72 bytes each, used to pass
parameters to JCL interpreter.

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
73

74

Chapter 3: Package Management
contains a count of components to be promoted. That number must match the actual number
of <component> tags that immediately follow.

Data structure details for the complex <component> subtag appear in Exhibit 3-9.

Package Service Promote Reply

No <result> data structure is returned in package promotion reply message. However, the
standard <response> data structure is returned to indicate the success or failure of the
promotion request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Lock Promotion Site for Package - PACKAGE PROMOTE LOCK

The Package Promote Lock service locks the promotion site for a requested package.

The Serena XML service/scope/message tags for a promotion site lock message are:

<service name=”PACKAGE”>
<scope name=”PROMOTE”>
<message name=”LOCK”>

These tags appear in both requests and replies.

PACKAGE PROMOTE LOCK Request

The example below shows how you might code a Package Promote Lock request in Serena
XML. Data structure details for the <request> tag appear in Exhibit 3-10.

Example XML — PACKAGE PROMOTE LOCK Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PROMOTE">
 <message name="LOCK">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>

Exhibit 3-9. <component> Subtag Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<componentName> Required 1 String (256),
variable

• If PDS member, the member name (max
8 bytes, no qualifiers).

• If HFS file, the Unix-style long file name,
optionally prefixed by path from installation
root.

<componentType> Required 1 String (3),
fixed

Library type of component in
<componentName>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 <package>ACTP000012</package>
 <promotionSiteName>SERT8</promotionSiteName>
 </request>
 </message>
 </scope>
</service>

Package Promote Lock Reply

No <result> data structure is returned in a Package Promote Lock reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Demote a Package - PACKAGE SERVICE DEMOTE

The standard package demotion function resets the desired components previously
promoted to a specific promotion site and level to promotion level 00 in the staging library. In
a full demote, it also resets the package master to development status. Copies of previously
promoted components are deleted.

Exhibit 3-10. PACKAGE PROMOTE LOCK <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<promotionSiteName> Required 1 String (8),
variable

Name of site where target
promotion library resides.
75

76

Chapter 3: Package Management
The Serena XML service/scope/message tags for a message to demote a package:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”DEMOTE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DEMOTE Request

Serena XML supports both full demotion and selective demotion. No special XML attribute or
tag is required to choose a demotion type. ChangeMan ZMF determines the appropriate
demotion type based on whether or not you supply an explicit component name (which
indicates a selective demote).

Except for the name attribute in the <scope> tag, the syntax of a request to demote a
package is identical to that of a promotion request. A code example appears in this chapter
under Promote a Package - PACKAGE SERVICE PROMOTE. Data structure details for the
promotion check <request> tag are discussed in Exhibit 3-8, also in Promote a Package -
PACKAGE SERVICE PROMOTE.

PACKAGE SERVICE DEMOTE Reply

Serena XML reply messages for a package demotion request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE

The package cleanup demote function performs a full package demotion for all package
components previously promoted to any promotion level at a named site. The promotion
libraries that were last promoted to are cleaned up. It then resets the package master to
development status.

The Serena XML service/scope/message tags for a message to demote a package with
cleanup are:

<service name=”PACKAGE”>
<scope name=”CLEANUP”>
<message name=”DEMOTE”>

These tags appear in both requests and replies.

PACKAGE CLEANUP DEMOTE Requests

The example below shows how you might code a request for demotion with cleanup in
Serena XML. Data structure details for the <request> tag appear in Exhibit 3-11.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Example XML — PACKAGE CLEANUP DEMOTE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="CLEANUP">
 <message name="DEMOTE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000004</package>
 <promotionSiteName>SERT8</promotionSiteName>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<promotionSiteName> Required 1 String (8),
variable

Name of site where promotion
library resides.

<suppressNotify> Optional 0 - 1 String (1), Suppress batch messages,Y or N.

<userVariable01>
 .

 .

 .

<userVariable05>

Optional 0 - 1
each

String (8),
variable

Up to five user-defined variables of
8 bytes each, used to pass
parameters to JCL interpreter.
77

78

Chapter 3: Package Management
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE CLEANUP DEMOTE Replies

Serena XML reply messages for a package demotion with cleanup do not return a <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE CLEANUP DEMOTE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="CLEANUP">
 <message name="DEMOTE">
 <response>
 <statusMessage>CMN3261I - request submitted for demotion from
SERT8,C001AUT.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>3261</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

A successful PACKAGE CLEANUP DEMOTE request will generate a JOB with output similar
to the following:

 -STEPNAME PROCSTEP RC EXCP CONN TCB SRB
 -DEL1CPY 00 37 18 .00 .00
 -SUCCESS 00 572 303 .00 .00
 -CHKCOND 00 15 6 .00 .00
 -FAILURE FLUSH 0 0 .00 .00

<userVariable06>
 .

 .

 .

<userVariable10>

Optional 0 - 1
each

String (72),
variable

Up to five user-defined variables of
72 bytes each, used to pass
parameters to JCL interpreter.

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 -PRINT 00 64 24 .00 .00
 -CLNLCL 00 30 64 .00 .00
 -SERT8 ENDED. NAME-ACTP TOTAL TCB
 $HASP395 SERT8 ENDED

 DELETE ACPCPY00
 ACPCPY00 WAS DELETED FROM TARGET DATA SET

 * DDNAME: SUCCESS.SYSPRINT

 ChangeMan(R) CMNBATCH - 6.1.0 2009/02/17 11:55:22
 ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK
 SESSION ESTABLISHED WITH CHANGE MAN SUBTASK
 SYSIN: TES5000004 85 FUN=DEMOTE,NOD=SERT8
 SYSIN: TES5000004 85 LVL=10,LNM=C001AUT,CID=USER24
 SYSIN: TES5000004 85 SUP=YES,SSI=5C6A9D1F
 SYSIN: TES5000004 85 TYP=CPY
 SYSIN: TES5000004 85 CMP=ACPCPY00
 Component History has been updated.
 Component Promotion History has been updated
 Demotion logged TES5000004
 SYSIN: TES5000004 85 FUN=END
 Package Promotion history has been updated
 Package TES5000004 DEMOTE
 Package General record has been updated.
 END OF DATA ON SYSIN - TERMINATING
 SESSION TERMINATED WITH CHANGE MAN STARTED TASK

 <SIZE: RECS=25 BYTES=967>

 Approve a Package - PACKAGE SERVICE APPROVE

The package approval function logs package approval actions such “approve” and “reject”
and issues appropriate notifications. Approval entities may also override their previously
defined notification addresses (e.g., to substitute a TCP/IP email address for a TSO “Send”
message). Authorized approvers must be defined by approver list maintenance before they
can approve a package.

 Note

Approver list maintenance is a function of the approver maintenance service,
not the package management service. This task is normally performed via ISPF.
79

80

Chapter 3: Package Management
The Serena XML service/scope/message tags for a package approval message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”APPROVE”>

These tags appear in both requests and replies.

PACKAGE SERVICE APPROVE Requests

The following example shows how you might code a package approval request using Serena
XML. Data structure details for the package approval <request> tag appear in Exhibit 3-12.

Example XML — PACKAGE SERVICE APPROVE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="APPROVE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <approverAction>1</approverAction>
 <package>ACTP000009</package>
 <approverEntity>ACTPLEAD</approverEntity>
 <reasons>PACKAGE SERVICE APPROVE TEST</reasons>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SERVICE APPROVE Replies

Serena XML reply messages to a package approval request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the approval action. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

<approverAction> Required 1 Integer (1),
fixed

1 = Approve package
2 = Checkoff
3 = Approval decision pending
4 = Reject package
5 = Under review
6 = Final approval for linked
 packages

NOTE: If value is 2 or 4,
<reasons> tag required.

<approverEntity> Required 1 String (8),
variable

Security system entity ID of
authorized application approver.

<notifierAgentIpAddress> Optional 0 - 1 String (32),
variable

Network IP address for E-mail
notifications. Overrides user record.

NOTE: If used, also requires
<notifierAgentPortid> tag.

<notifierAgentPortid> Optional 0 - 1 Integer (5),
variable

Network port ID of E-mail server for
notifications. Overrides user record.

NOTE: Required with tag
<notifierAgentIpAddress>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<reasons> Optional 0 - 14 String (72),
variable

Reject (or checkoff) reasons. May
be repeated for multiple comments.

NOTE: If <approverAction>
value = 2 or 4, this tag is required.

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
81

82

Chapter 3: Package Management
List Package Installation Schedule - SCHEDULE SERVICE LIST

This function lists installation scheduler records defined for a named package. Information
returned includes planned installation dates, install job status if held or released, install job
participation in a multi-package release, temporary change duration, and package backout
status. If no installation information has been defined, no results are returned.

The Serena XML service/scope/message tags and attributes for messages that list
installation schedule information for a package are:

<service name=”SCHEDULE”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

SCHEDULE SERVICE LIST — Requests

Request messages for this function require only a package name. A date range may also be
supplied.

Example XML — SCHEDULE SERVICE LIST Request

<?xml version="1.0"?>
<service name="SCHEDULE">
 <scope name="SERVICE">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000009</package>
 </request>
 </message>
 </scope>
</service>

 Data structure details for the <request> tag appear in Exhibit 3-13.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

SCHEDULE SERVICE LIST — Replies

The Serena XML reply message for this function returns one <result> tag, which contains
installation scheduler information for a named package. It is followed by the standard
<response> data element, which indicates the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

Exhibit 3-13. SCHEDULE SERVICE LIST<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: OK to omit trailing blanks.

<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned install date for package, or start
date of range.

<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held

<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted

<isReasonsInserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID. Same as last 6 bytes
of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: Leading zeroes required.

<releaseInstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install

<toInstallDate> Optional 0 - 1 Date,
yyyymmdd

End date of planned installed date
range.

<type> Optional 0 - 1 1 Type of job scheduled, I = Install, P =
Promote
83

84

Chapter 3: Package Management
Example XML — SCHEDULE SERVICE LIST Reply

<?xml version="1.0"?>
<service name="SCHEDULE">
 <scope name="SERVICE">
 <message name="LIST">
 <result>
 <package>ACTP000009</package>
 <applName>ACTP</applName>
 <packageId>000009</packageId>
 <type>I</type>
 <installDate>20091231</installDate>
 <installTime>0100</installTime>
 <installJobSubmitted>Y</installJobSubmitted>
 <installJobHeld>Y</installJobHeld>
 <isReasonsInserted>Y</isReasonsInserted>
 <backoutJobSubmitted>Y</backoutJobSubmitted>
 <releaseInstallation>Y</releaseInstallation>
 <tempChangeDuration>000</tempChangeDuration>
 <updateToken>5C7529CB</updateToken>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
 </service>

Data structure details for the <result> tag appear in Exhibit 3-14.

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned installation date, or first date in
range of install dates.

<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held

<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted

<installTime> Optional 0 - 1 Time,
hhmmss

Planned install time in 24-hour format.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Hold Package Install Job - SCHEDULE SERVICE HOLD

This function holds a package installation job in the scheduling queue until it is explicitly
released. The Serena XML service/scope/message tags and attributes for messages to hold
a package install job are:

<service name=”SCHEDULE”>
<scope name=”SERVICE”>
<message name=”HOLD”>

These tags appear in both requests and replies.

SCHEDULE SERVICE HOLD — Requests

The request message for this function requires a package name. No filtering options are
supported. Data structure details for the <request> tag appear in Exhibit 3-15.

<isReasonsInserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent

<package> Optional 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID. Same as last 6 bytes
of <package>.

<reasonCode> Optional 0 - 1 String (3),
variable

Reject reason code if package rejected
or backed out.

<releaseInstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install

<tempChangeDuration> Optional 0 - 1 String (3),
variable

Life of temporary change package
before automatic backout.

<type> Optional 0 - 1 1 Type of job scheduled, I = Install, P =
Promote

<updateToken> Optional 0 - 1 String (8),
variable

Binary hash token for updated
package.

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
85

86

Chapter 3: Package Management

SCHEDULE SERVICE HOLD — Replies

No <result> tag is returned in the Serena XML reply message for a package install job hold
request. However, the reply message does return a standard <response> data element to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Release Package Install Job - SCHEDULE SERVICE RELEASE

This function releases a previously held package installation job in the scheduling queue. The
Serena XML service/scope/message tags and attributes for messages to release a package
install job are:

<service name=”SCHEDULE”>
<scope name=”SERVICE”>
<message name=”RELEASE”>

These tags appear in both requests and replies.

SCHEDULE SERVICE RELEASE — Requests

The request message syntax to release a package install job is different from that to hold an
install job only in the name attribute of the <message> tag, as shown above. Data structure

Exhibit 3-15. SCHEDULE SERVICE HOLD <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: OK to omit trailing blanks.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID. Same as last 6 bytes
of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: Leading zeroes required.

<type> Optional 0 - 1 1 Type of job scheduled, I = Install, P =
Promote

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
details for the <request> tag are identical in both messages. They appeared previously in
Exhibit 3-15.

SCHEDULE SERVICE RELEASE — Replies

No <result> tags are returned in the Serena XML reply message for a package install job
release request. However, the reply message does return a standard <response> data
element to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Back Out a Package - PACKAGE SERVICE BACKOUT

The package service backout function reverses a package baseline ripple. Serena XML does
not back out changes to production libraries.

 Note

If a package resides in remote production libraries as well as the baseline
library, you must back out each installed instance of the package from the
production libraries via the ISPF interface before you issue a Serena XML
backout request.

The Serena XML service/scope/message tags for a package backout message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”BACKOUT”>

These tags appear in both requests and replies.

PACKAGE SERVICE BACKOUT Requests

Serena XML allows you to back out a package with or without validating the integrity of your
baseline libraries afterward. This flexibility saves time when backing out minor or temporary
changes. However, unless you are completely certain that the changes to be backed out are
minor, you should validate baseline integrity as part of the backout process.

An example of how you might code a Serena XML request to back out a package from
baseline appears below. Data structure details for the package backout <request> tag
appear in Exhibit 3-16.

Example XML — PACKAGE SERVICE BACKOUT Request

<?xml version=”1.0” encoding=”UTF-8”?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="BACKOUT">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
87

88

Chapter 3: Package Management
 </header>
 <request>
 <package>ACTP000012</package>
 <siteName>SERT8</siteName>
 <backoutReason01>TEST XML PACKAGE SERVICE BACKOUT</backoutReason01>
 <jobCards01>//XMLX127 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</jobCards01>
 <jobCards02>// TIME=(,10),NOTIFY=USER24</jobCards02>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

backoutReason01 Optional 0 - 1 String (72),
variable

Backout reasons line - 1

backoutReason02 Optional 0 - 1 String (72),
variable

Backout reasons line - 2

backoutReason03 Optional 0 - 1 String (72),
variable

Backout reasons line - 3

backoutReason04 Optional 0 - 1 String (72),
variable

Backout reasons line - 4

backoutReason05 Optional 0 - 1 String (72),
variable

Backout reasons line - 5

backoutReason06 Optional 0 - 1 String (72),
variable

Backout reasons line - 6

backoutReason07 Optional 0 - 1 String (72),
variable

Backout reasons line - 7

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SERVICE BACKOUT Replies

The Serena XML reply messages to a package backout request do not return a <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the revert request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

backoutReason08 Optional 0 - 1 String (72),
variable

Backout reasons line - 8

backoutReason09 Optional 0 - 1 String (72),
variable

Backout reasons line - 9

<jobCards01> Optional 0 - 1 String (72),
fixed length

First of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards02> Optional 0 - 1 String (72),
fixed length

Second of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards03> Optional 0 - 1 String (72),
fixed length

Third of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards04> Optional 0 - 1 String (72),
fixed length

Fourth of up to 4 JCL statements
needed to execute the promote in
batch mode.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<siteName> Optional 1 String (8),
variable

Name of site where target demotion
library resides.

<validateBackout> Optional 0 - 1 String (1) Y = Yes, validatebackout only.
N = No, perform backout.

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
89

90

Chapter 3: Package Management
Successful requests will send messages like the following to the user who initiated the
backout:

CMN406I - ACTP000012 BACKED OUT 2009/02/18 @ 08:36:08 AT SERT8, CN(INTERNAL)
CMN410I - ACTP000012 BASELINE REVERSE RIPPLED 2009/02/18 @ 08:36:08.
CN(INTERNAL)

Successful requests will submit a BACKOUT JOB with output similar to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB
-CMN00 00 554 301 .00
-RESTCPY 00 133 245 .00
-DSPTM 00 611 323 .00
-RRIPPIA FLUSH 0 0 .00
-CMN00 00 552 299 .00
-CMN99 00 14 5 .00
-FAILURE FLUSH 0 0 .00
-PRINT 00 33 16 .00
-ACTP5512 ENDED. NAME-ACTP T
$HASP395 ACTP5512 ENDED
 //* IMS OPTION: JOB TO PERFORM REVERSE RIPPLE OF PACKAGE ACTP000012
 ChangeMan(R) CMNBATCH - 6.1.0 2009/02/18 08:36:08
 ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK
 SESSION ESTABLISHED WITH CHANGE MAN SUBTASK
 SYSIN: ACTP000012 55 NOD=SERT8
 PACKAGE BACKED OUT AT DEV. ACTP000012
 BACKOUT AT DEV LOGGED. ACTP000012
 BASELINE REVERSE RIPPLE LOGGED ACTP000012
 END OF DATA ON SYSIN - TERMINATING
 SESSION TERMINATED WITH CHANGE MAN STARTED TASK

Revert a Package - PACKAGE SERVICE REVERT

The package revert function reverts a package to development status after it has been
backed out from baseline.

The Serena XML service/scope/message names for a package revert message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”REVERT”>

These tags appear in both requests and replies.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SERVICE REVERT Requests

You have the option to revert a package with or without concurrent validation of the staging
library. However, validation is recommended.

 Tip

To validate the staging library as part of your package revert request, enter “2” in
the <validationParm> tag.

The following example shows how you might code a package revert request using Serena
XML. Data structure details for the package revert <request> tag appear in Exhibit 3-17.

Example XML —PACKAGE SERVICE REVERT Request

<?xml version=”1.0”
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="REVERT">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000012</package>
 <siteName>SERT8</siteName>
 <revertReason01>TEST XML PACKAGE SERVICE REVERT</revertReason01>
 <jobCards01>//XMLX134 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</
jobCards01>
 <jobCards02>// TIME=(,10),NOTIFY=USER24</jobCards02>
 </request>
 </message>
 </scope>
</service>
91

92

Chapter 3: Package Management

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<jobCards01> Optional 0 - 1 String (72),
fixed length

First of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards02> Optional 0 - 1 String (72),
fixed length

Second of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards03> Optional 0 - 1 String (72),
fixed length

Third of up to 4 JCL statements
needed to execute the promote in
batch mode.

<jobCards04> Optional 0 - 1 String (72),
fixed length

Fourth of up to 4 JCL statements
needed to execute the promote in
batch mode.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<revertReason01> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason02> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason03> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason04> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason05> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason06> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason07> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SERVICE REVERT Replies

Serena XML replies to a package revert request do not return a <result> data structure.
They do, however, return a standard <response> data structure to indicate the success or
failure of the revert request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

PACKAGE-LEVEL COMPONENT CHANGE MANAGEMENT

Package-level component change tasks apply to one or more components within a particular
change package. For example, you can work with the source and load components in a
package, the non-source components (such as copybooks) in a package, or scratch/rename
records in a package. Typical operations on components at the package level are list,
unfreeze and refreeze.

Package-level component change management tasks include:

<revertReason08> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<revertReason09> Optional 1 String (72),
variable

Free format text of reason for
reverting package to development.

<siteName> Required 1 String (8),
variable

Name of site where target revert
library resides.

<validationParm> Optional 0 - 1 Integer (1) 2 = Determine whether package is
eligible for revert. Revert is not
actually performed.

• Component Change Description List-
CMPONENT CHG_DESC LIST

• Unfreeze Non-Source Components - PACK-
AGE NON_SRC UNFREEZE

• List Staged Components - CMPONENT
PKG_COMP LIST

• Refreeze Non-Source Components - PACK-
AGE NON_SRC REFREEZE

• Component Description List- PACKAGE
CMP_DESC LIST

• List Scratch and Rename Utility Records -
CMPONENT PKG_UTIL LIST

• List Components With Promotion Overlays
- PACKAGE PRM_OVLY LIST

• Unfreeze Scratch/Rename Records - PACK-
AGE SCR_REN UNFREEZE

• Unfreeze Source/Load Components -
PACKAGE SRC_LOD UNFREEZE

• Refreeze Scratch/Rename Records - PACK-
AGE SCR_REN REFREEZE

• Refreeze Source/Load Components -
PACKAGE SRC_LOD REFREEZE

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
93

94

Chapter 3: Package Management
Component Change Description List- CMPONENT CHG_DESC LIST

List all or any components in a package, together with their package-specific change
descriptions, using the Serena XML component change description list function. All
component types are included in the scope of this function, including source code members,
load members, copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component change description list at
the package level are:

<service name=”CMPONENT”>
<scope name=”CHG_DESC”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT CHG_DESC LIST — Request

Three common uses for component change description lists in Serena XML are:

• List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags, or omit these tags altogether. All components in the package
will be returned, together with their package-level change descriptions.

• List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“match-all” (asterisk) wildcard character in the <component> tag or omit it altogether. All
package components of the desired library type will be returned, together with their
change descriptions, if a change description exists.

• Get Package-Level Change Description for Named Component — Name the desired
package in the <package> tag and the desired component name in the <component>
tag. Enter the library type of the component in the <componentType> tag if known;
otherwise, enter a “match-all” (asterisk) wildcard character. The desired component and
its change description are returned if the component exists in the package.

The following example shows how you might code a request to list all components for
package ACTP000001 and any existing change descriptions using Serena XML. Data
structure details follow the example in Exhibit 3-18.

Example XML — CMPONENT CHG_DESC LIST Request

<?xml version=”1.0”?>
<service name="CMPONENT">
 <scope name="CHG_DESC">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 <package>ACTP000007</package>
 </request>
 </message>
 </scope>
</service>

CMPONENT CHG_DESC LIST — Reply

The XML reply to a component change description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and change
description of a component in the named package if a change description exists.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

Exhibit 3-18. CMPONENT CHG_DESC LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<component> Optional 0 - 1 String (256),
variable

ZMF name of desired component.

• If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

• If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.

<componentType> Optional 0 - 1 String (3),
variable

Library type for component.

Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
95

96

Chapter 3: Package Management
An example XML reply to a component change description list request appears on the next
page. Data structure details for the <result> tag follow the example in Exhibit 3-19.

Example XML — CMPONENT CHG_DESC LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="CHG_DESC">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1A</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1B</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1C</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1X</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
.
.
.
.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

List Staged Components - CMPONENT PKG_COMP LIST

List staged components for a package using the Serena XML function to list staged “source-
and-load” (ISAL and ICPY) components. These include “like-source”, “like-load”, “like-
copybook”, and “like-PDS” components staged from baseline or staged from development.

The Serena XML service/scope/message names for a staged component list at the package
level are:

<service name=”CMPONENT”>
<scope name=”PKG_COMP”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 3-19. CMPONENT CHG_DESC LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<changeDesc> Optional 0 - 1 String (35),
variable

Description of changes in progress
with component in this package.

<component> Optional 0 - 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<componentType> Optional 0 - 1 String (3),
variable

Library type for component.

<package> Optional 0 - 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.
97

98

Chapter 3: Package Management
CMPONENT PKG_COMP LIST — Request

The primary uses for a request to list staged components are:

• List All Staged Components in a Package — Name the desired package in the
<package> tag. Submit a blank in <recordType> or omit this tag altogether.
Component name, library type, and status are returned for each staged component in the
named package.

• List Staged Source and Load Components — Name the desired package in the
<package> tag. Enter an “A” in the <recordType> tag to request staged source-and-
load (ISAL) records. For each staged “like-source” and “like-load” component in the
package, this function returns the component name, library type, and status. If a staged
like-source component has been compiled while staged, its record will also include a
pointer to the primary “like-load” component generated by the compile. “Like-copybook”
and “like-PDS” components are not listed.

• List Other Staged Components — Name the desired package in the <package> tag.
Enter a “6” in the <recordType> tag to request staged copy-and-include (ICPY) records.
The function lists component name, library type, and status information for all staged
“like-copybook” and “like-PDS” components in the named package, including copybooks,
skeletons, JCL procedures, and ISPF panels. Like-source and like-load components are
not listed.

• Verify That a Particular Component Was Staged — Supply the desired component
name in <component>, the component library type in <componentType>, and the
package name in <package>. Submit a blank in <recordType> or omit this tag
altogether. If the component was staged to the package named, a <result> data
structure will return information about the desired component. If the component was not
staged to that package, no results will be returned.

To further customize your query for a staged component list request, specify a library type,
modification date range, updater ID, or component status of interest. Choose component
status options using appropriate yes/no flag tags.

 Note

Yes/no flags for component status filtering take default values as a group.
The default changes based on whether or not you enter explicit values in these
tags, as follows:
• If no status flag has an explicitly typed value, the default for all tags is “Y”.
• If any status flag has an explicitly typed value, the default for the remaining

tags is “N”.

Build-Option Reply Tags

The following build-option reply tags are not automatically retrieved:

<compileOptions>
<linkOptions>
<useDb2PreCompileOption>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<userOption01> thru <userOption20>
<userOption0101> thru <userOption0105>
<userOption0201> thru <userOption0203>
<userOption0301> thru <userOption0303>
<userOption0401> thru <userOption0403>
<userOption0801> thru <userOption0805>
<userOption1001> thru <userOption1002>
<userOption1601> thru <userOption1602>
<userOption3401> thru <userOption3402>
<userOption4401> thru <userOption4402>
<userOption6401> thru <userOption6405>
<userOption7201> thru <userOption7205>

Displaying these tags causes an increase in run time because the data must be retrieved
from the component history records. Therefore, these tags are not retrieved unless you
request them using the following tag:

<longFormat>Y</longFormat>

The default is “N” (do not retrieve the build-option tags).

The following example shows how you might code a request to list all source and load
components staged to a package. Data structure details for the <request> tag appear in
Exhibit 3-20.

Example XML — CMPONENT PKG_COMP LIST

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_COMP">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>CISQ000030</package>
 </request>
 </message>
 </scope>
</service>
99

100

Chapter 3: Package Management

Exhibit 3-20. CMPONENT PKG_COMP LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component> Optional 1 String (256),
variable

ZMF name of staged component.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

Asterisk (*) wildcard is allowed.

<componentType> Optional 0 -1 String (3),
variable

Library type of staged component.

NOTE: Takes asterisk (*) wildcard.

<filterActiveStatus> Optional 0 - 1 String (1) Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterCheckedOutStatus> Optional 0 - 1 String (1) Y = Include checked-out components
N = Omit checked-out components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterFrozenStatus> Optional 0 - 1 String (1) Y = Include frozen components
N = Omit frozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<filterHfsDirectory> Optional 0 - 1 String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterInactiveStatus> Optional 0 - 1 String (1) Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterIncompleteStatus> Optional 0 - 1 String (1) Y = Include incomplete components
N = Omit incomplete components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus> Optional 0 - 1 String (1) Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDateLastModified> Optional 0 -1 Date,
yyyymmdd

Start date in desired range of staged
component modification dates.

<lockId> Optional 0-1 String (7) UserID component locked by (if
locked)

<longFormat> Optional 0 - 1 String (1) Tag for requesting the build-option tags
from component history data. The
default is N.

 Y = Retrieve build-option tags
 N = Do not retrieve build-option tags

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
101

102

Chapter 3: Package Management
CMPONENT PKG_COMP LIST Replies

The Serena XML reply to a staged component list request returns zero to many <result>
data structures. Each <result> element lists one staged component, together with package
name and component status information. If a staged, like-source component has been
compiled after staging, the <result> also names its primary like-load target component.

In addition to any <result> data elements, the reply message returns a standard
<response> data structure to indicate the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.
Because the <response> tag follows the last <result> tag, it also serves as an end-of-list
marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-21.

Example XML — CMPONENT PKG_COMP LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_COMP">
 <message name="LIST">
 <result>

<recordType> Optional 0 - 1 String (1) Type of staged component record to list.
Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types

NOTE: Omit tag or enter explicit blank
to list both record types. Null tag returns
no records.

NOTE: Asterisk (*) wildcard not
accepted in this tag.

<targetComponent> Optional 0 - 1 String (256),
variable

Name of a component, target member
name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<toDateLastModified> Optional 0 -1 Date,
yyyymmdd

End date in desired range of staged
component modification dates.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to update
staged component.

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 <recordType>6</recordType>
 <package>CISQ000030</package>
 <applName>CISQ</applName>
 <packageId>000030</packageId>
 <component>CI2Q101</component>
 <targetComponent>CI2Q101</targetComponent>
 <componentType>LCT</componentType>
 <dateLastModified>20081126</dateLastModified>
 <timeLastModified>094237</timeLastModified>
 <updater>USER24</updater>
 <componentStatus>4</componentStatus>
 <sourceLibOrg>PDS</sourceLibOrg>
 <sourceLib>CMNTP.SERT8.BASE.CISQ.LCT</sourceLib>
 <chkOutLevel>00</chkOutLevel>
 <version>01</version>
 <modLevel>01</modLevel>
 <hashToken>C647B43A0000001B</hashToken>
 <baseDateLastModified>20080407</baseDateLastModified>
 <baseTimeLastModified>095500</baseTimeLastModified>
 <dataType>1</dataType>
 <chkOutToStageLib>N</chkOutToStageLib>
 <chkOutFromBaseLib>N</chkOutFromBaseLib>
 <chkOutToSernet>N</chkOutToSernet>
 <batchChkOut>N</batchChkOut>
 <chkOutComponentDesc>N</chkOutComponentDesc>
 <chkOutFromRelease>N</chkOutFromRelease>
 <lockComponent>Y</lockComponent>
 <checkedOutHashToken>0000000000000000</checkedOutHashToken>
 <lockId>USER015</lockId>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-21. CMPONENT PKG_COMP LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<baseDateLastModified> Optional 0 -1 Date,
yyyymmdd

Date baseline version of staged
component was last modified.
103

104

Chapter 3: Package Management
<baseSetssi> Optional 0 - 1 String (8),
fixed

Baseline component SETSSI date
(seconds since 1/1/1960).

<baseTimeLastModified> Optional 0 -1 Time,
hhmmss

Time baseline version of staged
component was last modified,
24 hr format.

<batchChkOut> Optional 0 - 1 String (1) Y = Batch checkout mode
N = Not batch checkout mode

<buildProc> Optional 0 - 1 String (8),
variable

Name of required build procedure used
with staged component.

NOTE: Applies only to source code
component in ISAL records.

<checkedOutHashToken> Optional 1 String (16),
fixed

Component hash at checkout.

<chkOutComponentDesc> Optional 0 - 1 String (1) Y = Description checked out
N = Description not checked out

<chkOutFromBaselib> Optional 0 - 1 String (1) Y = Checked out from baseline
N = Not checked out from
 baseline library

<chkOutFromRelease> Optional 1 String(1) Y = Checked out from release

N = Not checked out from release

<chkOutLevel> Optional 0 - 1 Integer (2) Checkout level number for staged
component.

<chkOutToSernet> Optional 0 - 1 String (1) Y = Checked out to SERNET
N = Not checked out to SERNET

<chkOutToStageLib> Optional 0 - 1 String (1) Y = Checked out to staging lib
N = Not checked out to staging

<compileOptions> Optional 0 - 1 String (34) Compile options for component not
stored elsewhere.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<component> Optional 1 String (256),
variable

ZMF name of staged component.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<componentStatus> Optional 0 -1 String (1) Code for staged component status.
Values:

0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen

<componentType> Optional 0 - 1 String (3),
fixed

Library type of staged component.

<dataType> Optional 0 -1 String (1) File type of staged component for data
transfers. Values:

1 = Text
2 = Binary

<dateLastModified> Optional 0 -1 Date,
yyyymmdd

Date staged component was last
modified.

<encryption> Optional 0 -1 String (8) Staged component encryption key.

<hashtoken> Optional 0 - 1 String (16),
fixed

Hash token or “fingerprint” of staged
component.

<language> Optional 0 - 1 String (8),
variable

Language name of component.

<linkOptions> Optional 0 - 1 String (34) Link options for component not stored
elsewhere.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<lockComponent> Optional 0 - 1 String (1) Y = Component locked
N = Component not locked

<lockId> Optional 0-1 String (7) UserID component locked by (if
locked)

<modLevel> Optional 0 -1 String (2),
fixed

ISPF modification level of staged
component.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
105

106

Chapter 3: Package Management
<recordType> Optional 1 String (1) Type of staged component record listed.
Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types

<setssi> Optional 0 - 1 String (8),
fixed

Staged component SETSSI date
(seconds since 1/1/1960).

<sourceLib> Optional 0 -1 String (44),
variable

Data set name of staged component
library if PDS.

<sourceLibOrg> Optional 0 -1 String (3),
fixed

Data organization of staged component
library. Values:

HFS = Hierarchical File System
Lib = Librarian
Pan = Panvalet
PDS = PDS or PDS/E
Seq = Sequential
Oth = Other

<targetComponent> Optional 0 - 1 String (256),
variable

ZMF name of primary like-load
component generated from
<component> while staged.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<targetLoadLibType> Optional 0 - 1 String (3),
fixed

Library type of component named in
<targetComponent> (relink).

<timeLastModified> Optional 0 -1 Time,
hhmmss

Time staged component was last
modified, 24 hr format.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to update
staged component.

<useDb2PreCompileOption> Optional 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile for DB2

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1 String (1) Set of up to 20 one-byte, custom,
administrator-defined variables. Values:

Y = Yes
N = No

NOTE: Displayed only if <longFormat>
request tag = “Y”.

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
107

108

Chapter 3: Package Management
<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<utilType> Optional 0 -1 String (1),
fixed

Utility type - ‘C’ recompile, ‘L’ relink.

<version> Optional 0 -1 String (2),
fixed

ISPF version number of staged
component.

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Component Description List- PACKAGE CMP_DESC LIST

List the component descriptions for specified components and types within a package using
the Serena XML “package component description list” function. All component types are
included in the scope of this function, including source code members, load members,
copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component description list at the
package level are:

<service name=”PACKAGE”>
<scope name=”CMP_DESC”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE CMP_DESC LIST — Request

Three common uses for package component description lists in Serena XML are:

• List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags. All components in the package that have a description will be
returned.

• List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“match-all” (asterisk) wildcard character in the <component> tag. All package
components of the desired library type will be returned, together with their descriptions, if
a description exists.

• Get Description for Named Component — Name the desired package in the
<package> tag and the desired component name in the <component> tag. Enter the
library type of the component in the <componentType> tag if known; otherwise, enter a
“match-all” (asterisk) wildcard character. The desired component and its description are
returned if the component exists in the package and it has a description.

The following example shows how you might code a request to list the description for a
specific component in package ACTP000007. Data structure details follow the example in
Exhibit 3-22.

Example XML — PACKAGE CMP_DESC LIST Request

<?xml version=”1.0”?>
<service name="PACKAGE">
 <scope name="CMP_DESC">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
109

110

Chapter 3: Package Management
 <package>ACTP000007</package>
 <component>ACPSRC1A</component>
 <componentType>SRC</componentType>
 </request>
 </message>
 </scope>
</service>

PACKAGE CMP_DESC LIST — Reply

The XML reply to a package component description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and description of a
component in the named package if a description exists.

Exhibit 3-22. PACKAGE CMP_DESC LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<component> Required 1 String (256),
variable

ZMF name of desired component.

• If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

• If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.

<componentType> Required 1 String (3),
variable

Library type for component.

Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

An example XML reply appears on the next page. Data structure details for the <result>
tag follow the example in Exhibit 3-23.

Example XML — PACKAGE CMP_DESC LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="CMP_DESC">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY00</component>
 <componentDesc>ACCOUNT REC 00</componentDesc>
 <componentType>CPY</componentType>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1A</component>
 <componentDesc>ACCOUNT REC 1A</componentDesc>
 <componentType>CPY</componentType>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1B</component>
 <componentDesc>ACCOUNT REC 1B</componentDesc>
 <componentType>CPY</componentType>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1C</component>
 <componentDesc>ACCOUNT REC 1C</componentDesc>
 <componentType>CPY</componentType>
 </result>
.
.
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
111

112

Chapter 3: Package Management
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

List Components With Promotion Overlays - PACKAGE PRM_OVLY
LIST

If the promotion of a package would potentially cause some components to overwrite others
of the same name — for example, as part of another package already in testing — you can
know in advance using Serena XML. This function includes all component types and all
promotion libraries for the package in its scope.

The Serena XML service/scope/message tags for a message to list package components
with promotion overlays are:

<service name=”PACKAGE”>
<scope name=”PRM_OVLY”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 3-23. PACKAGE CMP_DESC LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<component> Optional 0 - 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<componentDesc> Optional 0 - 48 String (72),
variable

Component description.

<componentType> Optional 0 - 1 String (3),
variable

Library type of component.

<package> Optional 0 - 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE PRM_OVLY LIST — Requests

Serena XML supports two kinds of component overlay lists:

• All Components with Promotion Overlays — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. Omit
the <componentNameAndType> tag. The function returns promotion overlay information
for all staged package components with duplicate component names and library types in
the chosen promotion environment.

• Promotion Overlays for Named Component(s) — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. Itemize
the components to check for promotion overlays using the <componentNameAndType>
data element. A count of the itemized components is required in the <listcount> tag.
The function returns overlay information only if an itemized component is duplicated in
the target promotion environment.

The following example shows how you might code a request to check a particular package
component for overlays in a named promotion library. Data structure details for the
<request> tag appear in Exhibit 3-24.

Example XML — PACKAGE PRM_OVLY LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_OVLY">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000002</package>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>C001AUT</promotionName>
 </request>
 </message>
 </scope>
</service>
113

114

Chapter 3: Package Management

Exhibit 3-24. PACKAGE PRM_OVLY LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as replacement
for <package> tag. Use <package>
instead of <applName> & <packageId>.

<componentNameAndType> Optional 0 -  Complex Complex element identifies component(s)
to check selectively. See Exhibit 3-25.

NOTE: If used, <listCount> required.

NOTE: Omit tag to list all components in
package with promotion overlays.

<listCount> Optional 0 - 1 Integer (3),
variable

Count of <componentNameAndType>
tags included in request.

NOTE: If <componentNameAndType>
used, this tag is required.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<promotionLevel> Required 1 Integer (2),
variable

Numeric code of promotion level to check
for potential component overlays.

<promotionName> Required 1 String (8),
variable

ZMF name of promotion level to check for
potential component overlays.

<promotionSiteName> Required 1 String (8),
variable

ZMF name of promotion site to check for
potential component overlays.

<recallMigratedLib> Optional 0 - 1 String (1) Y = Yes, recall migrated shadow library
N = No, don’t recall shadow library

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Note that <componentNameAndType> is a complex data element with subtags of its own.
Its data structure appears in Exhibit 3-25.

PACKAGE PRM_OVLY LIST — Replies

The Serena XML reply to a component overlay list request returns zero to many <result>
data structures. Each <result> lists one component with potential component overlays in
the named promotion library, together with package and component promotion status.

A package component has potential overlay issues in the target promotion library if:

• A component with the same name and library type already exists in the target.
• A component with the same name and library type exists in the promotion history

records for the target.

If no duplicate components are found in either the target promotion library or its history
records, no results are returned by this function.

In addition to any <result> tags, the reply message returns a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher. Because the
<response> tag follows the last <result> tag, it also serves as an end-of-list marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-26.

Example XML — PACKAGE PRM_OVLY LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_OVLY">
 <message name="LIST">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <isComponentRestaged>N</isComponentRestaged>

Exhibit 3-25. <componentNameAndType> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<componentName> Optional 0 - 1 String (256),
variable

ZMF name of desired component.

• If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

• If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

<componentType> Optional 0 - 1 String (3),
variable

Library type for component in
<componentName>.
115

116

Chapter 3: Package Management
 <overlayStatus>C</overlayStatus>
 <package>TES5000001</package>
 <applName>TES5</applName>
 <packageId>000001</packageId>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>C001AUT</promotionName>
 <packageStatus>6</packageStatus>
 <promoter>USER24</promoter>
 <promotionDate>20090217</promotionDate>
 <promotionTime>105054</promotionTime>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - Overlay service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component> Optional 1 String (256),
variable

ZMF name of staged component.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 0 - 1 String (3),
fixed

Library type of staged component.

<isComponentRestaged> Optional 0 - 1 String (1) Y = Yes, component is restaged
N = No, component not restaged

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<overlayStatus> Optional 0 - 1 String (1) Code for overlay status of this
component in this promotion library.
Values:

N = Exists in promotion library but has
 no history
H = Exists in promotion history but
 not in promotion library
C = Common to both promotion library
 and history

<package> Optional 0 - 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<packageStatus> Optional 1 String (1) Code for status of package in lifecycle.
Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
 completed

<promoter> Optional 0 - 1 String (8),
variable

TSO user ID of latest package promoter.

<promotionDate> Optional 0 - 1 Date,
yyyymmdd

Latest promotion date for package.

<promotionLevel> Optional 0 - 1 Integer (2),
variable

Numeric code of promotion level to check
for potential component overlays.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF name of promotion level to check for
potential component overlays.

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site to check for
potential component overlays.

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
117

118

Chapter 3: Package Management
Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE

You can use Serena XML to unfreeze one or more “like-source” or “like-load” components in
a package. “Like-copybook” or “like-PDS” components such as copybooks, skeletons, JCL
procedures, or ISPF panels are not included in the scope of this function.

The Serena XML service/scope/message tags for a package-level unfreeze message for
source and load components are:

<service name=”PACKAGE”>
<scope name=”SRC_LOD”>
<message name=”UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SRC_LOD UNFREEZE — Requests

Serena XML supports two types of unfreeze requests for source and load components:

• Full Unfreeze — Unfreezes all source and load component in the named package. This
is the default.

• Selective Unfreeze — Unfreezes a subset of individually named source and/or load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <listcount> tag.

The following example shows how you might code a full unfreeze request for all components
in a package. Data structure details for the <request> tag appear in Exhibit 3-27.

Example XML — PACKAGE SRC_LOD UNFREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SRC_LOD">
 <message name="UNFREEZE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000013</package>

<promotionTime> Optional 0 - 1 Time,
hhmmss

Latest promotion time for package, 24-
hour format.

<release> Optional
(ERO only)

0 - 1 String (8),
variable

Name of release to which package is
attached.

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 </request>
 </message>
 </scope>
</service>

Exhibit 3-27. PACKAGE SRC_LOD UNFREEZE <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName>
& <packageId>.

<component> Optional 0 - 800 Complex Complex identifier for each
component to selectively unfreeze or
refreeze. See Exhibit 3-28.

NOTE: If used, <listCount> tag
also required.

<listCount> Optional 0 - 1 Integer (3),
variable

Number of components to selectively
unfreeze or refreeze. Must match
number of <component> tags.

Value range: 1 - 800

NOTE: If <component> tag used,
this tag is required.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName>
& <packageId>.
119

120

Chapter 3: Package Management
The <component> subtag represents a complex data structure that is frequently reused
among the package-level requests in Serena XML. Data structure details for this tag appear
in Exhibit 3-28 below.

PACKAGE SRC_LOD UNFREEZE — Replies

The Serena XML reply to a source and load component unfreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE SRC_LOD UNFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SRC_LOD">
 <message name="UNFREEZE">
 <response>
 <statusMessage>CMN8700I - UNFREEZE:SRC_LOD service completed</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE

The inverse of the Serena XML unfreeze function for source and load components is the
refreeze function for these components. Like its inverse, the refreeze function applies to one
or more “like-source” or “like-load” components. Other components — copybooks, skeletons,
JCL procedures, ISPF panels, and the like — are not included in the scope of this function.

Exhibit 3-28. <component> Subtag Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<componentName> Required 0 - 1 String (256),
variable

ZMF component name.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<componentType> Required 0 - 1 String (3),
fixed

Library type of component in
<componentName>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The Serena XML service/scope/message tags for a package-level refreeze message for
source and load components are:

<service name=”PACKAGE”>
<scope name=”SRC_LOD”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

Refreeze Source and Load Components — Requests

As with unfreeze requests, Serena XML supports two types of package-level refreeze
requests for source and load components:

• Full Refreeze — Refreezes all source and load components in the named package. This
is the default.

• Selective Refreeze — Refreezes a subset of individually named source and load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
refreeze is required in the <listcount> tag.

The <request> tag syntax for a source-and-load component refreeze request is identical to
that for an source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <message> tag differs in this request, as shown above.

Example XML — PACKAGE SRC_LOD REFREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SRC_LOD">
 <message name="REFREEZE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000013</package>
 </request>
 </message>
 </scope>
</service>

PACKAGE SRC_LOD REFREEZE — Replies

The Serena XML reply to a source-and-load component refreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.
121

12

Chapter 3: Package Management
Example XML — PACKAGE SRC_LOD REFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SRC_LOD">
 <message name="REFREEZE">
 <response>
 <statusMessage>CMN8700I - REFREEZE:SRC_LOD service completed</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE

You can use Serena XML to unfreeze one or more “non-source” components in a package.
This unfreeze request includes in its scope all “like-load”, “like-copybook”, and “like-PDS”
component library types. “Like-source” components are excluded.

The Serena XML service/scope/message tags for a non-source component unfreeze
message are:

<service name=”PACKAGE”>
<scope name=”NON_SRC”>
<message name=”UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE NON_SRC UNFREEZE — Requests

Serena XML supports two types of unfreeze requests for non-source components:

• Full Unfreeze — Unfreezes all non-source components in the named package. This is
the default.

• Selective Unfreeze — Unfreezes a subset of individually named non-source
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <listcount> tag.

The <request> tag syntax for a non-source component unfreeze request is identical to that
for a source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <scope> tag differs in this request, as shown above.
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE NON_SRC UNFREEZE — Replies

The Serena XML replies to a unfreeze request for non-source components do not return a
<result> data structure. They do, however, return a standard <response> data structure
to indicate the success or failure of the request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE

The inverse of the Serena XML unfreeze function for non-source components is the refreeze
function for these members. Like its inverse, the refreeze function applies to one or more
“non-source” components in a package, such as executable load modules, JCL procedures,
and copybooks. “Like-source” components are excluded. Scratch and rename utility records
are also outside the scope of this function.

The Serena XML service/scope/message tags for a non-source component refreeze
message are:

<service name=”PACKAGE”>
<scope name=”NON_SRC”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

PACKAGE NON_SRC REFREEZE — Requests

Serena XML supports two types of refreeze requests for non-source components:

• Full Refreeze — Refreezes all non-source components in the named package. This is
the default.

• Selective Refreeze — Refreezes a subset of individually named non-source components
in the named package. Desired components are itemized by name and library type in the
<component> data element. A count of the itemized components to refreeze is required
in the <listcount> tag.

The <request> tag syntax for a non-source component refreeze request is identical to that
for a non-source component unfreeze request. (See Exhibit 3-27.) Only the name parameter
in the high-level <message> tag differs in this request, as shown above.

Refreeze Non-Source Components — Replies

The Serena XML reply to a package-level refreeze request for non-source components does
not return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.
123

12

Chapter 3: Package Management
List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST

Serena XML can list the scratch and rename utility requests for all components in a package.
The service/scope/message tags for this list message are:

<service name=”CMPONENT”>
<scope name=”PKG_UTIL”>
<message name=”LIST”>

These tags appear in both requests and replies.

The service name is “cmponent”, not “package”, because XML Services calls the low-
level component service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg_util”, identifies this message as a package-level
component service.

 Note

The spelling of “cmponent” in the service name attribute is condensed to
eight bytes for legacy compatibility on the mainframe.

CMPONENT PKG_UTIL LIST — Requests

Serena XML supports several uses for the scratch and rename request list. For example,
using appropriate selection criteria in your request, you can:

• Find Old Component Name From New Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, new component name (after rename) in the <newComponent>
tag. The function returns any rename records that match that new component name,
together with the old component name prior to the rename action.

• Find New Component Name from Old Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, old component name (before rename) in the <component>
tag. The function returns any rename records that match that old component name,
together with the new component name after the rename action.

• List All Scratched and Renamed Components — Name the desired package in the
<package> tag. Enter a blank in the <utilityType> tag or omit it entirely to request
both scratch and rename record types. A list of all components with scratch and rename
requests, including old and new component names, will be returned.

• List All Scratched Components — Name the desired package in the <package> tag.
Enter “9” in the <utilityType> tag to request scratch records. The functions lists all
components in the package with outstanding scratch requests.

To further customize your list request, specify a library type, modification date range, updater
ID, or component status of interest. Choose component status options using appropriate
yes/no flag tags.
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 Note

Yes/no flags for component status filtering take default values as a group.
The default changes based on whether or not you enter explicit values in these
tags, as follows:
• If no status flag has an explicitly typed value, the default for all tags is “Y”.
• If any status flag has an explicitly typed value, the default for the remaining

tags is “N”.

The following example shows how you might code a request to list all renamed components
in a package using Serena XML. The example request includes only components that were
renamed while in unfrozen status; active, inactive, or frozen components are omitted.

Data structure details for the <request> tag appear in Exhibit 3-29.

Example XML — CMPONENT PKG_UTIL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_UTIL">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
125

126

Chapter 3: Package Management
<component> Optional 0 - 1 String (256),
variable

Original component name before
scratch or rename operation.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<componentType> Optional 0 - 1 String (3),
fixed

Library type of component in
<componentName>.

<filterActiveStatus> Optional 0 - 1 String (1) Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterHfsDirectory> Optional 0 - 1 String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterInactiveStatus> Optional 0 - 1 String (1) Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus> Optional 0 - 1 String (1) Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDateLastModified> Optional 0 -1 Date,
yyyymmdd

Start date in desired range of
component modification dates.

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
CMPONENT PKG_UTIL LIST — Replies

The Serena XML reply to this request returns zero to many <result> data structures, each
of which lists one component scratch or rename utility record for a package. Scratch records
report the names of components awaiting deletion, along with status information. Rename
records report old and new component names, along with status information for the original
component at the time it was renamed.

The reply message returns a standard <response> data structure to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. Because the <response> tag follows the last <result>
tag, it also serves as an end-of-list marker.

<newComponent> Optional 0 -1 String (256),
variable

New component name after rename
operation. Blank for scratch operation.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<toDateLastModified> Optional 0 -1 Date,
yyyymmdd

End date in desired range of component
modification dates.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to update
component.

<utilityType> Optional 0 - 1 String (1) Selects type of utility record to list.
Values:

8 = Rename record
9 = Scratch record
Blank = Both record types

NOTE: Omit tag or enter explicit blank
to list both record types. Null tag returns
no records.

NOTE: Asterisk (*) wildcard is not
accepted in this tag.

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
127

128

Chapter 3: Package Management
The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-30.

Example XML — CMPONENT PKG_UTIL LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_UTIL">
 <message name="LIST">
 <result>
 <utilityType>9</utilityType>
 <package>TES5000001</package>
 <applName>TES5</applName>
 <packageId>000001</packageId>
 <componentType>CPY</componentType>
 <updater>USER24</updater>
 <dateLastModified>20090205</dateLastModified>
 <timeLastModified>112910</timeLastModified>
 <component>ACPCPY00</component>
 <componentStatus>0</componentStatus>
 <encryption>00000000</encryption>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

<component> Optional 1 String (256),
variable

Original ZMF name of scratched or
renamed component.

• If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

• If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE

Unfreeze requests for scratch and rename utility records (the so-called IUTL records)
selectively unlock these records so you can scratch and rename package components
without otherwise modifying component contents. An audit trail of such actions is maintained
in the IUTL records for later listing or impact analysis.

<componentStatus> Optional 0 -1 String (1) Code for original component status.
Values:

0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen

<componentType> Optional 1 String (3),
variable

Library type of scratched or
renamed component.

<dateLastModified> Optional 0 -1 Date,
yyyymmdd

Date original component was last
modified.

<encryption> Optional 0 - 1 String (8),
variable

Component encryption number

<newComponent> Optional 0 -1 String (256),
variable

New ZMF name of renamed
component.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<timeLastModified> Optional 0 -1 Time,
hhmmss

Time original component was last
modified, 24-hr format.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to
update original component.

<utilityType> Optional 1 String (1) Code for type of component utility
record listed. Values:

8 = Rename record
9 = Scratch record

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
129

130

Chapter 3: Package Management
The Serena XML service/scope/message tags for a scratch and rename utility records
unfreeze message are:

<service name=”PACKAGE”>
<scope name=”SCR_REN”>
<message name=”UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SCR_REN UNFREEZE — Requests

Serena XML supports two types of unfreeze requests for scratch and rename utility records:

• Full Unfreeze — Unfreezes scratch and rename utility records for all components in the
named package. This is the default.

• Selective Unfreeze — Unfreezes a subset of scratch and rename records for individually
named components in the named package. Desired components are itemized by name
and library type in the <component> data element. A count of the components to be
unfrozen for scratch or rename purposes is required in the <listcount> tag.

The <request> tag syntax for a scratch and rename unfreeze request is identical to that for
other component unfreeze requests. (See Exhibit 3-27.) Only the name parameter in the
high-level <scope> and <message> tags differ, as shown above.

PACKAGE SCR_REN UNFREEZE — Replies

The Serena XML reply to a scratch and rename unfreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE

The inverse of the Serena XML unfreeze function for scratch and rename records is the
refreeze function for these records. The refreeze function returns the scratch and rename
utility functions to their previously locked-down condition for frozen package components in
ChangeMan ZMF.

The Serena XML service/scope/message tags for a scratch and rename record refreeze
message are:

<service name=”PACKAGE”>
<scope name=”SCR_REN”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SCR_REN REFREEZE — Requests

Serena XML supports two types of refreeze requests for scratch and rename utility records:

• Full Refreeze — Refreezes scratch and rename records for all components in the named
package. This is the default.

• Selective Unfreeze/Refreeze — Refreezes scratch and rename records for a subset of
individually named components in the named package. Desired components are itemized
by name and library type in the <component> data element. A count of the components
to be refrozen is required in the <listcount> tag.

The <request> tag syntax for a scratch and rename refreeze request is identical to that for
other component refreeze requests. (See Exhibit 3-27.) Only the name parameter in the high-
level <scope> and <message> tags differ, as shown above.

PACKAGE SCR_REN REFREEZE — Replies

The Serena XML reply to a scratch and rename utility records refreeze request does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

PACKAGE VALIDATION TASKS

Package validation tasks identify dependencies among package components, verify the
integrity of package components, or check for versioning differences and out-of-synch errors
across components in different stages of development. Typical commands include list, check,
and audit.

Serena XML supports the following package validation tasks:

• List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST
• Check Component Integrity - PACKAGE CMPONENT INTEGRTY
• Audit a Package - PACKAGE SERVICE AUDIT

List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST

Source-to-load relationship (ILOD) records track dependencies between “like-source”
components and any “like-load” or “like-other” components generated from a source
component by compilation, DB2 precompile, or similar transformation process. These are
the records returned by the Serena XML function listing source-to-load dependencies.

Not included in these source-to-load dependency records are “like-load” components staged
to development, but not generated from a “like-source” component while in staging. Also
omitted from the scope of this function are source-to-include relationships involving
copybooks, macros, subroutines, skeletons, ISPF panels, or JCL procedures.
131

Chapter 3: Package Management
The Serena XML service/scope/message tags for a source-to-load dependency list are:

<service name=”CMPONENT”>
<scope name=”PKG_LOD”>
<message name=”LIST”>

These tags appear in both request and reply messages.

The service name is “cmponent”, not “package”, because XML Services calls the low-
level component service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg_lod”, identifies this message as a package-level
component service.

 Note

The spelling of “cmponent” in the service name attribute is condensed to
eight bytes for legacy compatibility on the mainframe.

CMPONENT PKG_LOD LIST — Requests

Serena XML supports the following options for source-to-load dependency lists:

• All Dependencies in Package — Name the desired package in the <package>
package tag. The <component> and <targetComponent> tags should be omitted
from the request. The function returns all source-to-load dependencies involving “like-
load” components generated during the life of the named package.

• Load Dependencies for a Source Component — Name the desired package in the
<package> tag and the desired “like-source” component in the <component> tag.
Include the library type for the like-source component in <componentType>. Omit the
<targetComponent> tag from the request. The function lists all “like-load” components
affiliated with the named like-source component.

• Source Dependencies for a Load Component — Name the desired package in the
<package> tag and the desired “like-load” component in the <targetComponent> tag.
Include the library type for the like-load component in <targetComponentType>. Omit
the <component> tag from the request. The function lists all “like-source” components
affiliated with the named like-load component.

To further customize your request, specify a library type, modification date range, updater ID,
or component status of interest. Choose component status options using appropriate
yes/no flag tags.

 Note

Yes/no flags for component status filtering take default values as a group.
The default changes based on whether or not you enter explicit values in these
tags, as follows:
• If no status flag has an explicitly typed value, the default for all tags is “Y”.
• If any status flag has an explicitly typed value, the default for the remaining

tags is “N”.
132

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The following example shows how you might code a request to list all “like-load”
dependencies for a given “like-source” component in a package.

Example XML — CMPONENT PKG_LOD LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_LOD">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>CISQ000030</package>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> tag appear in Exhibit 3-31.

Exhibit 3-31. CMPONENT PKG_LOD LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended to replace
<package>. Use <package> instead
of <applName> & <packageId>.

<component> Optional 0 - 1 String (256),
variable

Name of “like-source” component for
which “like-load” dependencies are
wanted.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Optional 0 - 1 String (3),
variable

Library type of “like-source” component
for which “like-load” dependencies are
wanted.

NOTE: Omit to include all.
133

13

Chapter 3: Package Management
<filterActiveStatus> Optional 0 - 1 String (1) Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterFrozenStatus> Optional 0 - 1 String (1) Y = Include frozen components
N = Omit frozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterHfsDirectory> Optional 0 - 1 String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterUnfrozenStatus> Optional 0 - 1 String (1) Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromdateLastModified> Optional 0 -1 Date,
yyyymmdd

Start date in desired range of
component modification dates.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

Exhibit 3-31. CMPONENT PKG_LOD LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
CMPONENT PKG_LOD LIST — Replies

The Serena XML source-to-load dependency list returns zero to many <result> data
structures, each of which lists one source-to-load relationship for a package. Status
information for the “like-source” component in the pair is also returned. If no compilations,
submissions for JCL install job build, or other transformation processes have occurred for
components in the package, no <result> tags are returned.

The reply message returns a standard <response> data structure to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. Because the <response> tag follows the last <result>
tag, it also serves as an end-of-list marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-32.

Example XML — CMPONENT PKG_LOD LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_LOD">
 <message name="LIST">
 <result>
 <package>CISQ000030</package>
 <applName>CISQ</applName>
 <packageId>000030</packageId>
 <component>APPSTATS</component>
 <componentType>SRS</componentType>
 <targetComponent>APPSTATS</targetComponent>

<targetComponent> Optional 0 - 1 String (256),
variable

Name of “like-load” component for
which “like-source” dependencies are
wanted.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Omit to include all.

<targetComponentType> Optional 0 - 1 String (3),
variable

Library type of “like-load” component.

<toDateLastModified> Optional 0 -1 Date,
yyyymmdd

End date in desired range of component
modification dates.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to update
component.

Exhibit 3-31. CMPONENT PKG_LOD LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
135

13

Chapter 3: Package Management
 <targetComponentType>DBR</targetComponentType>
 <updater>USER24</updater>
 <dateLastModified>20081126</dateLastModified>
 <timeLastModified>094711</timeLastModified>
 <setssi>5BFD1269</setssi>
 <componentStatus>4</componentStatus>
 <rebuildFromBaseline>N</rebuildFromBaseline>
 </result>
 <result>
 <package>CISQ000030</package>
 <applName>CISQ</applName>
 <packageId>000030</packageId>
 <component>APPSTATS</component>
 <componentType>SRS</componentType>
 <targetComponent>APPSTATS</targetComponent>
 <targetComponentType>LOS</targetComponentType>
 <updater>USER24</updater>
 <dateLastModified>20081126</dateLastModified>
 <timeLastModified>094711</timeLastModified>
 <setssi>5BFD1269</setssi>
 <componentStatus>4</componentStatus>
 <rebuildFromBaseline>N</rebuildFromBaseline>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-32. CMPONENT PKG_LOD LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as first 4
bytes of package name.

<component> Optional 0 - 1 String (256),
variable

Name of “like-source” component.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<componentStatus> Optional 0 -1 String (1) Code for original component status.
Values:

0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen

<componentType> Optional 0 - 1 String (3),
variable

Library type of “like-source” component.

<dateLastModified> Optional 0 -1 Date,
yyyymmdd

Date source component was last
modified.

<hashToken> Optional 0 -1 String (16),
variable

Hash token for HFS.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

<rebuildFromBaseline> Optional 0 -1 String (1) Y = Recompile/relink from baseline,
 not package component
N = Recompile/relink from package
 component, not baseline

<setssi> Optional 0 -1 String (8),
fixed

Staged component SETSSI date
(seconds since 1/1/1960).

<targetComponent> Optional 0 - 1 String (256),
variable

Name of “like-load” component
generated from “like-source”
component.

<targetComponentType> Optional 0 - 1 String (3),
variable

Library type of “like-load” component.

<timeLastModified> Optional 0 -1 Time,
hhmmss

Time source component was last
modified, 24-hr format.

<updater> Optional 0 -1 String (8),
variable

TSO user ID of last person to update
source component.

Exhibit 3-32. CMPONENT PKG_LOD LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
137

13

Chapter 3: Package Management
Check Component Integrity - PACKAGE CMPONENT INTEGRTY

The package-level component integrity check verifies that all package component records in
the package master database have corresponding physical components in the staging
libraries, and vice versa. A component integrity check can be made only against simple or
participating packages.

 Tip

To verify that all independently queued batch jobs have completed in
ChangeMan ZMF before a dependent job step executes, use the Serena XML
component integrity check.

The Serena XML service/scope/message tags for a package-level component integrity check
message are:

<service name=”PACKAGE”>
<scope name=”CMPONENT”>
<message name=”INTEGRTY”>

These tags appear in both request and reply messages.

PACKAGE CMPONENT INTEGRTY Requests

The following example shows how you might code a Serena XML request for a package-level
component integrity check.

Example XML — PACKAGE CMPONENT INTEGRTY Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="CMPONENT">
 <message name="INTEGRTY">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Data structure details for the package cmponent integrity check <request> tag appear in
Exhibit 3-33.

PACKAGE CMPONENT INTEGRTY Replies

The Serena XML reply message to a package-level request to check component integrity
returns zero to many <result> tags. Each <result> tag contains information about a
package component that failed the component integrity check. If all components pass the
check, no <result> tag is returned.

A standard <response> data structure always follows the <result> tags, if any, to indicate
the overall success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

An example of a Serena XML reply to a component integrity check reply message follows. In
this example, multiple package components fail the integrity check. No other errors occur.
Data structure details for the component integrity check <result> appear in Exhibit 3-34.

Note that the <component> subtag of the component integrity check <result> tag
represents a simple data element containing the component name only. It differs from the
<component> tag used in the selective package promote and demote messages, in
selective unfreeze and refreeze messages, and others where <component> is a complex
data element containing subtags of its own. Serena XML distinguishes the two by
service/scope/message context.

Exhibit 3-33. PACKAGE CMPONENT INTEGRTY <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended to replace
<package>. Use <package> instead of
<applName> & <packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<processLstStagingLibs> Optional 0 -1 String (1) Option to include listings (library type
LST) in check. Values:

Y = Yes, include listing libraries
N = No, omit listing libraries
139

14

Chapter 3: Package Management
Example XML — PACKAGE CMPONENT INTEGRTY Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="CMPONENT">
 <message name="INTEGRTY">
 <response>
 <statusMessage>CMN8700I - Package Integrity service completed</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Audit a Package - PACKAGE SERVICE AUDIT

The package audit function checks for out-of-synch conditions in package components. The
package(s) to be audited must be in development status, with all components at promotion
level 00, prior to running the audit request. The outcome of the audit is an audit report, which
the package audit function spools to your system’s output utility (e.g., Spool Display and
Search Facility, or SDSF) for later interactive access and printing.

The Serena XML service/scope/message tags for a package audit message are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”AUDIT”>

These tags appear in both requests and replies.

Exhibit 3-34. PACKAGE CMPONENT INTEGRTY <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<componentName> Optional 0 - 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Optional 0 - 1 String (3),
variable

Must be valid ZMF library type.

<message> Optional 0 - 1 String (255),
variable

Component integrity error message for
named component.
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SERVICE AUDIT Requests

Serena XML supports package audit options of narrow to broad scope. A set of yes/no audit
flag tags lets you tailor the scope of your audit to the following:

• Staging Libraries Only, No Cross-Package Dependencies — Performs an audit
against staging libraries but not baseline libraries for a simple package. To select this
option, set the <auditLite> tag flag to “Y”.

• Staging and Baseline Libraries, No Cross-Package Dependencies — Performs an
audit against both staging and baseline libraries for a simple package. To select this
option, set the <auditLite> tag flag to “N”.

• Staging Libraries Only, Check Cross-Package Dependencies — Performs an audit
against staging libraries for non-baselined participating packages in a complex package.
To select this option for a participating package, set the <auditPartAsPrimary> tag
flag to “Y”. To select this option for a complex package, set the <auditLite> tag flag
to “Y”.

• Staging and Baseline Libraries, Check Cross-Package Dependencies — Performs
an audit against staging libraries and baseline libraries for all participating packages in a
complex package. To select this option, enter the name of the complex package in the
<package> tag and set the <auditLite> tag flag to “N”.

• Cross-Application Audit — Performs an audit against both staging and baseline
libraries for all applications identified in the request message. Cross-application
dependencies are audited across applications defined in the package master for complex
packages and participating packages not otherwise excluded from this option. You can
also request that cross-application dependencies be checked for the applications you
name. To do this, list the desired applications using the repeating <scopeAppl> tag and
provide the number of those applications in <listCount>.

The following example shows how you might code a package audit request using Serena
XML. Data structure details for the package audit <request> tag appear in Exhibit 3-35.

Example XML — PACKAGE SERVICE AUDIT Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="AUDIT">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000013</package>
 <jobCards01>//XMLX126 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</jobCards01>
 <jobCards02>// TIME=(,10),NOTIFY=USER24</jobCards02>
 </request>
 </message>
141

14

Chapter 3: Package Management
 </scope>
</service>

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<auditAutoParms> Optional 0 - 1 String (44),
variable

The name of a data set containing
the auto resolve parameters. See
the ChangeMan ZMF User’s Guide,
Using Auto Resolve.

<auditAutoResolve> Optional 0 - 1 String (1) Option to automatically resolve
out-of-synch conditions. Values:

Y = Yes, turn on auto-resolve
N = No, don’t auto-resolve errors

<auditFormatReport> Optional 0 - 1 String (1) Option to include printer control
characters in output file. Values:

Y = Yes, include control chars
N = No, don’t use control chars

<auditIncludeHistory> Optional 0 - 1 String (1) Option to include component history
in audit report. Values:

Y = Yes, include history
N = No, omit history

<auditLite> Optional 0 - 1 String (1) Option to omit baseline libraries from
audit. Values:

Y = Yes, omit baseline libraries
N = No, don’t omit baseline libs

<auditPartAsPrimary> Optional 0 - 1 String (1) Option to include cross-package
dependencies for all but previously
installed packages from audit of
participating package. Values:

Y = Yes, audit as primary pkg
N = No, don’t change audit scope

<auditPartAsSimple> Optional 0 - 1 String (1) Option to omit cross-package
dependencies from audit of a
participating package & follow rules
for simple packages concerning
baseline libraries. Values:

Y = Yes, audit as simple package
N = No, don’t change audit scope
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<auditPartByDept> Optional 0 - 1 String (1) Option to limit cross-package
dependency check to department of
target package. Values:

Y = Yes, audit within department
N = No, don’t change audit scope

<auditRCUpdateRestrictToTarget> Optional 0 - 1 String (1) Option for cross-package & cross-
application audits to update audit
return code only in the package
named in <package> tag, rather
than all packages audited. Values:

Y = Yes, restrict audit return code
N = No, don’t restrict return code

<auditTraceOption> Optional 0 - 1 String (1) Option to turn on trace option for
audit function. Values:

Y = Yes, turn on trace option
N = No, don’t trace audit job

<includeXAPheaders> Optional 0 - 1 String (1) Include cross application common
baseline headers:

Y = Yes
N = No

<jobCard01> Optional 0 - 1 String (72),
fixed length

First of up to 4 JCL statements
needed to execute the audit in batch
mode.

<jobCard02> Optional 0 - 1 String (72),
fixed length

Second of up to 4 JCL statements
needed to execute the audit in batch
mode.

<jobCard03> Optional 0 - 1 String (72),
fixed length

Third of up to 4 JCL statements
needed to execute the audit in batch
mode.

<jobCard04> Optional 0 - 1 String (72),
fixed length

Fourth of up to 4 JCL statements
needed to execute the audit in batch
mode.

<listCount> Optional 0 - 1 Integer (3),
variable

Count of <scopeAppl> tags to
include in cross-application audit.

NOTE: Required if value is Y in
<auditCrossApplication> tag.

<lockPackage> Optional 0 - 1 String (1) Lock package during audit.:

Y = Yes
N = No

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

NOTE: May be simple, complex, or
participating.

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
143

14

Chapter 3: Package Management
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE SERVICE AUDIT Replies

Because the ZMF audit report is spooled to SDSF, Serena XML replies to a package audit
request do not return a <result> data structure. They do, however, return a standard
<response> data structure to indicate the success or failure of the audit request.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<scopeAppl> Optional 0 -  Complex Name of application to include in
scope of cross-application audit.
Repeatable to accommodate
multiple applications.

NOTE: Required if value is Y in
<auditCrossApplication> tag.

NOTE: If used, <listCount> tag
also required.

<suppressNotify> Optional 0 - 1 String (1) Suppress Batch Messages:

Y = Yes
N = No

<userVariable01>
 .

 .

 .

<userVariable05>

Optional 0 - 1
each

String (8),
variable

Up to five user-defined variables of
8 bytes each, used to pass
parameters to JCL interpreter.

<userVariable06>
 .

 .

 .

<userVariable10>

Optional 0 - 1
each

String (72),
variable

Up to five user-defined variables of
72 bytes each, used to pass
parameters to JCL interpreter.

Exhibit 3-35. PACKAGE SERVICE AUDIT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Example XML — PACKAGE SERVICE AUDIT Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="AUDIT">
 <response>
 <statusMessage>CMN2600I - The job to audit this package has been
submitted.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>2600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

A job with output similar to the following is submitted:

//* JOB TO AUDIT PACKAGE ACTP000013
 Legend and Summary Report
 The local level of audit chosen at this point; 0
 0 - Audit is recommended but entirely optional
 Out-of-synch messages (hint - search for "!" marks)
 DUPLIC! (Staging duplicates baseline) ===> 9
 SYNCH0! (Not in scope of audit or unknown) ===> 1
 SYNCH1! (ISPF statistics not available) ===> 0
 SYNCH2! (Compile/designated proc differ) ===> 0
 SYNCH3! (Unparsable load module) ===> 0
 SYNCH4! (CPY problem in staging) ===> 0
 SYNCH5! (CPY high-date problem in baseline)===> 17
 SYNCH6! (Activity file not checked out) ===> 0
 SYNCH7! (Called subroutine in staging) ===> 0
 SYNCH8! (Called subroutine in baseline) ===> 0
 SYNCH9! (Source and load discrepancy) ===> 0
 SYNCH10! (Version regression problem) ===> 0
 SYNCH11! (Component hash discrepancy) ===> 0
 SYNCH12! (Orphan module in staging) ===> 0
 SYNCH13! (Baseline/staging discrepancy) ===> 0
 SYNCH14! (Components not in active status) ===> 0
 SYNCH15! (Source to relationship problem) ===> 0
 SYNCH16! (CPY low-date problem in baseline)===> 0
 SYNCH17! (CPY deleted problem in staging) ===> 0
 SYNCH18! (LOD deleted problem in staging) ===> 0

 Highest return code encountered ===> 8
 CMN2678I - AUDIT RETURN CODE NOT UPDATED.
145

14

Chapter 3: Package Management
Serena XML audit return codes are the same as those for audits requested through the ISPF
interface. Successful audits — i.e. those that find no out-of-synch conditions — have a return
code of 00. Unsuccessful audit requests have a return code of 04 or higher.

PACKAGE INFORMATION MANAGEMENT TASKS

Package information management tasks retrieve or manage metadata and control
information for a package. Such information includes title and descriptions, general
parameters, user-defined package variables, install information, promotion history for the
package, promotion history for package components, and the like. Typical commands include
list, unfreeze, and refreeze.

Serena XML supports the follow information management tasks for packages:

List Package Description - PACKAGE GEN_DESC LIST

Serena XML lists the package description for one package. Multiple package descriptions
require multiple requests. Descriptions for baselined packages are accessible as long as the
package master record remains in the package database.

The Serena XML service/scope/message names for a package description list message are:

<service name=”PACKAGE”>
<scope name=”GEN_DESC”>
<message name=”LIST”>

These tags appear in both request and reply messages.

• List Package Description - PACKAGE
GEN_DESC LIST

• List Package Implementation Instructions -
PACKAGE IMP_INST LIST

• List General Package Parameters - PACK-
AGE GEN_PRMS LIST

• List Package Approvers - APPROVER PKG
LIST

• Unfreeze Package Parameters - PACK-
AGE GEN_PRMS UNFREEZE

• List Affected Applications - PACKAGE
AFF_APLS LIST

• Refreeze Package Parameters - PACK-
AGE GEN_PRMS REFREEZE

• List Participating Packages - PACKAGE
PRT_PKGS LIST

• List User-Defined Package Variables -
PACKAGE USR_RECS LIST

• List Linked Packages - PACKAGE
PKG_LINK LIST

• List Package Install Sites - SITE PKG LIST • List Package Library Types - LIBTYPE PKG
LIST

• Unfreeze Package Install Sites - PACK-
AGE SITES UNFREEZE

• List Package Promotion History - PACKAGE
PRM_HIST LIST

• Refreeze Package Install Sites - PACK-
AGE SITES REFREEZE

• Package Promoted Component List -
PACKAGE PRM_CMP LIST

• List Package Installation Dependencies -
PACKAGE SCH_RECS LIST

• List Reasons for Backout or Revert - PACK-
AGE REASONS LIST
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE GEN_DESC LIST — Requests

The package description list requires a package name as input. Wildcard characters are not
accepted in the <package> tag.

The following example shows how you might code a package description list request in
Serena XML. Data structure details for the <request> tag appear in the following exhibit.
This data structure is common to many package requests in Serena XML.

Example XML — PACKAGE GEN_DESC LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="GEN_DESC">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 </request>
 </message>
 </scope>
</service>

PACKAGE GEN_DESC LIST — Replies

Replies to a package description list request return no more than one <result> tag. The
<result> contains zero to many package description entries for a single package.

The result is followed by a standard <response> tag that indicates the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

An example XML reply message for the package description list follows. Data structure
details for <result> tag appear after the example, in Exhibit 3-37.

Exhibit 3-36.PACKAGE GEN_DESC LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.
147

14

Chapter 3: Package Management
Example XML — PACKAGE GEN_DESC LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="GEN_DESC">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <packageDesc>SER5904E</packageDesc>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

List General Package Parameters - PACKAGE GEN_PRMS LIST

General parameters for a package include descriptive items entered during package creation
and update, as well as programmatically maintained status, audit trail, and release
information. The Serena XML function to list general package parameters retrieves this
information for any package master record, even after a package has been baselined.

User-defined package variables, package install information, and package approver lists
require other Serena XML functions for access.

Exhibit 3-37. PACKAGE GEN_DESC LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageDesc> Optional 0 - 46 String (72),
variable

General description of package
contents. Up to 46 lines of 72 bytes
each are allowed by ZMF.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The Serena XML service/scope/message names for a request to list general package
parameters are:

<service name=”PACKAGE”>
<scope name=”GEN_PRMS”>
<message name=”LIST”>

These tags appear in both request and reply messages.

PACKAGE GEN_PRMS LIST — Request

The syntax for a request to list general package parameters is identical to that for many
package information management functions, including the package description list.

PACKAGE GEN_PRMS LIST — Replies

The Serena XML reply to a general package parameters list request contains one <result>
tag for the package named in the request.

A standard <response> tag follows the <result> to indicate the success or failure of the
request. Successful requests have a return code of 00. Unsuccessful requests have a return
code of 04 or higher.

An example reply message listing general package parameters appears below. Data
structure details for the <result> tag appear after the example in Exhibit 3-38.

Example XML — PACKAGE GEN_PRMS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="GEN_PRMS">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <packageStatus>3</packageStatus>
 <dateCreated>20090127</dateCreated>
 <timeCreated>082516</timeCreated>
 <dateFrozen>20090127</dateFrozen>
 <timeFrozen>082824</timeFrozen>
 <dateApproved>20090127</dateApproved>
 <timeApproved>083154</timeApproved>
 <dateSent>20090127</dateSent>
 <timeSent>083210</timeSent>
 <dateReceived>20090127</dateReceived>
 <timeReceived>083238</timeReceived>
 <dateInstalled>20090127</dateInstalled>
 <timeInstalled>083537</timeInstalled>
 <dateBaselined>20090127</dateBaselined>
149

15

Chapter 3: Package Management
 <timeBaselined>083656</timeBaselined>
 <requestorDept>IDD</requestorDept>
 <requestorName>USER24</requestorName>
 <requestorPhone>5555555</requestorPhone>
 <workChangeRequest>USER24</workChangeRequest>
 <packageTitle>SER5906E</packageTitle>
 <creator>USER24</creator>
 <lastPromotionAction>0</lastPromotionAction>
 <schedulerType>2</schedulerType>
 <isPostApprovalPending>N</isPostApprovalPending>
 <isPostApproversAdded>N</isPostApproversAdded>
 <isPostRejected>N</isPostRejected>
 <isShortApproverListUsed>N</isShortApproverListUsed>
 <tempChangeDuration>000</tempChangeDuration>
 <isStageLibsDeleted>N</isStageLibsDeleted>
 <isLinkedPackage>N</isLinkedPackage>
 <isCmnSchedulerUsed>N</isCmnSchedulerUsed>
 <isManualSchedulerUsed>Y</isManualSchedulerUsed>
 <isOtherSchedulerUsed>N</isOtherSchedulerUsed>
 <isAuditPending>N</isAuditPending>
 <isFreezePending>N</isFreezePending>
 <isApprovalPending>N</isApprovalPending>
 <isXNodeBuildRequired>N</isXNodeBuildRequired>
 <isInstallPending>Y</isInstallPending>
 <isRevertPending>N</isRevertPending>
 <isReverseRippleSubmitted>N</isReverseRippleSubmitted>
 <isBackedOut>N</isBackedOut>
 <isXNodeBuildPending>N</isXNodeBuildPending>
 <generalComponentStatus>4</generalComponentStatus>
 <nonSourceComponentStatus>4</nonSourceComponentStatus>
 <sourceLoadComponentStatus>4</sourceLoadComponentStatus>
 <utilityInfoStatus>4</utilityInfoStatus>
 <siteInfoStatus>4</siteInfoStatus>
 <customComponentStatus>4</customComponentStatus>
 <nearestInstallDate>20090127</nearestInstallDate>
 <problemActionCode>2</problemActionCode>
 <stageDevLibModel>CMNTP.SERT8.DEV.ACTP.#000007</stageDevLibModel>
 <stageProdLibModel>CMNTP.SERT8.PRD.ACTP.#000007</stageProdLibModel>
 <stageLibStatus>2</stageLibStatus>
 <installTimeExpiration>0200</installTimeExpiration>
 <packageCheckedIntoRelease>N</packageCheckedIntoRelease>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST Package service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as
first 4 bytes of package name.

<auditLockUserid> Optional 0 - 1 String (8),
variable

Userid who locked package for
audit.

<auditReturnCode> Optional 0 - 1 String (2),
variable

Return code issued by ZMF
package audit. Values:

00 = No major errors found
04 = Errors found
08 = Major errors found
12 = Possibly fatal errors found

<complexSuperPackage> Optional 0 -1 String (10),
fixed

Name of complex/super package to
which this participating package
belongs.

NOTE: Returned only if value of
<packageLevel> = 4.

<complexSuperPackageAppl> Optional 0 -1 String (4),
variable

Package application.

NOTE: Returned only if value of
<packageLevel> = 4.

<complexSuperPackageNumber> Optional 0 -1 String (6),
fixed

Package number.

NOTE: Returned only if value of
<packageLevel> = 4.

<creator> Optional 0 -1 String (8),
variable

TSO user ID of package creator.

<customComponentStatus> Optional 0 - 1 String (1) Status code for custom
components of package as a
group. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<dateApproved> Optional 0 -1 Date (8),
yyyymmdd

Date package approved.

<dateBaselined> Optional 0 -1 Date (8),
yyyymmdd

Date package baselined.
151

15

Chapter 3: Package Management
<dateBackedOut> Optional 0 -1 Date (8),
yyyymmdd

Date package backed out.

<dateCreated> Optional 0 -1 Date (8),
yyyymmdd

Date package created.

<dateFrozen> Optional 0 -1 Date (8),
yyyymmdd

Date package frozen.

<dateInstalled> Optional 0 -1 Date (8),
yyyymmdd

Date package installed.

<dateMemoDeleted> Optional 0 -1 Date (8),
yyyymmdd

Date package logically deleted.

<dateReceived> Optional 0 -1 Date (8),
yyyymmdd

Date package received.

<dateRejected> Optional 0 -1 Date (8),
yyyymmdd

Date package rejected.

<dateReverted> Optional 0 -1 Date (8),
yyyymmdd

Date package reverted.

<dateSent> Optional 0 -1 Date (8),
yyyymmdd

Date package sent.

<dateTempChangeCycled> Optional 0 - 1 Date (10),
yyyymmdd

Date when temporary change
package expired.

<generalComponentStatus> Optional 0 - 1 String (1) General status code for all package
components as a group. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<installTimeExpiration> Optional 0 -1 Time (8),
hhmm

Ending time for installation window
on next planned install, 24-hour.

NOTE: No punctuation included in
time returned by ZMF.

<isApprovalPending> Optional 0 - 1 String (1) Y = Yes, approval pending
N = No, approval not pending

<isAuditPending> Optional 0 - 1 String (1) Y = Yes, audit pending
N = No, audit not pending

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<isBackedOut> Optional 0 - 1 String (1) Y = Yes, package backed out
N = No, package not backed out

<isCmnSchedulerUsed> Optional 0 - 1 String (1) Y = Yes, package uses ZMF
 installation scheduler
N = No, ZMF scheduler not used

NOTE: Value should be “Y” if
<schedulerType> = 1.

NOTE: Value should be “N” if
<schedulerType> = 2 or 3.

<isFreezePending> Optional 0 - 1 String (1) Y = Yes, package freeze pending
N = No, freeze not pending

<isInstallPending> Optional 0 - 1 String (1) Y = Yes, package install pending
N = No, install not pending

<isLinkedPackage> Optional 0 - 1 String (1) Y = Yes, this package is linked
N = No, not a linked package

<isManualSchedulerUsed> Optional 0 - 1 String (1) Y = Yes, manual installation
N = No, install is automated

NOTE: Value should be “Y” if
<schedulerType> = 2.

NOTE: Value should be “N” if
<schedulerType> = 1 or 3.

<isOtherSchedulerUsed> Optional 0 - 1 String (1) Y = Yes, package uses 3rd-party
 installation scheduler
N = No 3rd-party scheduler used

NOTE: Value should be “Y” if
<schedulerType> = 3.

NOTE: Value should be "N” if
<schedulerType> = 1 or 2.

<isPostApprovalPending> Optional 0 - 1 String (1) Y = Yes, post-approval pending
N = No post-approval pending

<isPostApproversAdded> Optional 0 - 1 String (1) Y = Yes, post-approver list added
N = No, list not added

<isPostRejected> Optional 0 - 1 String (1) Y = Yes, package post-rejected
N = No, not post-rejected

<isReverseRippleSubmitted> Optional 0 - 1 String (1) Y = Yes, baseline reverse ripple
 job submitted.
N = No, baseline reverse ripple
 job not submitted.

<isRevertPending> Optional 0 - 1 String (1) Y = Yes, package revert pending
N = No, revert not pending

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
153

15

Chapter 3: Package Management
<isShortApproverListUsed> Optional 0 - 1 String (1) Y = Yes, post-approver list has
 emergency approvers only
N = No, not using emergency list
 of package approvers

<isStageLibsDeleted> Optional 0 - 1 String (1) Y = Yes, staging libraries deleted
N = No, staging libs not deleted

<isXNodeBuildPending> Optional 0 - 1 String (1) Y = Yes, JCL install build pending
N = No, JCL build not pending

<isXNodeBuildRequired> Optional 0 - 1 String (1) Y = Yes, JCL install build required
N = No, JCL build not required

<lastBackoutUserid> Optional 0 - 1 String (8),
variable

TSOID of the last package backout.

<lastPromoter> Optional 0 - 1 String (8),
variable

TSO user ID of most recent
promoter/demoter.

<lastPromotionAction> Optional 0 - 1 String (1) Code for most recent promotion
action. Values:

0 = No promotion
1 = Full demotion
2 = Full promotion
3 = Reverted
4 = Selective demotion
5 = Selective promotion
6 = First promotion

<lastPromotionDate> Optional 0 - 1 Date (10),
yyyymmdd

Date of most recent promotion
action.

<lastPromotionLevel> Optional 0 - 1 String (2),
variable

Most recent promotion level in
user-defined promotion hierarchy.

<lastPromotionName> Optional 0 - 1 String (8),
variable

Name of most recent promotion
action.

<lastPromotionSite> Optional 0 - 1 String (8),
variable

Site name where most recent
promotion action took place.

<lastPromotionTime> Optional 0 - 1 Time (8),
hhmmss

Time of most recent promotion
action, 24-hour format.

<lastRevertUserid> Optional 0 - 1 String (8),
variable

TSOID of the last package revert.

<nearestInstallDate> Optional 0 -1 Date (8),
yyyymmdd

Next planned installation date
among prescheduled site installs.

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<nonSourceComponentStatus> Optional 0 - 1 String (1) Status code for non-source
package components as a group.
Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<otherProblemAction> Optional 0 -1 String (44),
variable

Text of “Other” instructions if
installation problem occurs.

NOTE: Returned when value of
<problemActionCode> = 3.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageCheckedIntoRelease> Optional 0 - 1 String (1) Y = Yes, checked into release
N = No, not checked into release

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<packageLevel> Optional 1 Integer (1) Code for package complexity level.
Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package

NOTE: If value = 4, name of
complex/super package is returned
in <complexSuperPackage>.

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
155

15

Chapter 3: Package Management
<packageStatus> Required 1 String (1) Code for status of package in
lifecycle. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
 completed

NOTE: Only values 6 or A should
be returned for package create.

<packageTitle> Optional 0 -1 String (72),
variable

Working title for package. Appears
on most listings & reports.

<packageType> Optional 0 - 1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

NOTE: For code values = 2 or 4,
<tempChangeDuration> also
required.

NOTE: For code values = 3 or 4,
<reasonCode> also required.

<problemActionCode> Optional 0 -1 Integer (1) Code for action to take if problem
occurs in package install. Values:

1 = Hold production & contact
 developer for instructions
2 = Back out change, then
 proceed with production
3 = Other instructions

NOTE: If value = 3, instructions in
<otherProblemAction> tag also
returned.

<reasonCode> Optional 0 -1 String (3),
variable

Customer-defined reason code for
unplanned package installation.

NOTE: Returned if value of
<packageType> = 3 or 4.

<release> Optional,
ZMF with
ERO only

0 -1 String (8) Name of ERO release with which
package is associated.

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<releaseArea> Optional,
ZMF with
ERO only

0 -1 String (8) Name of starting release area for
release package checkin.

<releaseJoinedDate> Optional 0 -1 Date (8),
yyyymmdd

Date package joined release.

<releaseJoinedTime> Optional 0 -1 Time (6),
HHMMSS

Time package joined release.

<requestorDept> Optional 0 -1 String (4),
variable

Workgroup or department code for
package requestor.

<requestorName> Optional 0 -1 String (25),
variable

Name of developer or contact
person requesting package create.

<requestorPhone> Optional 0 -1 String (15),
variable

Phone of developer or contact
person requesting package create.

<schedulerType> Optional 0 -1 Integer (1) Code for type of installation
scheduler. Values:

1 = ChangeMan scheduler
2 = Manual install
3 = Other automated scheduler

<siteInfoStatus> Optional 0 - 1 String (1) Status code for site components of
package as a group. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
157

15

Chapter 3: Package Management
<sourceLoadComponentStatus> Optional 0 - 1 String (1) Status code for source & load
components of package as a
group. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<stageDevLibModel> Optional 0 - 1 String (36),
variable

Qualified name of model library to
use when staging from
development environments outside
ZMF control.

<stageLibStatus> Optional 0 - 1 String (1) Status code for package staging
library. Values:

1 = Absent
2 = Present
3 = Archived

<stageProdLibModel> Optional 0 - 1 String (36),
variable

Qualified name of model library to
use when staging from ZMF
baseline or production libraries.

<tempChangeDuration> Optional 0 -1 Integer (3) Number of days for temporary
package to remain in production.

NOTE: Returned if value of
<packageType> = 2 or 4.

<timeApproved> Optional 0 -1 Time (6),
hhmmss

Time package approved, 24-hour.

<timeBackedOut> Optional 0 -1 Time (6),
hhmmss

Time package backed out, 24-hour.

<timeBaselined> Optional 0 -1 Time (6),
hhmmss

Time package baselined, 24-hour.

<timeCreated> Optional 0 -1 Time (6),
hhmmss

Time package created, 24-hour.

<timeFrozen> Optional 0 -1 Time (6),
hhmmss

Time package frozen, 24-hour.

<timeInstalled> Optional 0 -1 Time (6),
hhmmss

Time package installed, 24-hour.

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE

The Serena XML function to unfreeze general package parameters unlocks those
parameters for change. You can then change the scheduled installation date or
implementation instructions, make a temporary change permanent, or update the package
description to better fit the delivered code. The package and its components remain frozen
overall.

The Serena XML service/scope/message tags for a general package parameters unfreeze
message are:

<service name=”PACKAGE”>
<scope name=”GEN_PRMS”>
<message name=”UNFREEZE”>

<timeMemoDeleted> Optional 0 -1 Time (6),
hhmmss

Time package logically deleted,
24-hour format.

<timeReceived> Optional 0 -1 Time (6),
hhmmss

Time package received, 24-hour.

<timeRejected> Optional 0 -1 Time (6),
hhmmss

Time package rejected, 24-hour.

<timeReverted> Optional 0 -1 Time (6),
hhmmss

Time package reverted, 24-hour.

<timeSent> Optional 0 -1 Time (6),
hhmmss

Time package sent, 24-hour.

<timeTempChangeCycled> Optional 0 - 1 Time (6),
hhmmss

Time when temporary change
package expired, 24-hour format.

<utilityInfoStatus> Optional 0 - 1 String (1) Status code for scratch/rename
components of package as a
group. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<workChangeRequest> Optional 0 -1 String (12),
variable

Work order ID or change request
number for package.

Exhibit 3-38. PACKAGE GEN_PRMS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
159

16

Chapter 3: Package Management
These tags appear in both requests and replies.

PACKAGE GEN_PRMS UNFREEZE — Requests

The <request> tag syntax for a general package parameters unfreeze request is identical to
that for many package information management functions, including the package description
list and package general description list. Only the name parameters in the high-level
<scope> and <message> tags differ, as shown above.

PACKAGE GEN_PRMS UNFREEZE — Replies

The Serena XML reply message to an unfreeze request for general package parameters
does not return a <result> data structure. It does, however, return a standard <response>
data structure to indicate the success or failure of the request. Successful requests have a
return code of 00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE

The Serena XML refreeze function for general package parameters resets these previously
unfrozen parameters to frozen status, locking them down against change.

The Serena XML service/scope/message tags for a general package parameters refreeze
message are:

<service name=”PACKAGE”>
<scope name=”GEN_PRMS”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

PACKAGE GEN_PRMS REFREEZE — Requests

The <request> tag syntax for a general package parameters refreeze request is identical to
that for an unfreeze request. Only the name parameter in the high-level <message> tag
differs, as shown above.

PACKAGE GEN_PRMS REFREEZE — Replies

The Serena XML reply message to a refreeze request for general package parameters does
not return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

List User-Defined Package Variables - PACKAGE USR_RECS LIST

Serena XML supports up to 72 user-defined package variables established by users when
they customize ChangeMan ZMF. These are stored in the package master record with the
general parameters for a package, but are listed separately.
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
The Serena XML service/scope/message names for a message to list the user-defined
variables for a package are:

<service name=”PACKAGE”>
<scope name=”USR_RECS”>
<message name=”LIST”>

These tags appear in both requests and replies.

Naming Conventions for User-Defined Variables in Serena XML

Serena XML tag names for user-defined package variables take the general form:

<userVarLenxxyy>

where:

• xx = length of variable data in bytes, formatted as 1-digit or 2-digit integer
• yy = unique 2-digit integer identifier for this particular variable of length xx

For example, <userVarLen103> represents the third user-defined variable with a length of
one byte. Similarly, <userVarLen4405> is the fifth variable with a length of 44 bytes.

ChangeMan ZMF stores these values for user reference at customized exit points, but
otherwise ignores them; internally, they are meaningless. Similarly, Serena XML retrieves
these values without respect to any meaning they may hold for the user. It is the user’s
responsibility to know the meaning of these variables and to manage them accordingly.

PACKAGE USR_RECS LIST — Requests

The following example shows how you might code a request to list user-defined variables for
a package in Serena XML. Notice the similarity of this syntax with that of many other package
requests.

Example XML — PACKAGE USR_RECS LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="USR_RECS">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>
161

16

Chapter 3: Package Management
PACKAGE USR_RECS LIST — Replies

User-defined variable lists for a package return nor more than one <result> tag. This tag is
followed by a standard <response> tag that indicates the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example XML reply to a user-defined variable list request appears below. Because the
reply may contain values for up to 72 user-defined variables, many optional tags for these
variables are omitted for clarity. Data structure details for the <result> tag follow the
example in Exhibit 3-39.

Example XML — PACKAGE USR_RECS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="USR_RECS">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <userVarLen199>Y</userVarLen199>
 <userVarLen301>NO</userVarLen301>
 <userVarLen302>NO</userVarLen302>
 <userVarLen303>NO</userVarLen303>
 <userVarLen304>NO</userVarLen304>
 <userVarLen305>NO</userVarLen305>
 <userVarLen306>NO</userVarLen306>
 <userVarLen401>NO</userVarLen401>
 <userVarLen402>NO</userVarLen402>
 <userVarLen403>NO</userVarLen403>
 <userVarLen404>NO</userVarLen404>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST User record service completed</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-39. PACKAGE USR_RECS LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<userVarLen101>
 .
 .
 .

<userVarLen115>

<userVarLen199>

Optional 0 -1
each

String (1) User-defined in ZMF. Total of 16
individually named 1-byte tags
supported.

NOTE: See topic “Package User
Information” in the ChangeMan
ZMF Customization Guide.

<userVarLen201>
 .
 .
 .

<userVarLen211>

Optional 0 -1
each

String (2),
variable

User-defined in ZMF. Total of 11
individually named 2-byte tags
supported.

<userVarLen301>
 .
 .
 .

<userVarLen310>

Optional 0 -1
each

String (3),
variable

User-defined in ZMF. Total of 10
individually named 3-byte tags
supported.

<userVarLen401>
 .
 .
 .

<userVarLen410>

Optional 0 -1
each

String (4),
variable

User-defined in ZMF. Total of 10
individually named 4-byte tags
supported.

<userVarLen801>
 .
 .
 .

<userVarLen810>

Optional 0 -1
each

String (8),
variable

User-defined in ZMF. Total of 10
individually named 8-byte tags
supported.

<userVarLen1601>
 .
 .
 .

<userVarLen1605>

Optional 0 -1
each

String (16),
variable

User-defined in ZMF. Total of 5
individually named 16-byte tags
supported.

<userVarLen4401>
 .
 .
 .

<userVarLen4405>

Optional 0 -1
each

String (44),
variable

User-defined in ZMF. Total of 5
individually named 44-byte tags
supported.

<userVarLen7201>
 .
 .
 .

<userVarLen7205>

Optional 0 -1
each

String (72),
variable

User-defined in ZMF. Total of 5
individually named 72-byte tags
supported.
163

16

Chapter 3: Package Management
 Tip

Tags: <userVarLen101> to <userVarLen7205>. See topic “Package User Information”
in the ChangeMan ZMF Customization Guide.

List Package Install Sites - SITE PKG LIST

The planned install sites for a package can be listed using Serena XML. This function
assumes that the sites themselves already exist, thanks to site maintenance performed
elsewhere by the ChangeMan ZMF administrator. The function also assumes that package
create or update operations have already assigned install sites to the package. If neither
condition is met, no sites will be returned by the package install site list function.

The Serena XML service/scope/message tags for a package install site list message are:

<service name=”SITE”>
<scope name=”PKG”>
<message name=”LIST”>

These tags appear in both requests and replies.

The service name is “site”, not “package”, because XML Services calls the low-level
site maintenance service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg”, identifies this function as a package-level site service.

SITE PKG LIST — Requests

Serena XML supports two kinds of package install site lists:

• All Install Sites for Package — Name the desired package in the <package> tag.
Omit the <siteName> tag. All install sites for the named package are returned,
together with site descriptions and installation status information.

• Package Install Status for Site — Name the desired package in the <package> tag
and the desired install site in the <siteName> tag. Installation status information is
returned for the named package and site.

The following example shows how you might code a Serena XML request to list install status
for one remote install site associated with a package.
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Example XML — SITE PKG LIST Request

<?xml version="1.0"?>
<service name="SITE">
 <scope name="PKG">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>

SITE PKG LIST — Replies

The Serena XML reply to a package install site list request contains zero to many <result>
tags. Each <result> tag contains site description and install status information about one
remote site associated with the named package.

A standard <response> tag follows the <result>, where it can serve as an end-of-list
marker. It reports the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

The example below shows what a package install list reply message might look like. Data
structure details for the <result> tag appear after the example in Exhibit 3-40.

Example XML — SITE PKG LIST Reply

<?xml version="1.0"?>
<service name="SITE">
 <scope name="PKG">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <siteName>SERT8</siteName>
 <installDate>20081231</installDate>
 <fromInstallTime>010000</fromInstallTime>
 <toInstallTime>020000</toInstallTime>
 <contactName>DDDDDDDD</contactName>
 <contactPhone>1234567</contactPhone>
 <alternateContactName>DDDDDDDD</alternateContactName>
 <alternateContactPhone>1234567</alternateContactPhone>
 <siteLibModel>CMNTP.SERT8.DEV.IMSQ.#000012</siteLibModel>
165

16

Chapter 3: Package Management
 <dateSent>20081028</dateSent>
 <timeSent>101800</timeSent>
 <dateReceived>20081028</dateReceived>
 <timeReceived>101800</timeReceived>
 <dateInstalled>20081028</dateInstalled>
 <timeInstalled>101900</timeInstalled>
 <dateBackedOut>20081212</dateBackedOut>
 <timeBackedOut>070200</timeBackedOut>
 <dateReverted>20081212</dateReverted>
 <timeReverted>070500</timeReverted>
 <backoutReasons>TEST</backoutReasons>
 <backoutReason01>TEST</backoutReason01>
 <db2InstallBindJobCount>00</db2InstallBindJobCount>
 <db2BackoutBindJobCount>00</db2BackoutBindJobCount>
 <db2RippleBindJobCount>00</db2RippleBindJobCount>
 <db2ReverseRippleBindJobCount>00</db2ReverseRippleBindJobCount>
 <revertUserid>USER24</revertUserid>
 <backoutUserid>USER24</backoutUserid>
 <siteStatus>DEV</siteStatus>
 </result>
 <response>
 <statusMessage>CMN8700I - Site Name service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-40. SITE PKG LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<alternateContactName> Optional 0 - 1 String (25),
variable

Name of alternate analyst or point of
contact for install problem.

<alternateContactPhone> Optional 0 - 1 String (15),
variable

Phone number of contact in
<alternateContactName>.

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<backoutReason01>
 .
 .
 .
<backoutReason09>

Optional 0 - 1
each

String (72),
variable

Up to nine sequential notations for
reason package backed out at site.

NOTE: If <dateBackedOut> is
non-zero, <backoutReason01> is
required.

<backoutReasons> Optional 0 - 1 String (72),
variable

Reason package backed out at site.

<backoutUserid> Optional 0 - 1 String (8),
variable

USERID that performed backout.
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<contactName> Optional 0 - 1 String (25),
variable

Name of analyst originating package,
or point of contact for install problem.

<contactPhone> Optional 0 - 1 String (15),
variable

Phone number of contact in
<contactName>.

<dateBackedOut> Optional 0 - 1 Date (8),
yyyymmdd

Date package backed out at site.

<dateInstalled> Optional 0 - 1 Date (8),
yyyymmdd

Date package installed at site.

<dateReceived> Optional 0 - 1 Date (8),
yyyymmdd

Date package received at site.

<dateReverted> Optional 0 - 1 Date (8),
yyyymmdd

Date package reverted.

<dateTempChangeCycled> Optional 0 - 1 Date (8),
yyyymmdd

Date temporary change expired.

<dateSent> Optional 0 - 1 Date (8),
yyyymmdd

Date package sent to site.

<db2BackoutBindJobCount> Optional 0 - 1 Integer (2),
fixed

Number of DB2 backout bind jobs
executed at site.

NOTE: Requires ZMF DB2 Option.

<db2InstallBindJobCount> Optional 0 - 1 Integer (2),
fixed

Number of DB2 install bind jobs
executed at site.

NOTE: Requires ZMF DB2 Option.

<db2Reverse
RippleBindJobCount>

Optional 0 -1 Integer (2),
fixed

Number of DB2 baseline reverse
ripple bind jobs executed at site.

NOTE: Requires ZMF DB2 Option.

<db2RippleBindJobCount> Optional 0 -1 Integer (2),
fixed

Number of DB2 baseline ripple bind
jobs executed at site.

NOTE: Requires ZMF DB2 Option.

<fromInstallTime> Optional 0 - 1 Time,
hhmmss

Start time for period during which
installation of package is planned at
named site, 24-hour format.

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned site install date for package.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<revertUserid> Optional 0 - 1 String (8),
variable

TSOID of reverter.

Exhibit 3-40. SITE PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
167

16

Chapter 3: Package Management
Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE

The Serena XML function to unfreeze package install sites unlocks these site assignments
for change. The XML service/scope/message tags for a package-level site unfreeze
message are:

<service name=”PACKAGE”>
<scope name=”SITES”>
<message name=”UNFREEZE”>

These tags appear in both requests and replies.

PACKAGE SITES UNFREEZE — Requests

The <request> tag syntax for a package install site unfreeze request is identical to that for
for many package information management functions, including the package description list
and package general description list. Only the name parameters in the high-level <scope>
and <message> tags differ, as shown above.

<siteLibModel> Optional 0 - 1 String (32),
variable

Fully qualified z/OS data set name of
library used as model for library setup
when package is installed.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of install site.

<siteStatus> Optional 0 - 1 String (3),
variable

Determined site status.

<timeBackedOut> Optional 0 - 1 Time (8),
hhmmss

Time package backed out, 24-hour.

<timeInstalled> Optional 0 - 1 Time (8),
hhmmss

Time package installed, 24-hour.

<timeReceived> Optional 0 - 1 Time (8),
hhmmss

Time package received, 24-hour.

<timeReverted> Optional 0 - 1 Time (8),
hhmmss

Time package reverted, 24-hour.

<timeSent> Optional 0 - 1 Time (8),
hhmmss

Time package sent, 24-hour.

<timeTempChangeCycled> Optional 0 - 1 Time (8),
hhmmss

Time temporary change expired,
24-hour format.

<toInstallTime> Optional 0 - 1 Time,
hhmmss

End time for period during which
installation of package is planned at
named site, 24-hour format.

Exhibit 3-40. SITE PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE SITES UNFREEZE — Replies

The Serena XML reply message to an unfreeze request for package install sites does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Package Install Sites - PACKAGE SITES REFREEZE

The Serena XML refreeze function for package install sites resets these previously unfrozen
assignments to frozen status, locking them down against change.

The XML service/scope/message tags for a package-level site refreeze message are:

<service name=”PACKAGE”>
<scope name=”SITES”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

PACKAGE SITES REFREEZE — Requests

The <request> tag syntax for a general package parameters refreeze request is identical to
that for an unfreeze request. Only the name parameter in the high-level <message> tag
differs, as shown above.

PACKAGE SITES REFREEZE — Replies

The Serena XML reply message to a refreeze request for package install sites does not
return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

List Package Installation Dependencies - PACKAGE SCH_RECS LIST

ChangeMan ZMF captures package installation dependencies in the package installation
schedule records. Serena XML can list all such dependency records for a package, or can
selectively determine whether a dependency exists between a package and a particular job.

The Serena XML service/scope/message names for message to list package installation
dependency records are:

<service name=”PACKAGE”>
<scope name=”SCH_RECS”>
<message name=”LIST”>

These tags appear in both request and reply messages.
169

17

Chapter 3: Package Management
PACKAGE SCH_RECS LIST — Requests

Serena XML supports two types of package installation dependency requests:

• List All Installation Dependencies — Name the desired package in the <package>
tag. Omit the <predecessorJob> and <successorJob> tags, or enter a “match-
all” (asterisk) wild card in each. The function returns a list of all predecessor and
successor jobs that must execute before or after package installation to complete a
successful install.

• Selective Installation Dependency Check — Name the desired package in the
<package> tag. Enter the job name to check for an installation dependency in the
<predecessorJob> tag, the <successorJob> tag, or both as appropriate.
Optionally, enter a wildcard pattern to check for several similar job names. The
function returns installation scheduling dependency information for the named job(s) if
such dependencies exist. Otherwise, no <result> is returned in the reply message.

The following example shows how you might code a request to list all package installation
dependencies in Serena XML. Notice the use of match-all wildcard characters in the
<predecessorJob> and <successorJob> tags. Data structure details for the <request>
tag appear in Exhibit 3-41.

Example XML — PACKAGE SCH_RECS LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SCH_RECS">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
 </request>
 </message>
 </scope>
</service>
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

PACKAGE SCH_RECS LIST — Replies

Serena XML returns zero to many <result> tags in package installation dependency list
reply. Each <result> tag contains the name of a predecessor job, a successor job, or both
that the package requires for successful installation. The <result> tag recurs as needed to
accommodate all scheduled predecessor and successor jobs.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag may serve as an end-of-list marker.

An example XML reply that lists package installation scheduling records appears on the next
page. Data structure details for the <result> tag follow in Exhibit 3-42.

Exhibit 3-41. PACKAGE SCH_RECS LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended to replace
<package>. Use <package>
instead of <applName> &
<packageId>.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName>
& <packageId>.

<predecessorJob> Optional 0 - 1 String (8),
variable

Name of job(s) that must run before
package is installed.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).

NOTE: Omit tag or use asterisk (*)
wildcard to list all predecessor jobs.

<successorJob> Optional 0 - 1 String (8),
variable

Name of job(s) that must run after
package is installed.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).

NOTE: Omit tag or use asterisk (*)
wildcard to list all successor jobs.
171

17

Chapter 3: Package Management
Example XML — PACKAGE SCH_RECS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SCH_RECS">
 <message name="LIST">
 <result>
 <package>TES5000001</package>
 <applName>TES5</applName>
 <packageId>000001</packageId>
 <successorJob>SCHJOB01</successorJob>
 <predecessorJob>SCHJOB02</predecessorJob>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-42. PACKAGE SCH_RECS LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<predecessorJob> Optional 0 - 1 String (8),
variable

Name of a job that must run before
package is installed.

<successorJob> Optional 0 - 1 String (8),
variable

Name of a job that must run after
package is installed.
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
List Package Implementation Instructions - PACKAGE IMP_INST LIST

You can retrieve package implementation instructions independently of other package
parameters using Serena XML. Results are returned for one package.

The Serena XML service/scope/message names for message to list implementation
instructions for a package are:

<service name=”PACKAGE”>
<scope name=”IMP_INST”>
<message name=”LIST”>

These tags appear in both request and reply messages.

PACKAGE IMP_INST LIST — Requests

The <request> tag syntax for request to list package implementation instructions is identical
to that for many package information management functions, including the package
description list and package general description list. Only the name parameter in the high-
level <scope> tag differs, as shown above.

PACKAGE IMP_INST LIST — Replies

The reply message for a package implementation instruction list includes one <result> tag
with package name and implementation instructions, if the package is found. This tag is
followed by a standard <response> tag that indicates the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example XML reply to a package description list request appears below. Data structure
details for the <result> tag follow the example in Exhibit 3-43.

Example XML — PACKAGE IMP_INST LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="IMP_INST">
 <message name="LIST">
 <result>
 <package>TES5000001</package>
 <applName>TES5</applName>
 <packageId>000001</packageId>
 <packageImplInst>CR153620</packageImplInst>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
173

17

Chapter 3: Package Management
 </scope>
</service>

List Package Approvers - APPROVER PKG LIST

The Serena XML function to list package approvers retrieves an instantiated list of actual
approvers for a named package. Actual approvers are those relevant to the named package
after applying the approver business rules established by your administrator. They comprise
a subset of relevant application approvers, emergency approvers for unplanned or temporary
changes, and approvers assigned to review this package by a customized ChangeMan ZMF
exit.

 Note

The list of authorized approvers for a package, before the application of
business rules, is associated with the parent application of the package rather
than the package itself. Application approvers are retrieved with a different
Serena XML function.

The Serena XML service/scope/message tags for a message to list package approvers are:

<service name=”APPROVER”>
<scope name=”PKG”>
<message name=”LIST”>

These tags appear in both request and reply messages.

The service name is “approver”, not “package”, because XML Services calls the low-
level approver maintenance service in ChangeMan ZMF to perform most tasks associated
with this function. The scope name, “pkg”, identifies this function as a package-level
service.

Exhibit 3-43. PACKAGE IMP_INST LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as
first 4 bytes of package name.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<packageImplInst> Optional 0 - 46 String (72),
variable

Implementation instructions in free
format text. Repeatable to
accommodate multiple lines of text.
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
APPROVER PKG LIST — Requests

Serena XML supports two types of package approver lists:

• All Approvers for Named Package — Name the desired package in the <package>
tag. Enter a “match-all” (asterisk) wildcard character in the <approverEntity> tag
or omit it altogether. Returns all package approvers and reports their approval actions
(approved, rejected, reviewing, no response).

• Approval Activity for Named Approver(s) — Name the desired package in the
<package> tag. Enter the desired approver entity ID, as defined to RACF or other
security system, in the <approverEntity> tag. Returns approver description for all
TSO user IDs associated with the named approver entity and reports their approval
actions (approved, rejected, reviewing, no response).

The following example shows how you might code a request to list all approvers for a
package. Data structure details for the <request> tag appear in Exhibit 3-44.

Example XML — APPROVER PKG LIST Request

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="PKG">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-44. APPROVER PKG LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended to replace
<package>. Use <package> instead
of <applName> & <packageId>.
175

17

Chapter 3: Package Management
APPROVER PACKAGE LIST — Replies

The Serena XML reply to a package approver list request returns zero to many <result>
tags. Each <result> tag contains information about one package approver, including TSO
user ID, the associated approver entity defined in RACF (or other security system), an
approver entity description, and approver status in the approval process. If multiple TSO user
IDs are associated with the RACF approval entity, each generates a separate <result> tag.

A standard <response> data element follows the last <result> tag, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag serves as an end-of-list marker.

An example XML reply that lists package approvers appears below. Data structure details for
the <result> tag follow in Exhibit 3-45.

Example XML — APPROVER PKG LIST Reply

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="PKG">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <approverEntity>ACTPLEAD</approverEntity>
 <approverDesc>Lead Programmer - ACTP Application</approverDesc>
 <approverAction>1</approverAction>
 <approvedDate>20090127</approvedDate>

<approverEntity> Optional 0 - 1 String (8),
variable

TSO user ID or security system entity
ID of desired package approver.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).

NOTE: Omit tag or use asterisk (*)
wildcard to list all approver entities.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

Exhibit 3-44. APPROVER PKG LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
 <approvedTime>083100</approvedTime>
 <approver>USER24</approver>
 <approvalOrder>10</approvalOrder>
 <userListCount>02</userListCount>
 <isApproverNotified>Y</isApproverNotified>
 <postApprovalNoticeEnabled>N</postApprovalNoticeEnabled>
 <notification>
 <notifierType>4</notifierType>
 <userList>USER24@SERENA.COM;USER24</userList>
 </notification>
 <notification>
 <notifierType>1</notifierType>
 <userList>USER24</userList>
 </notification>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <approverEntity>ACCTPAY</approverEntity>
 <approverDesc>Accounts Payable Manager</approverDesc>
 <approverAction>1</approverAction>
 <approvedDate>20090127</approvedDate>
 <approvedTime>083100</approvedTime>
 <approver>USER24</approver>
 <approvalOrder>20</approvalOrder>
 <userListCount>01</userListCount>
 <isApproverNotified>Y</isApproverNotified>
 <postApprovalNoticeEnabled>N</postApprovalNoticeEnabled>
 <notification>
 <notifierType>4</notifierType>
 <userList>USER24@SERENA.COM;USER24</userList>
 </notification>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
177

17

Chapter 3: Package Management

Exhibit 3-45. APPROVER PKG LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
fixed

ZMF application name. Same as first
4 bytes of package name.

<approvalOrder> Optional 0 - 1 Integer (2),
variable

Approval level or sequence assigned
to this approver entity for hierarchical
approvals.

<approvedDate> Optional 0 - 1 Date,
yyyymmdd

Date package approval action taken
by this approver. No punctuation.

<approvedTime> Optional 0 - 1 Time,
hhmmss

Time package approval action taken
by this approver. No punctuation.

<approver> Optional 0 - 1 String (8),
variable

TSO user ID of individual approver.
Mapped to <approverEntity> by
RACF or other security system.

<approverAction> Optional 0 - 1 Integer (1) Code for most recent approval action
of approver entity. Values:

1 = Approved
2 = Checkoff
3 = Rejected
4 = Review pending
5 = No response to notification

<approverDesc> Optional 0 - 1 String (44),
variable

Text description of approver level or
function (e.g., project leader, QA
manager) for <approverEntity>.

<approverEntity> Optional 1 String (8),
variable

Security system entity ID of package
approver. Mapped to TSO user ID in
<approver> by RACF or other
security system.

<checkoffList> Optional 0 - 14 String (72),
variable

Checkoff list.

<checkoffList01>
 .
 .
 .
<checkoffList14>

Optional 0 - 1
each

String (72),
variable

Text descriptions for up to 14
possible approval actions taken by
approver from custom-defined
checkoff list.

NOTE: At least one tag required if
value in <approverAction> = 2.

<isApproverNotified> Optional 0 - 1 String (1),
variable

Has approver entity been notified that
approval action is requested?

Y = Yes
N = No

<isLinkedApprover> Optional 0 - 1 String (1),
variable

Is this a linked package approver?

Y = Yes
N = No
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<notification> Subtag

The <notification> tag describes the notifications to be issued when this approver entity
takes an approval action. The tag represents a complex data structure with subtags of its
own. It is repeatable to accommodate multiple approvers and multiple notification methods.
Data structure details for this tag appear in Exhibit 3-46.

<notification> Optional 0 - 35 Complex Describes notifications sent when
this approver takes an approval
action. See Exhibit 3-46.

<package> Optional 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<postApprovalNoticeEnabled> Optional 0 - 1 String (1),
variable

Is this approver to be notified of
emergency/temporary changes for
post-installation approval review?

Y = Yes
N = No

<rejectReasons> Optional 0 - 10 String (72),
variable

Reject reasons.

<rejectReasons01>
 .
 .
 .
<rejectReasons10>

Optional 0 - 1
each

String (72),
variable

Up to ten sequentially numbered,
free-format text entries containing
reason(s) for package rejection by
approver.

NOTE: At least one tag required if
value in <approverAction> = 3.

<userListCount> Optional 0 - 1 Integer(2) The number of users to notify, the
number of returned <notification>
complex tags.

Exhibit 3-46. <notification> Subtag Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<notifierType> Optional 0 - 1 Integer (1) ZMF code for notification method to use
with notifications sent to users in
<userList>. Values:

1 = MVS Send message
4 = E-mail
5 = SERNET email msg
6 = Batch messaging job

Exhibit 3-45. APPROVER PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
179

18

Chapter 3: Package Management
List Affected Applications - PACKAGE AFF_APLS LIST

List the applications affected by a complex/super package using the Serena XML function to
list affected applications for a package. This function includes only complex and super
packages in its scope.

The Serena XML service/scope/message tags for a message to list applications affected by a
complex/super package are:

<service name=”PACKAGE”>
<scope name=”AFF_APLS”>
<message name=”LIST”>

These tags appear in both request and reply messages.

PACKAGE AFF_APLS LIST — Requests

The <request> tag syntax for a request to list affected applications is identical to that for a
request to list general package parameters. Only the name parameter in the high-level
<scope> tag differs, as shown above. However, additional data constraints apply. (See
Exhibit 3-47.

<userList> Optional 0 - 1 String (44),
variable

List of individual approvers to notify
when the named approver entity takes
an approval action. List consists of user
TSO IDs or E-mail addresses separated
by commas.

NOTE: TSO IDs required if
<notifierType> = 1.

NOTE: E-mail addresses required if
<notifierType> = 4 or 5.

Exhibit 3-47. PACKAGE AFF_APLS LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
<package> substitute. Use
<package> instead of
<applName> & <packageId>.

Exhibit 3-46. <notification> Subtag Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE AFF_APLS LIST — Replies

The Serena XML reply message for this function returns zero to many <result> tags. Each
<result> contains names one application affected by the named complex/super package. If
no participating packages are attached to the complex/super package, no <result> tags
are returned.

A standard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

An example XML reply that lists all affected applications for a package appears below. Data
structure details for the <result> tag follow in Exhibit 3-48.

Example XML — PACKAGE AFF_APLS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="AFF_APLS">
 <message name="LIST">
 <result>
 <package>TES5000003</package>
 <applName>TES5</applName>
 <packageId>000003</packageId>
 <affectedAppl>ACTP</affectedAppl>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

<package> Required 0 - 1 String (10),
fixed

Fixed-format ZMF package name
for the complex/super package.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

Exhibit 3-47. PACKAGE AFF_APLS LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
181

18

Chapter 3: Package Management
List Participating Packages - PACKAGE PRT_PKGS LIST

List the participating applications in a complex/super package using the Serena XML function
to list participating packages. This function includes only complex/super packages in its
scope.

The Serena XML service/scope/message tags for a message to list participating packages
for a complex/super package are:

<service name=”PACKAGE”>
<scope name=”PRT_PKGS”>
<message name=”LIST”>

These tags appear in both request and reply messages.

PACKAGE PRT_PKGS LIST — Requests

The <request> tag syntax for a request to list participating packages is identical to that for a
request to list affected applications. (See Exhibit 3-47.) Only the name parameter in the high-
level <scope> tag differs, as shown above.

PACKAGE PRT_PKGS LIST — Replies

The Serena XML reply message for this function returns zero to many <result> tags. Each
<result> names one participating package in the named complex/super package. If no
participating packages are attached to the complex/super package, no <result> tags are
returned.

A standard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

An example XML reply that lists participating packages follows. Data structure details for the
<result> tag appear in Exhibit 3-49.

Exhibit 3-48. PACKAGE AFF_APLS LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<affectedAppl> Optional 0 - 1 String (8),
variable

ZMF application name for a
participating package.

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

<package> Optional 0 - 1 String (10),
fixed

Fixed-format ZMF package name
for the complex/super package.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Example XML — PACKAGE PRT_PKGS LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRT_PKGS">
 <message name="LIST">
 <result>
 <package>TES5000002</package>
 <applName>TES5</applName>
 <packageId>000002</packageId>
 <partPackage>TES5000003</partPackage>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

List Linked Packages - PACKAGE PKG_LINK LIST

Serena XML provides a means for ChangeMan ZMF customers to list any packages on
remote LPARs or non-mainframe servers that are linked (via external software) to an
explicitly named ChangeMan ZMF package on the local mainframe LPAR. Only simple
packages on the local LPAR are included in the scope of this function.

The XML service/scope/message names for a message to list linked packages are:

<service name=”PACKAGE”>
<scope name=”PKG_LINK”>
<message name=”LIST”>

Exhibit 3-49. PACKAGE PRT_PKGS LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<package> Optional 0 - 1 String (10),
fixed

Fixed-format ZMF package name of
complex/super package.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

<partPackage> Optional 0 - 1 String (10),
variable

Fixed-format ZMF name of participating
package in the complex/super package
named in <package>.
183

18

Chapter 3: Package Management
These tags appear in both request and reply messages.

PACKAGE PKG_LINK LIST — Request

Serena XML supports the following linked package list options:

• All Remote Packages Linked to a Local Package — Name the desired local
package in the <package> tag. Omit all other subtags of the <request> element.
The function returns a list of all remote packages linked to the local package.

• All Local Packages Linked to a Remote Package — Name the desired remote
package in the <linkPackage> tag. The package naming conventions of the remote
system are accepted in <linkPackage>. Omit all other subtags of the <request>
data element. The function returns a list of all local packages linked to the named
remote package.

• All Local Packages Linked to Packages on a Remote Server — In tag
<sourceLinkIpAddress>, enter the name or IP address of the desired remote
server. Use the same naming or addressing conventions used by the remote link
management software when it passes these values to ChangeMan ZMF. Omit all
other subtags of the <request> data element. The function returns a list of all local
packages linked to remote packages that reside on the named remote server.

• All Local Packages Linked Elsewhere by a User — Enter the name or TSO user ID
of the desired link requestor in the <linkRequestor> tag. Omit all other subtags of
the <request> data element. The function returns a list of all local packages linked
to remote packages when those links were requested by the named user.

The following example shows how you might code a request to list all remote, linked
packages for a named local package using Serena XML. Data structure details for the linked
package list <request> tag appear in Exhibit 3-50.

Example XML — PACKAGE PKG_LINK LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PKG_LINK">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000003</package>
 </request>
 </message>
 </scope>
</service>
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

PACKAGE PKG_LINK LIST — Replies

The linked package list reply contains zero to many <result> tags. Each <result>
contains information about a package on the local LPAR that is linked to at least one remote
package with the requested characteristics. Remote package name(s), application, server,
and link requestor are included as they are stored in the package master records for the local
package. Information such as package level, type, and status pertain to the local package,
not the linked remote package(s).

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a Serena XML reply message, the <response> tag serves as an end-of-list marker.

An example reply to a linked package list request follows. Data structure details for the linked
package list <result> tag appear in Exhibit 3-51.

Example XML — PACKAGE PKG_LINK LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">

Exhibit 3-50. PACKAGE PKG_LINK LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<linkPackage> Optional 0 - 1 String (255),
variable

Name(s) of one or more linked package(s)
on remote server, delimited by semicolons.
Package naming conventions are those of
remote system.

<linkRequestor> Optional 0 - 1 String (20),
variable

Name or TSO user ID of package link
requestor.

<package> Required 0 - 1 String (10),
fixed

Fixed-format ZMF package name for target
package on local LPAR.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.

<sourceLinkIpAddress> Optional 0 - 1 String (255),
variable

Network IP address for remote server
where linked package resides.

NOTE: ZMF stores address as provided by
external link management software. May
contain server name known to that software
instead of an IP address.

<sourceLinkPortid> Optional 0 - 1 String (8),
variable

Network port ID for remote server where
linked package resides.
185

18

Chapter 3: Package Management
 <scope name="PKG_LINK">
 <message name="LIST">
 <result>
 <package>TES5000003</package>
 <applName>TES5</applName>
 <packageId>000003</packageId>
 <packageLevel>4</packageLevel>
 <packageType>1</packageType>
 <packageStatus>6</packageStatus>
 <installDate>20091231</installDate>
 <linkPackage></linkPackage>
 <sourceLinkIpAddress></sourceLinkIpAddress>
 </result>
 <response>
 <statusMessage>CMN8764I - Package is not Linked.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8764</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-51. PACKAGE PKG_LINK LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned install date for local package.

<linkDate> Optional 0 - 1 Date,
yyyymmdd

Link date.

<linkPackage> Optional 0 -1 String (255),
variable

Name(s) of one or more linked package(s)
on remote server, delimited by semicolons.
Naming conventions are those of remote
system.

<linkRequestor> Optional 0 - 1 String (20),
variable

Name or TSO user ID of package link
requestor.

<linkTime/> Optional 0 - 1 Time,
hhmmss

Link time

<package> Optional 0 - 1 String (10),
fixed

ZMF fixed-format package name for local
package.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
List Package Library Types - LIBTYPE PKG LIST

You can retrieve library type specifications for a package using the Serena XML package
library type list function. These specifications are defined separately by your
ChangeMan ZMF administrator.

<packageLevel> Optional 0 - 1 String (1) Code for package complexity or level in
hierarchy of local package. Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package

<packageStatus> Optional 0 - 1 String (1) Code for status of local package in
lifecycle. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
 completed

<packageType> Optional 0 - 1 String (1) Code for package install type of local
package. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

<sourceLinkIpAddress> Optional 0 - 1 String (255),
variable

Network IP address for remote server
where linked package resides.

NOTE: ZMF stores address as provided by
external link management software. May
contain server name known to that software
instead of an IP address.

<sourceLinkPortid> Optional 0 - 1 String (8),
variable

Network port ID for remote server where
linked package resides.

Exhibit 3-51. PACKAGE PKG_LINK LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
187

18

Chapter 3: Package Management
The Serena XML service/scope/message tags and attributes for messages to list package
library type records are:

<service name=”LIBTYPE”>
<scope name=”PKG”>
<message name=”LIST”>

These tags appear in both requests and replies.

The service name is “libtype”, not “package”, because XML Services calls the low-level
library type management service in ChangeMan ZMF to perform most tasks associated with
this function. The scope name, “pkg”, identifies this message as a package-level service.

LIBTYPE PKG LIST — Requests

You can request specifications for one or more library types defined for a named package. To
retrieve all library type specifications for the package, no library type name is required.
Specifications for an explicitly named library can also be requested. Filtering by DB2 library
type is an additional option.

The following example shows how you might code a request to list all library types for a
package that are not DB2 libraries. Data structure details for the <request> data element
appear in Exhibit 3-52.

Example XML —LIBTYPE PKG LIST Request

<?xml version="1.0"?>
<service name="LIBTYPE">
 <scope name="PKG">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

LIBTYPE PKG LIST — Replies

The reply message listing package library types returns zero to many <result> data
elements. Each <result> tag contains specifications for one library type defined for the
named package.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

The following example shows what a Serena XML package library list reply message might
look like. Data structure details for the <result> tag appear in Exhibit 3-53.

Exhibit 3-52. LIBTYPE PKG LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
<package> substitute. Use
<package> instead of <applName> &
<packageId>.

<isDb2LibType> Optional 0 - 1 String (1) Y = Include only DB2 libraries.
N = Omit all DB2 libraries.

NOTE: Omit tag or use asterisk (*)
wildcard to request both DB2 and non-
DB2 library types.

<libType> Optional 0 - 1 String (3),
variable

Name of specific library type to list.

NOTE: Omit tag or use asterisk (*)
wildcard to request all library types.

<package> Optional 0 - 1 String (10),
fixed

Fixed-format ZMF name of package for
which library type info is requested.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
189

19

Chapter 3: Package Management
Example XML — LIBTYPE PKG LIST Reply

<?xml version="1.0"?>
<service name="LIBTYPE">
 <scope name="PKG">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <libType>CPC</libType>
 <likeType>1</likeType>
 <isPdseLibType>N</isPdseLibType>
 <chkOutComponentGenDesc>N</chkOutComponentGenDesc>
 <chkOutActivityFile>N</chkOutActivityFile>
 <deferStageLibCreation>Y</deferStageLibCreation>
 <includeUtilityInfo>N</includeUtilityInfo>
 <libTypeDesc>Copybooks common</libTypeDesc>
 <isImsLibType>N</isImsLibType>
 <isDb2LibType>N</isDb2LibType>
 <ddlSqlSubType>N</ddlSqlSubType>
 <storedProcSubType>N</storedProcSubType>
 <triggerSubType>N</triggerSubType>
 <bindControlSubType>N</bindControlSubType>
 <packageBindControlSubType>N</packageBindControlSubType>
 <sqlStoredProcDefinition>N</sqlStoredProcDefinition>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8600I - The package library type list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<apsDevLib> Optional,
APS only

0 - 1 String (44),
variable

Name of APS development library
associated with this ZMF library type.

NOTE: If <isApsLibType> is Y, this tag
is required.

<apsEntity> Optional,
APS only

0 - 1 String (8),
variable

Name of APS entity type associated with
this ZMF library type.

NOTE: If <isApsLibType> is Y, this tag
is required.

<bindControlSubType> Optional,
DB2 only

0 - 1 String (1) Y = Yes, bind control library subtype
N = No, not bind control library subtype

<chkOutActivityFile> Optional 0 - 1 String (1) Y = Yes, copy component to activity file
 at checkout
N = Don’t make activity file copy

NOTE: Tag <chkOutActivityFile>
also required if value is Y.

<chkOutComponentGenDesc> Optional 0 - 1 String (1) Y = Yes, copy component general
 description to staging change
 description at checkout
N = No, leave component
 change description blank
 in staging at checkout

<db2SqlTerminationChar> Optional,
DB2 only

0 - 1 String (1) DB2 SQL sentence termination
character.

<dbrmSubType> Optional 0 - 1 String (1) Y = Yes, DBRM subtype
N = Not DBRM subtype

<ddlSqlSubType> Optional,
DB2 only

0 - 1 String (1) Y = Yes, SQL DDL library subtype
N = No, not SQL DDL library subtype

<deferStageLibCreation> Optional 0 - 1 String (1) Y = Yes, defer allocation of library
 type in staging library to first
 component checkout
N = No, don’t defer library allocation

<imsEntity> Optional,
IMS only

0 - 1 String (1) Code for IMS entity type associated with
this ZMF library type. Values:

1 = PSB source
2 = DBD source
3 = MFS source
4 = PSB target
5 = DBD target
6 = FMT target
7 = REF target

NOTE: If <isImsLibType> is Y, this tag
is required.

<includeUtilityInfo> Optional 0 - 1 String (1) Y = Yes, include scratch/rename
 utility info with library type.
N = No, omit scratch/rename info.

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
191

19

Chapter 3: Package Management
<isApsLibType> Optional 0 - 1 String (1) Y = Yes, this is APS library type
N = No, not APS library type

<isDb2LibType> Optional 0 - 1 String (1) Y = Yes, this is DB2 library type
N = No, not DB2 library type

<isHfsLibType> Optional 0 - 1 String (1) Y = Yes, this is HFS library type
N = No, not HFS library type

<isImsLibType> Optional 0 - 1 String (1) Y = Yes, this is IMS library type
N = No, not IMS library type

NOTE: Tag <imsEntity> also required
if value is Y.

<isPdseLibType> Optional 0 - 1 String (1) Y = Yes, this is PDSE library type
N = No, not PDSE library type

<libType> Required 1 String (3),
variable

Name of library type for which
specifications are reported.

<libTypeDesc> Optional 0 - 1 String (44),
variable

Text description of library type.

<librarySequenceNo> Optional 0 - 1 Integer Library sequence number

<likeType> Optional 0 - 1 String (1) Code for “like-library” type assigned to
library type name. Values:

1 = Like Copy Library
2 = Like Load Library
3 = Like Other Library
4 = Like PDS Library
5 = Like Source Library
6 = Like Ncal Library
7 = Like Object Library

NOTE: Tag <targetLoadLibType>
also required if value is 5.

<package> Required 1 String (10),
fixed

ZMF fixed-format package name.

<packageBindControlSubType> Optional,
DB2 only

0 - 1 String (1) Y = Yes, package bind control subtype
N = No, not package bind ctrl subtype

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

<sqlStoredProcDefinition> Optional,
DB2 only

0 - 1 String (1) Y = Yes, SQL stored proc definition
N = No, not SQL stored proc definition

<storedProcSubType> Optional,
DB2 only

0 - 1 String (1) Y = Yes, DB2 stored procedure subtype
N = No, not stored procedure subtype

<targetActivityFile> Optional 0 - 1 String (3),
variable

Name of target activity file library type
associated with this library.

NOTE: This tag is required if value in
<chkOutActivityFile> is Y.

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
List Package Promotion History - PACKAGE PRM_HIST LIST

Promotion history records for a package as a whole can be listed using the package
promotion history list function. Promotion history listings for components in a package require
a different Serena XML function. (See Package Promoted Component List - PACKAGE
PRM_CMP LIST.)

The Serena XML service/scope/message names for a package promotion history list
message are:

<service name=”PACKAGE”>
<scope name=”PRM_HIST”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE PRM_HIST LIST — Request

This function supports two promotion history request types:

• All Promotion Actions at All Sites — Name the desired package in the <package> tag
and enter a “1” in the <requestType> tag. Returns a complete history of all promotion
and demotion actions taken against the named package on all sites.

• Current Promotion Status at Selected Site(s) — Name the desired package in the
<package> tag and enter a “2” in the <requestType> tag. Specify a site of interest in
the <promotionSiteName> tag; for all sites, omit this tag or enter a “match-all”
(asterisk) wildcard character. Returns the current promotion status of the named package
at the specified sites. If the site has prior promotion history, then that information is
returned. If the only history associated with the site is the ‘submitted’ request, then no
information is returned for the site.

To further narrow either type of request, specify a promotion level or site of interest. You can
also filter promotion status and promotion action using appropriate yes/no flag tags.

<targetLoadLibType> Optional 0 - 1 String (3),
variable

Name of “like-Load” target library type
associated with this source library.

NOTE: This tag is required if value in
<likeLibType> is 5.

<triggerSubType> Optional,
DB2 only

0 - 1 String (1) Y = Yes, DB2 trigger library subtype
N = No, not DB2 trigger library subtype

Exhibit 3-53. LIBTYPE PKG LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
193

19

Chapter 3: Package Management
 Note

Yes/no flags for status and action filtering each take default values as a
group. The default changes based on whether or not you enter explicit values in
these tags, as follows:
• If no status flag in a group has an explicitly typed value, the default for all tags

in that group is “Y”.
• If any status flag in a group has an explicitly typed value, the default for the

remaining tags in the group is “N”.

The following example shows how you might code a request to list the full package promotion
history for all promotion sites where a “selective promote” or “selective demote” is the most
recent promotion action taken for a package. Data structure details follow in Exhibit 3-54.

Example XML — PACKAGE PRM_HIST LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_HIST">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<firstPromotion> Optional 0 - 1 String (1) Y = Yes, include first promotes
N = No, omit first promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
<fullDemotion> Optional 0 - 1 String (1) Y = Yes, include full demotes
N = No, omit full demotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<fullPromotion> Optional 0 - 1 String (1) Y = Yes, include full promotes
N = No, omit full promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobBuilt> Optional 0 - 1 String (1) Y = Yes, include built jobs
N = No, omit built jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobCompleted> Optional 0 - 1 String (1) Y = Yes, include completed jobs
N = No, omit completed jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobFailed> Optional 0 - 1 String (1) Y = Yes, include failed jobs
N = No, omit failed jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<jobSubmitted> Optional 0 - 1 String (1) Y = Yes, include submitted jobs
N = No, omit submitted jobs

NOTE: Member of promotion status flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

<promotionLevel> Optional 0 - 1 String (2),
variable

Numeric promotion level for which
promotion history is requested.

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
195

19

Chapter 3: Package Management
PACKAGE PRM_HIST LIST — Reply

The XML reply to a promotion history list request includes zero to many <result> tags. For
full promotion history lists (i.e., the value in <requestType> is “1”), each <result>
contains a package promotion or demotion record for a particular site and level. For
promotion site status lists (i.e., the value in <requestType> is “2”), each <result>
contains current package promotion status for a site.

A standard <response> tag follows the last <result> tag, if any, to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag may serve as an end-of-list marker.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF promotion level nickname for which
promotion history is requested.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site for which
promotion history or status requested.

NOTE: Accepts standard wildcards &
patterns using question mark (?) &
asterisk (*).

NOTE: Omit tag or use asterisk (*)
wildcard to list all promotion sites,
regardless of request type.

<requestType> Optional 0 - 1 String (255,
variable

Code for type of promotion history list
requested. Values:

1 = Full promotion history (default)
2 = Site promotion status
3 = Full promotion history, including site
 locks.

<selectiveDemotion> Optional 0 - 1 String (1) Y = Yes, include selective demotes
N = No, omit selective demotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<selectivePromotion> Optional 0 - 1 String (1) Y = Yes include selective promotes
N = No, omit selective promotes

NOTE: Member of promotion action flag
tag group. If no tag in group has explicit
value, default value is Y. If any tag in
group has explicit value, default is N.

<siteLock> Optional 0 - 1 String (1) Y = site is locked
N = site is not locked

Exhibit 3-54. PACKAGE PRM_HIST LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
An example XML reply to a package promotion history list request appears below. Data
structure details for the <result> tag follow in Exhibit 3-55.

Example XML — PACKAGE PRM_HIST LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_HIST">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>C001AUT</promotionName>
 <promoter>USER24</promoter>
 <promotionDate>20081019</promotionDate>
 <promotionTime>201225</promotionTime>
 <fullPromotion>Y</fullPromotion>
 <fullDemotion>N</fullDemotion>
 <selectivePromotion>N</selectivePromotion>
 <selectiveDemotion>N</selectiveDemotion>
 <firstPromotion>N</firstPromotion>
 <jobSubmitted>N</jobSubmitted>
 <jobCompleted>Y</jobCompleted>
 <jobFailed>N</jobFailed>
 <jobBuilt>N</jobBuilt>
 <componentCount>0000020</componentCount>
 </result>
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>C001AUT</promotionName>
 <promoter>USER24</promoter>
 <promotionDate>20081019</promotionDate>
 <promotionTime>201633</promotionTime>
 <fullPromotion>N</fullPromotion>
 <fullDemotion>Y</fullDemotion>
 <selectivePromotion>N</selectivePromotion>
 <selectiveDemotion>N</selectiveDemotion>
 <firstPromotion>N</firstPromotion>
 <jobSubmitted>N</jobSubmitted>
 <jobCompleted>Y</jobCompleted>
 <jobFailed>N</jobFailed>
 <jobBuilt>N</jobBuilt>
 <componentCount>0000019</componentCount>
 </result>
.
.

197

19

Chapter 3: Package Management
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-55. PACKAGE PRM_HIST LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<componentCount> Optional 0 - 1 Integer (7),
variable

Number of components included in
promotion action.

<firstPromotion> Optional 0 -1 String (1) Y = Yes, action is first promote
N = No, not first promote

<fullDemotion> Optional 0 -1 String (1) Y = Yes, action is full demote
N = No, not full demote

<fullPromotion> Optional 0 -1 String (1) Y = Yes, action is full promote
N = No, not full promote

<jobBuilt> Optional 0 -1 String (1) Y = Yes, promotion job built
N = No, job not built

<jobCompleted> Optional 0 -1 String (1) Y = Yes, promotion job completed
N = No, job not completed

<jobFailed> Optional 0 -1 String (1) Y = Yes, promotion job failed
N = No, job did not fail

<jobSubmitted> Optional 0 -1 String (1) Y = Yes, promotion job submitted
N = No, job not submitted

<package> Optional 0 -1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

<promoter> Optional 0 - 1 String (8),
variable

TSO user ID of package promoter for
reported promotion action.

<promotionDate> Optional 0 - 1 Date,
yyyymmdd

Date of reported promotion action.

<promotionLevel> Optional 0 - 1 String (2),
variable

Numeric promotion level for which
promotion action & status are reported.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname of promotion level for
which action & status are reported
8

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
Package Promoted Component List - PACKAGE PRM_CMP LIST

List the promotion history of all components in a named package using the Serena XML
component promotion history list. A promotion history list for the package as a whole requires
a different Serena XML function. (See List Package Promotion History - PACKAGE
PRM_HIST LIST.)

The Serena XML service/scope/message names for a component promotion history list are:

<service name=”PACKAGE”>
<scope name=”PRM_CMP”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE PRM_CMP LIST — Request

This component promotion history function requests all component promotion history records
for a specific package at a specific promotion site and level. No further filtering options exist.

The following example shows how you might code a component promotion history request in
Serena XML. Data structure details follow the example in Exhibit 3-56.

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site for which
promotion action & status are reported.

<promotionSuccessDate> Optional 0 - 1 Date,
yyyymmdd

Date of successful promotion.

<promotionSuccessTime> Optional 0 - 1 Time,
hhmms

Time of successful promotion.

<promotionTime> Optional 0 - 1 Time,
hhmmss

Time of reported promotion action.

<selectiveDemotion> Optional 0 -1 String (1) Y = Yes, action is selective demote
N = No, not selective demote

<selectivePromotion> Optional 0 -1 String (1) Y = Yes, action is selective promote
N = No, not selective promote

<siteLock> Optional 0 - 1 String (1) Y = Site is locked.
N = Site is not locked.

Exhibit 3-55. PACKAGE PRM_HIST LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
199

20

Chapter 3: Package Management
Example XML — PACKAGE PRM_CMP LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_CMP">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionLevel>10</promotionLevel>
 <promotionName>*</promotionName>
 <shortSelectList>Y</shortSelectList>
 </request>
 </message>
 </scope>
</service>

Exhibit 3-56. PACKAGE PRM_CMP LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

<promotionLevel> Required 1 Integer (2),
variable

Numeric promotion level for which
promotion action & status are requested.

<promotionName> Required 1 String (8),
variable

ZMF nickname of promotion level for
which action & status are requested

<promotionSiteName> Required 1 String (8),
variable

ZMF name of promotion site for which
promotion action & status are requested.

<shortSelectList> Required 1 String (1) Y = Limit the selection list for selective
 promotion to package components
 that are not currently promoted to the
 target level, including components that
 may have been re-staged, newly
 activated into the package, or overlaid
 by promotion of another package.
N = Display all package components on
 the selective promotion selection list.
0

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
PACKAGE PRM_CMP LIST — Reply

The reply message for the Serena XML component promotion history list function returns
zero to many <result> tags. Each <result> contains promotion action and status
information for one component in the named package at the named promotion site and level.
If no components have been promoted to that site and level, no <result> tags are returned.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

An example Serena XML reply to a component promotion history list request follows. Data
structure details for the <result> tag appear in Exhibit 3-57.

Example XML — Package Prm_Cmp List Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PRM_CMP">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <component>IM2Q101</component>
 <componentType>DBB</componentType>
 <stagedDate>20081019</stagedDate>
 <stagedTime>200843</stagedTime>
 <stager>USER24</stager>
 <componentStatus>0</componentStatus>
 <promotionSiteName>SERT8</promotionSiteName>
 <promotionName>C001AUT</promotionName>
 <promotionLevel>10</promotionLevel>
 <promoter>USER24</promoter>
 <promotionDate>20081212</promotionDate>
 <promotionTime>100135</promotionTime>
 <isComponentRestaged>N</isComponentRestaged>
 <cleanupComponent>N</cleanupComponent>
 <isComponentOverlayed>N</isComponentOverlayed>
 <isComponentDeleted>N</isComponentDeleted>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8600I - The Promotion list is complete.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
201

20

Chapter 3: Package Management
 </scope>
</service>

Exhibit 3-57. PACKAGE PRM_CMP LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF package ID number. Same as last
6 bytes of <package>.

<cleanupComponent> Optional 0 - 1 String (1) Y = Yes, clean up component
N = No, don’t clean up

<component> Optional 0 - 1 String (256),
variable

Name of component for which promotion
action and status are reported.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentStatus> Optional 0 - 1 String (1) Status code for listed component. Values:

0 = Active
1 = Approved
2 = Checked out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote promoted
B = Submitted
C = Unfrozen

<componentType> Optional 0 - 1 String (3),
variable

Library type for listed component.

<isComponentDeleted> Optional 0 - 1 String (1) Y = Yes, component deleted
N = No, not deleted

<isComponentOverlayed> Optional 0 - 1 String (1) Y = Yes, component is overlaid
N = No, not overlaid

<isComponentRestaged> Optional 0 - 1 String (1) Y = Yes, component is restaged
N = No, not restaged

<package> Optional 0 - 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF application name. Same as first
4 bytes of <package>.

<promoter> Optional 0 - 1 String (8),
variable

TSO user ID of component promoter.
2

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
List Reasons for Backout or Revert - PACKAGE REASONS LIST

The package reasons list function lists backout or revert reasons for a specific package.

The Serena XML service/scope/message tags for a package reasons list message are:

<service name=”PACKAGE”>
<scope name=”REASONS”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE REASONS LIST Requests

An example of how you might code a Serena XML request to list backout or revert reasons
appears below. Data structure details for the <request> tag appear in Exhibit 3-58.

Example XML — PACKAGE REASONS LIST Request

<?xml version=”1.0”?>
<service name="PACKAGE">
 <scope name="REASONS">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>

<promotionDate> Optional 0 - 1 Date,
yyyymmdd

Date component promoted to this site
and level.

<promotionLevel> Optional 0 - 1 Integer (2),
variable

Numeric promotion level for which
promotion action & status are reported.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname of promotion level for
which action & status are reported

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site for which
promotion action & status are reported.

<promotionTime> Optional 0 - 1 Time,
hhmmss

Time component promoted to this site
and level, 24-hour format.

<stagedDate> Optional 0 - 1 Date,
yyyymmdd

Date component staged.

<stagedTime> Optional 0 - 1 Time,
hhmmss

Time component staged, 24-hour format.

<stager> Optional 0 - 1 String (8),
variable

TSO user ID of developer who staged
component.

Exhibit 3-57. PACKAGE PRM_CMP LIST <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
203

20

Chapter 3: Package Management
 <request>
 <package>ACTP000012</package>
 </request>
 </message>
 </scope>
</service>

PACKAGE REASONS LIST — Reply

The reply message for the Serena XML package reasons list function returns zero to one
<result> tags. If there are no backout or revert reasons for the requested package, no
<result> tags are returned.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

Exhibit 3-58. PACKAGE REASONS LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<fromDate> Optional 0 - 1 Date,
yyyymmdd

Start date in desired range of
backout/revert dates.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6) ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

<reasonType Optional 0 - 1 String (1) Reason type:

B = Backout
R = Revert

<siteName> Optional 0 - 1 String (8),
variable

Site name.

<toDate> Optional 0 - 1 Date,
yyyymmdd

End date in desired range of
backout/revert dates.

<updater> Optional 0 - 1 String (8) TSO user ID of last user to back out
or revert the package.
4

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide
An example Serena XML reply to a package reasons list request follows. Data structure
details for the <result> tag appear in Exhibit 3-59.

Example XML — Package Reasons List Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="REASONS">
 <message name="LIST">
 <result>
 <package>ACTP000012</package>
 <applName>ACTP</applName>
 <packageId>000012</packageId>
 <reasonType>R</reasonType>
 <siteName>SERT8</siteName>
 <updater>USER109</updater>
 <updateDate>20120718</updateDate>
 <updateTime>073744</updateTime>
 <reasons>reverted</reasons>
 <reason01>reverted</reason01>
 </result>
 <response>
 <statusMessage>CMN8600I - LIST Reasons service completed.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 3-59. PACKAGE REASONS LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

<package> Optional 0 -1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6) ZMF package ID number. Same as
last 6 bytes of package name.

<reason01> Optional 0 - 1 String (72),
variable

Reason line - 1.

<reason02> Optional 0 - 1 String (72),
variable

Reason line - 2.

<reason03> Optional 0 - 1 String (72),
variable

Reason line - 3.
205

20

Chapter 3: Package Management
<reason04> Optional 0 - 1 String (72),
variable

Reason line - 4.

<reason05> Optional 0 - 1 String (72),
variable

Reason line - 5.

<reason06> Optional 0 - 1 String (72),
variable

Reason line - 6.

<reason07> Optional 0 - 1 String (72),
variable

Reason line - 7.

<reason08> Optional 0 - 1 String (72),
variable

Reason line - 8.

<reason09> Optional 0 - 1 String (72),
variable

Reason line - 9.

<reasonType Optional 0 - 1 String (1) Reason type:

B = Backout
R = Revert

<reasons> Optional 0 - 9 String (72),
variable

Reasons lines 1 - 9.

NOTE: The <reasons> tag is
deprecated and contains the same
information as <reason01> --
<reason09>.

<siteName> Optional 0 - 1 String (8),
variable

Site name.

<updateDate> Optional 0 - 1 Date,
yyyymmdd

Date that the package was backed
out or reverted.

<updateTime> Optional 0 - 1 Time,
hhmmss

Time that the package was backed
out or reverted.

<updater> Optional 0 - 1 String (8) TSO user ID of user who backed
out or reverted the package.

Exhibit 3-59. PACKAGE REASONS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

COMPONENT MANAGEMENT
4

Component management tasks supported by Serena XML fall into the following categories:

• Component Lifecycle Tasks — Development tasks that comprise or enable a significant
step in the component lifecycle. Typical commands are checkout, checkin, browse,
compare, build, recompile, relink, lock, unlock, scratch, and rename.

• Component Staging Version Management — Control and information retrieval tasks
for multiple component versions maintained concurrently in the staging/development
library. Such commands include list and retrieve.

• Component Information Management Tasks — Tasks that retrieve or manage
descriptive metadata or control information about a component, such as component
descriptions or staging version change descriptions. Typical commands include list.

• Component Security Tasks — Tasks that validate or manage component access
security. Typical commands are check and list.

COMPONENT MANAGEMENT MESSAGE SYNTAX

Identifying Component Messages

All Serena XML component management messages have syntax that tells ChangeMan ZMF to
perform a task against a component rather than some other object. In all such messages, the
name attribute in the <service> takes the value “cmponent”, as follows:

<service name=”CMPONENT”>

 Tip

Note the abbreviated spelling of “cmponent” in the name attribute! This value is
truncated because ChangeMan ZMF limits name attributes to eight bytes in length.

In addition, a component management task takes a value in the name attribute of the
<scope> tag that is consistent with work at the level of individual components. For example,
any Serena XML component message with a name attribute of “service” in the <scope>
tag is a component-only, component-level task. For example:

<service name=”cmponent”>
<scope name=”service”>
207

20

Chapter 4: Component Management
Other purely component-level name attributes for the <scope> tag include “ssv_ver”,
“history”, “gen_desc”, “chg_desc”, and the like.

Component tasks performed at a higher level of aggregation — such as the package level —
indicate their higher-level scope in the <scope> tag. For example, attribute values such as
“pkg_src” or “pkg_lod” broaden the scale of a component management function to
include the components of an entire package as a group. At the same time, these attributes
exclude any shared components that reside in packages not named in the request. This
behavior classifies such requests as package-level component tasks rather than component-
only tasks — even though, for technical reasons, they are performed by the low-level
component service.

For the purposes of this manual, then, syntax such as the following identifies a package-level
component function rather than a component-only function:

<service name=”CMPONENT”>
<scope name=”PKG_SRC”>

Such tasks are discussed in the package management topic.

COMPONENT LIFECYCLE TASKS

The following component lifecycle tasks are supported by Serena XML for general use:

• Check Out a Component - CMPONENT
SERVICE CHECKOUT

• Relink a Component - CMPONENT
SERVICE RELINK

• Component Service Checkin -
CMPONENT SERVICE CHECKIN

• Browse a Component - CMPONENT
SERVICE BROWSE

• Check Designated Build Procedures -
CMPONENT APL_DPRC CHECK

• Compare Components - CMPONENT
SERVICE COMPARE

• Find Designated Build Procedure -
CMPONENT APL_DPRC FIND

• Rename a Component - CMPONENT
SERVICE RENAME

• List Designated Build Procedures -
CMPONENT APL_DPRC LIST

• Scratch a Component - CMPONENT
SERVICE SCRATCH

• List Global Designated Build
Procedures - CMPONENT GBL_DPRC
LIST

• Lock or Unlock a Component -
CMPONENT SERVICE LOCK/UNLOCK

• Component Service Build - CMPONENT
SERVICE BUILD

• List Load Module Subroutines -
CMPONENT LOD_SUBR LISTt

• Recompile a Component - CMPONENT
SERVICE RECOMP

• List Copybook Names in Source -
CMPONENT SRC_INCL LIST
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Check Out a Component - CMPONENT SERVICE CHECKOUT

The Serena XML service/scope/message tags and attributes for component checkout
messages are:

<service name=”CMPONENT”>
<scope name=”SERVIVE”>
<message name=”CHECKOUT”>

These tags appear in both requests and replies.

CMPONENT SERVICE CHECKOUT Requests

Serena XML permits concurrent checkout of one or many components. Checkout options
apply equally to all named components in the checkout request. For example, all components
must have the same library type, must be checked out from the same source (baseline or
promotion), and must be checked out to the same target (staging or a personal development
library).

The example below shows how you might code a checkout request in Serena XML. In this
example, a component is checked out from level 001 of the baseline library into a personal
library.

As in all XML examples in this manual, items in bold type are required. A selection of optional
subtags is shown in regular type. Nested subtags of a higher-level complex tag are indented
relative to that tag. Repeatable tags appear twice for illustration.

Data structure details for the component checkout <request> tag appear in Exhibit 4-1,
following the example.

Example XML — CMPONENT SERVICE CHECKOUT Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="CHECKOUT">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000003</package>
 <componentType>CPY</componentType>
 <chkOutSourceLocation>4</chkOutSourceLocation>
 <chkOutMode>O</chkOutMode>
 <basePromoLibLevel>001</basePromoLibLevel>
 <chkOutTargetLocation>1</chkOutTargetLocation>
 <personalLibStorageMeans>6</personalLibStorageMeans>
 <personalLib>USER24.SETQUERY.WORKLOAD</personalLib>
 <jobCard01>//XMLX029B JOB (RWM,T),'DUMP',CLASS=A,MSGCLASS=A</jobCard01>
 <jobCard02>//* JOBCARD2</jobCard02>
209

21

Chapter 4: Component Management
 <jobCard03>//* JOBCARD3</jobCard03>
 <jobCard04>//* JOBCARD4</jobCard04>
 <listCount>0001</listCount>
 <component>ACPCPY00</component>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<basePromoLibLevel> Required 1 Integer (3),
variable

Baseline or promotion library level from
which component is checked out.
Allowed values (must be positive):

• Baseline checkouts - 0 to 99
• Promotion checkouts - 1 to 999

NOTES:

• <chkOutSourceLocation> is
required with this tag to determine
whether value is read as a “negative”
baseline level or a “positive” promo-
tion level.

• If checkout is from baseline (that is, if
<chkOutSourceLocation> = 4),
default value is 0.

• If baseline level for a checkout is not
zero, the checkout must be
performed in batch mode (that is, with
<chkOutMode> = B).

<chkOutMode> Required 1 String (1),
fixed

Code for component checkout
processing mode. Valid values:

O = Online checkout (letter O)
B = Batch checkout

NOTES:

• Batch checkout required (value must
be B) if personal library for checkout
is Librarian or Panvalet (that is, if
<personalLibStorageMeans> = 4
or 5).

• Batch checkout required (value must
be B) if checking out from a backlevel
baseline (that is, if <basePromoLib-
Level> is not zero and <chkOutSour-
ceLocation> = 4).
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<chkOutSourceLocation> Required 1 String (1),
fixed

Code for location component is
checked out from. Valid values:

3 = Checkout from promotion
4 = Checkout from baseline

8 = ERO component Checkout from a
prior release

<chkOutTargetLocation> Required 1 String (1),
fixed

Code for location component is
checked out to. Valid values:

1 = Checkout to personal
 development library
2 = Checkout to staging library

<component> Required 1 -  String (256),
variable

ZMF name of component to check out.
Repeatable to accommodate multi-
component checkouts.

• If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Number of instances must
equal value in the <listCount> tag.

<componentType> Required 1 String (3),
fixed

Must be valid ZMF library type. Typical
values:

•COB
•CPY
•JCL
•SRC
•LOD

<jobCard01>
 .
 .
 .
<jobCard04>

Optional 0 - 1
each

String (72),
fixed

JCL statements needed to set job
parameters, allocate data sets, & define
library concatenations during checkout.
If used, all four tags are required. Tags
not needed for JCL should be coded as
comment (//*).

NOTE: Required for batch checkout —
that is, if <chkOutMode> = B

<listCount> Required 1 Integer Number of components to be checked
out. Must equal the number of
<component> tags that follow.

<lockComponent> Optional 0 - 1 String (1),
fixed

Y = Yes, lock after checkout
N = No, don’t lock after checkout

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
211

212

Chapter 4: Component Management
<overlayPriorVersion> Optional 0 - 1 String (1),
fixed

Y = Yes, overlay preexisting
 component copy in package
N = No, don’t overlay preexisting
 component copy in package

NOTE: This tag affects the active
component copy currently residing in a
change package. It does NOT affect
any staged versions of that component
created by ZMF’s Save Staging
Versions (SSV) feature.

<package> Required 1 String (10),
fixed

Fixed-format name of ZMF package
where component resides. First 4 bytes
correspond to <applName>. Final 6
bytes correspond to <packageId>.

NOTE: See ChangeMan ZMF User’s
Guide for format of package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package> tag.

NOTE: Leading zeroes required.

<personalLib> Optional 0 - 1 String (44),
variable

Name of personal development library
for component checkout.

NOTE: Required if checked out to
personal development library – that is, if
<chkOutTargetLocation> = 1.

<personalLibStorageMeans> Optional 0 - 1 String (1),
fixed

Code for data set organization of
checkout target location. Values:

4 = CA-Librarian
5 = CA-Panvalet
6 = PDS
8 = Sequential
9 = PDSE
H = HFS

NOTE: Required if checked out to
personal development library – that is, if
<chkOutTargetLocation> = 1.

NOTE: If value is 4 or 5, batch checkout
required – that is, <chkOutMode> = B

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site from which
component is checked out.

NOTE: Required if checked out from
promotion – that is, if value in
<chkOutSourceLocation> = 3.

<release> Optional 0 - 1 String (8),
variable

Name of ZMF release (ERO Option
only).

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

CMPONENT SERVICE CHECKOUT Replies

No <result> data structure is returned in the component checkout reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the checkout request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

<releaseArea> Optional 0 - 1 String (8),
variable

Name of the ZMF release area (ERO
Option only).

<savePriorVersion> Optional 0 - 1 String (1),
fixed

Y = Yes, save staging version
 of preexisting component
N = No, don’t save staging
 version of preexisting component

NOTE: This tag applies only if ZMF's
Save Staging Versions (SSV) feature is
installed. It has no effect on whether or
not a component checked out from
baseline will overlay a preexisting copy
of that component in the package.

<suppressNotify> Optional 0 - 1 String (1),
fixed

Y = Suppress batch notification
N = Allow batch notification

<userVariable01>
 .
 .
 .
<userVariable05>

Optional 0 - 1
each

String (8),
variable

Five 8-byte custom user variables for
component checkout established by
ZMF administrator.

<userVariable06>
 .
 .
 .
<userVariable10>

Optional 0 - 1
each

String (72),
variable

Five 72-byte custom user variables for
component checkout established by
ZMF administrator.

Exhibit 4-1. CMPONENT SERVICE CHECKOUT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
213

21

Chapter 4: Component Management
Component Service Checkin - CMPONENT SERVICE CHECKIN

The Serena XML service/scope/message tags and attributes for component checkin
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”CHECKIN”>

These tags appear in both requests and replies.

Batch Component Checkin Versus Online Component Staging

The Serena XML checkin function performs a subset of the “stage” functions of the ISPF user
interface. Check-in simply copies files from a development location into a staged change
package and updates the component status information — the first step of three in the
staging flow. Check-in does not compile or link-edit the checked-in component. Neither does
it log source-to-load and other relationships within a package or build any JCL install jobs.

By deferring many elements of the interactive “stage” function to a later time and a different
XML function, the checkin function gains the advantage of speed. Speed is vital for batch-
mode check-in requests that import a large number of components from other environments
to ChangeMan ZMF. Up to 9999 components can be checked in to a ChangeMan ZMF
change package via a single XML checkin request.

 Tip

Batch component checkin for a large number of components should be specified
in native Serena XML and submitted for execution via the SERXMLBC batch
execution client. (See Appendix B, “SERXMLBC – Executing Native XML Service
Calls.”) Source component name tags should be populated via a table-driven
preprocessing script or similar automated means if the number of components is very
large.

To complete the full “stage to development” process using Serena XML, the checkin function,
if successful, should be followed by an XML request to check designated build procedures,
which (if successful) should then be followed by an XML component build request. (See
“Check Designated Build Procedures - CMPONENT APL_DPRC CHECK” and “Component
Service Build - CMPONENT SERVICE BUILD” later in this chapter.)

CMPONENT SERVICE CHECKIN Requests

Serena XML permits concurrent checkin of one to many components. Checkin options apply
equally to all named components in the checkin request. For example, all components must
have the same library type, must be checked out from the same source location, and must be
checked in to the same package.

The example below shows how you might code a Serena XML request to check in a source
component from a personal library.

Data structure details for the component checkin <request> tag follow in Exhibit 4-2.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Example XML — CMPONENT SERVICE CHECKIN Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="CHECKIN">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000003</package>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <chkInSourceLocation>1</chkInSourceLocation>
 <sourceStorageMeans>6</sourceStorageMeans>
 <sourceLib>USER24.SETQUERY.WORKLOAD</sourceLib>
 <changeDesc>TEST CMPONENT SERVICE CHECKIN</changeDesc>
 <listCount>0001</listCount>
 <targetComponent>ACPCPY00</targetComponent>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<changeDesc> Optional 1 String (35) Component change description to
include with all newly checked in
components.

<chkInSourceLocation> Required 1 String (1) Code for location from which
component is checked in. Valid values:

1 = Checkin from development
 dataset
5 = Checkin from package
7 = Checkin from a temporary
 sequential dataset (for example,
 using ZDD Checkin)
E = Edit from package library
215

216

Chapter 4: Component Management
<component> Optional 0 - 1 String (256),
variable

Source component name.

• If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: If checking in from a sequential
file, this tag is required.

<componentType> Required 1 String (3) Library type to assign to checked-in
component(s). Must be valid ZMF
library type. Typical values:

•COB
•CPY
•JCL
•SRC
•LOD

<listCount> Required 1 Integer Number of components to be checked
in. Must immediately precede the first of
one or more <targetComponent>
tags. Value must equal the number of
<targetComponent> tags that follow.

<lockAfterChkin> Optional 1 String (1) Y = Yes, lock component after
 checkin
N = No, don’t lock component after
 check in

<package> Required 1 String (10) ZMF fixed-format package name where
component should reside.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package> tag.

NOTE: Leading zeroes required.

<savePriorStagingVersion> Optional 0 - 1 String (1) Y = Yes, create staging version
 of preexisting component
 (if staging versions enabled)
N = No, don’t create a staging
 version of component

<sourceLib> Optional 0 - 1 String (44) Data set name of library holding
component(s) to check in.

NOTE: For HFS component, path and
subdirectory where component resides.

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<sourceStorageMeans> Optional 0 - 1 String (1) Code for data set organization of
checkout target location. Values:

4 = CA-Librarian
5 = CA-Panvalet
6 = PDS
8 = Sequential data set
9 = PDS/Extended
H = HFS

<suppressNotify> Optional 0 - 1 String (1) Y = Yes, suppress notify messages
N = No, don’t suppress notify
 messages

<targetComponent> Required 1 -  String (256),
variable

ZMF name of component to check in.
Repeatable for multiple concurrent
check-ins. Must be preceded by
<listCount> tag.

NOTE: Number of instances must
equal value in <listCount>.

NOTE: HFS components must also
designate a target subdirectory for
checkin in <targetSubDirectory>.
For HFS components, all instances
must belong to the same subdirectory.

<targetSubDirectory> Optional 0 - 1 String (256),
variable

Name of the target HFS subdirectory
where components are to be checked
in, prefixed by path from installation root
(that is, path as it is defined in the
baseline library).

NOTE: Required for HFS component if
<useSourceLibSubDirectory> = N.

NOTE: Only one subdirectory is
supported per request. For bulk
checkins, all <targetComponent>
tagsmust contain components that
belong in the same subdirectory.

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 01 to 20 on
the ISPF user options panel for
component build.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
217

218

Chapter 4: Component Management
<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1602 on the ISPF user options panel for
component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Component Service Checkin Reply

No <result> data structure is returned in the component checkin reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
checkin request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

Check Designated Build Procedures - CMPONENT APL_DPRC CHECK

The Serena XML service/scope/message tags and attributes for a message to check
designated component build procedures are:

<service name=”CMPONENT”>
<scope name=”APL_DPRC”>
<message name=”CHECK”>

The Serena XML check function performs a subset of the “stage” functions of the ISPF user
interface. It checks for the existence of designated build procedures associated with a
checked-in component — the second step of three in the staging flow. It does not copy files
from a development location into a staged change package. It does not compile or link the
checked-in component. Neither does it log source-to-load relationships within a package or
build any JCL install jobs.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

<useSourceLibSubDirectory> Optional 0 - 1 String (1) Should target subdirectory & path
match source library directory & path?

Y = Use value in <sourceLib> for
 <targetSubDirectory>.

N = Do not use <sourceLib> for
 <targetSubDirectory>;
 supply explicit value instead.

NOTE: <targetSubDirectory> is
required if value is N.

Exhibit 4-2. CMPONENT SERVICE CHECKIN <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
219

22

Chapter 4: Component Management
 Tip

To complete the full “stage to development” cycle using Serena XML, first check in the
affected component using checkin function. If check-in is successful, followed it with
an XML request to check designated build procedures, which (if successful) should
then be followed by an XML component build request. (See “Check Designated Build
Procedures - CMPONENT APL_DPRC CHECK” and “Component Service Build -
CMPONENT SERVICE BUILD” later in this chapter.)

CMPONENT APL_DPRC CHECK — Requests

The Serena XML example below shows how you might code a request to check designated
component build procedures. Note that you can check build procedures for only one
component per request. Data structure details for the <request> tag appear in Exhibit 4-3.

Example XML — CMPONENT APL_DPRC CHECK Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_DPRC">
 <message name="CHECK">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 <buildProc>CMNCOB2</buildProc>
 <language>COBOL2</language>
 <useDb2PreCompileOption>N</useDb2PreCompileOption>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-3. Check Component Designated Build Procedures <request>

Subtag Use Instances
Data Type &
Length Values

<applName> Required 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<buildProc> Required 0 - 1 String (8),
variable

ZMF name for designated build
procedure.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<compileOptions> Optional 0 - 1 String (34),
variable

Custom compile parameters for named
component.

<component> Required 1 String (256),
variable

ZMF name of component to be
checked.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

Library type of component named in
<component>. Must be valid ZMF
library type of “like-source.” Typical
values:

•COB
•CPY
•SRC

<language> Required 0 - 1 String (8),
variable

Source language of component.

<linkOptions> Optional 0 - 1 String (34),
variable

Custom link-edit parameters for named
component.

<useDb2PreCompileOptio
n>

Required 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1
each

String (1) Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 01 to 20
on the ISPF user options panel for
component build.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel
for component build.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel
for component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel
for component build.

Exhibit 4-3. Check Component Designated Build Procedures <request> (Continued)

Subtag Use Instances
Data Type &
Length Values
221

22

Chapter 4: Component Management
<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel
for component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel
for component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel
for component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel
for component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel
for component build.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel
for component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel
for component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel
for component build.

Exhibit 4-3. Check Component Designated Build Procedures <request> (Continued)

Subtag Use Instances
Data Type &
Length Values
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

Check Component Designated Build Procedures — Replies

No <result> data structure is returned in the reply message to a check component
designated procedures request. However, the standard <response> data structure is
returned to indicate the success or failure of the check. In general, the following rules of
thumb apply to return codes for the designated build procedure check:

• 00 – Request successful and designated build procedures found.
• 04 – Informational message; designated build procedures not found.
• 08 or higher – Failure to execute request.

Find Designated Build Procedure - CMPONENT APL_DPRC FIND

The Serena XML service/scope/message tags and attributes for messages to find a
component’s designated build procedure are:

<service name=”CMPONENT”>
<scope name=”APL_DPRC”>
<message name=”FIND”>

These tags appear in both requests and replies.

CMPONENT APL_DPRC FIND — Requests

The Serena XML request to find the designated component build procedure retrieves detailed
information from the component history file for a specific component. Data structure details
for CMPONENT APL_DPRC FIND request are shown in Exhibit 4-4.
223

224

Chapter 4: Component Management

CMPONENT APL_DPRC FIND — Replies

The reply message returns zero or one result tag, detailing the procedure if it exists.The reply
data structure is the same as that for CMPONENT APL_DPRC LIST and is described in
Exhibit 4-6.

List Designated Build Procedures - CMPONENT APL_DPRC LIST

The Serena XML service/scope/message tags and attributes for messages to list designated
component build procedures at the application level are:

<service name=”CMPONENT”>
<scope name=”APL_DPRC”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT APL_DPRC LIST — Requests

The Serena XML request to list designated component build procedures retrieves detailed
information from the component history file about all such procedures for any of the following:

• One explicitly named component.
• All components of the same type.
• Any components with names that match a wildcard pattern.

Exhibit 4-4. CMPONENT APL_DPRC FIND <request>

Subtag Use Instances
Data Type &
Length Values

<applName> Required 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<component> Required 0 - 1 String (256),
variable

ZMF component for which to find the
designated build procedure.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required

\

1 String (3),
fixed

ZMF library type of component(s) for
which to list designated build
procedures. Must be “like-source.”
Typical values:

•COB
•CPY
•SRC

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The Serena XML example below shows how you might code a request to list designated
component build procedures for all components of type “SRS”. The request to list designated
component build procedures also supports wildcards and patterns. Data structure details for
the <request> tag appear in Exhibit 4-5.

Example XML — CMPONENT APL_DPRC LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_DPRC">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>ACTP</applName>
 <component>*</component>
 <componentType>SRS</componentType>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-5. CMPONENT APL_DPRC LIST <request>

Subtag Use Instances
Data Type &
Length Values

<applName> Required 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<component> Required 0 - 1 String (256),
variable

ZMF component for which to list
designated build procedures.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: May be masked using standard
wildcard characters.
225

22

Chapter 4: Component Management
CMPONENT APL_DPRC LIST — Replies

The reply message listing designated component build procedures returns zero to many
<result> data elements. Each <result> tag contains information about one component,
taken from the component history file. This information includes component name and type,
build procedure name, component source language, compile and link options, and the like.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT APL_DPRC LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_DPRC">
 <message name="LIST">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 <buildProc>CMNCOB2</buildProc>
 <language>COBOL2</language>
 <useDb2PreCompileOption>N</useDb2PreCompileOption>
 <forceAssignedBuildProc>2</forceAssignedBuildProc>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

<componentType> Optional 1 String (3),
fixed

ZMF library type of component(s) for
which to list designated build
procedures. Must be “like-source.”
Typical values:

•COB
•CPY
•SRC

<exactMatch> Optional 0 - 1 String (1) Y = Yes- exact match no filtering
N = No - use filtering

Exhibit 4-5. CMPONENT APL_DPRC LIST <request> (Continued)

Subtag Use Instances
Data Type &
Length Values
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> tag appear in Exhibit 4-6.

Exhibit 4-6. CMPONENT APL_DPRC LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<buildProc> Optional 0 - 1 String (8),
variable

ZMF name for designated build
procedure.

<compileOptions> Optional 0 - 1 String (34),
variable

Custom compile parameters for
named component.

<component> Optional 0 - 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
variable

ZMF library type of component.

<forceAssignedBuildProc> Optional 0 - 1 String (1) Force level for enforcement of
designated build procedure with this
component. Values:

1 = Force before freeze only
2 = Always force

<language> Optional 0 - 1 String (8),
variable

Source language of component.

<linkOptions> Optional 0 - 1 String (34),
variable

Custom link-edit parameters for
named component.

<useDb2PreCompileOption> Required 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1
each

String (1) Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 01 to 20
on the ISPF user options panel for
component build.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel
for component build.
227

228

Chapter 4: Component Management
<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel
for component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel
for component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel
for component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel
for component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel
for component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel
for component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel
for component build.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel
for component build.

Exhibit 4-6. CMPONENT APL_DPRC LIST <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

List Global Designated Build Procedures - CMPONENT GBL_DPRC
LIST

The Serena XML service/scope/message tags and attributes for messages to list designated
component build procedures at the global level are:

<service name=”CMPONENT”>
<scope name=”GBL_DPRC”>
<message name=”LIST”>

These tags appear in both requests and replies.

The CMPONENT GBL_DPRC LIST service is identical to the CMPONENT APL_DPRC LIST
service except that the <appl_Name> tag is omitted. Refer to “List Designated Build
Procedures - CMPONENT APL_DPRC LIST” on page 224.

Component Service Build - CMPONENT SERVICE BUILD

The Serena XML service/scope/message tags and attributes for component build messages
are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”BUILD”>

These tags appear in both requests and replies.

The Serena XML component build function performs a subset of the “stage” functions of the
ISPF user interface. It compiles (or assembles) and link-edits a package component; logs
source-to-load and other relationships between modules within a package; and builds any
JCL install jobs. Together these comprise the third step of three in the staging flow. The

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel
for component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel
for component build.

Exhibit 4-6. CMPONENT APL_DPRC LIST <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
229

23

Chapter 4: Component Management
component build function does not copy files from a development location into a staged
change package. Neither does it check for the existence of designated build procedures
associated with a checked-in component.

 Tip

To perform the full “stage to development” process using Serena XML, start with
the check in function. If successful, follow check-in with an XML request to check
designated build procedures. If this, too, is successful, submit a Serena XML request
to build the component. (See “Component Service Checkin - CMPONENT SERVICE
CHECKIN” and “Check Designated Build Procedures - CMPONENT APL_DPRC
CHECK” earlier in this chapter.)

CMPONENT SERVICE BUILD Request

The following example shows how you might code a build request with Serena XML. Data
structure details for the component service build <request> tag follow the example in
Exhibit 4-7.

Example XML — CMPONENT SERVICE BUILD Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="BUILD">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
 <componentType>SRS</componentType>
 <buildProc>CMNCOB2</buildProc>
 <language>COBOL2</language>
 <jobCard01>//XMLX029B JOB (RWM,T),'DUMP',CLASS=A,MSGCLASS=A</jobCard01>
 <jobCard02>//* JOBCARD2</jobCard02>
 <jobCard03>//* JOBCARD3</jobCard03>
 <jobCard04>//* JOBCARD4</jobCard04>
 <listCount>001</listCount>
 <component>ACPSRS00</component>
 </request>
 </message>
 </scope>
</service>
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of <package> tag.

NOTE: Trailing blanks required.

<buildProc> Optional 0 - 1 String (8),
variable

8-byte ZMF name for designated build
procedure.

<compileOptions> Optional 0 - 1 String (34),
variable

Compile parameters not set elsewhere
(e.g. in component history) or by default.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<component> Required 1 -  String (256),
variable

ZMF name of component to build.
Repeatable to accommodate multiple
components.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Number of instances must equal
the value in the <listCount> tag.

<componentType> Required 1 String (3),
fixed

Library type of all component(s) to be
built. Must be valid ZMF library type of
“like-source.” Typical values:

•COB
•CPY
•SRC

<db2PreCompileLinkLib> Optional 0 - 1 String (44),
variable

Data set name of DB2 library to be used
in build process.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<db2PreCompileVersion> Optional 0 - 1 String (64),
variable

DB2 DBRM version to use when
building components.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

4-byte physical subsystem ID of DB2
instance to use in build.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<incrementJobname> Optional 0 - 1 String (1) Y = Yes, increment the job name
N = No, don’t increment the job name

<inputDataset> Optional 0 - 1 String (44),
variable

Data set name of staging library where
like-source component(s) reside(s).
231

23

Chapter 4: Component Management
<jobCard01>
 .
 .
 .
<jobCard04>

Required 0 - 1,
each

String (72),
variable

JCL statements needed to set job
parameters, allocate data sets, & define
library concatenations. If used, all four
are required. Tags not needed for JCL
should be coded as comment (//*).

<language> Optional 0 - 1 String (8),
variable

Source language of component(s) to be
compiled. Max 8 bytes.

<linkOptions> Optional 0 - 1 String (34),
variable

Link edit parameters not set elsewhere
(e.g. in component history) or by default.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<listCount> Required 1 Integer Number of components to be checked
out. Must equal the number of
<component> tags that follow.

<package> Required 1 String (10),
variable

ZMF fixed-format package name where
component(s) reside(s).

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

<sourceLocation> Optional 0 - 1 String (1) This tag is used when staging “like type”
OTH components from remote clients.

Specify the value “7” to indicate that the
build source dataset is a temporary
dataset and will be deleted when the
build process is completed.

CAUTION! Do not use this tag unless
you are sure you want to delete the
input dataset.

<suppressNotify> Optional 0 - 1 String (1) Y = Yes, suppress notify messages
N = No, don’t suppress messages

<useDb2PreCompileOption> Optional 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

NOTE: The <useHistory> tag must be
set to N to use this tag.

<useHistory> Optional 0 - 1 String (1) Y = Yes, use comp hist for compile
 params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemId>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1,
each

String (1) Administrator-defined 1-byte user option
variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
233

234

Chapter 4: Component Management
 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

CMPONENT SERVICE BUILD Replies

No <result> data structure is returned in the component build reply message. However, the
standard <response> data structure is returned to indicate the success or failure of the build
request. Successful requests have a return code of 00. Unsuccessful requests have a return
code of 04 or higher.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

<userOptionsPart1> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userOptionsPart2> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userPanel> Optional 0 - 1 String (8),
variable

User panel ID.

<userVariable01>
 .
 .
 .
<userVariable05>

Optional 0 - 1,
each

String (8),
variable

Administrator-defined 8-byte user
variables, if any, for use with customized
skeletons during build.

NOTE: See your ZMF application
administrator for information.

<userVariable06>
 .
 .
 .
<userVariable10>

Optional 0 - 1,
each

String (72),
variable

Administrator-defined 72-byte user
variables, if any, for use with customized
skeletons during build.

NOTE: See your ZMF application
administrator for information.

Exhibit 4-7. CMPONENT SERVICE BUILD <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

Recompile a Component - CMPONENT SERVICE RECOMP

The Serena XML service/scope/message tags and attributes for component recompile
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”RECOMP”>

These tags appear in both requests and replies.

CMPONENT SERVICE RECOMP Requests

Unlike the component check-in and check-out functions described above, the component
recompile function works on only one component per request message. It performs only one
task: compilation (or assembly) of the named component.

 Note

The component recompile function does not link-edit the named component.
That task can be performed on a standalone basis using the Serena XML relink
function, described later in this chapter.

The Serena XML example below shows how you might code a request to recompile a
component from baseline. For illustration, the example requests a DB2 precompile. Note that
DB2-related tags apply only to customers who install the ChangeMan ZMF DB2 Option.
Administrator-defined user options and variables with hypothetical values also appear in the
example. Check with your ChangeMan ZMF administrator for further information about
custom user variables for components. They may not apply to your installation.

Data structure details for the recompile <request> tag appear in Exhibit 4-8.

Example XML — CMPONENT SERVICE RECOMP Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="RECOMP">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
235

23

Chapter 4: Component Management
 <componentType>SRS</componentType>
 <jobCard01>//XMLX034 JOB (RWM,T),'DUMP',CLASS=A,MSGCLASS=A,REGION=0M</
jobCard01>
 <listCount>0001</listCount>
 <component>ACPSRS1B</component>
 <language>COBOL2</language>
 <buildProc>CMNCOB2</buildproc>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<buildProc> Optional 0 - 1 String (8),
variable

8-byte ZMF name for designated build
procedure.

<compileOptions> Optional 0 - 1 String (34),
variable

Compile parameters not set elsewhere
(e.g. in component history) or by
default.

<component> Required 1 String (256),
variable

ZMF name of component to recompile.

• If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF “like-source” library type of
component to be recompiled. Typical
values:

•COB
•CPY
•SRC

<db2PreCompileLinkLib> Optional 0 - 1 String (44),
variable

Data set name of DB2 library to be used
in build process.

<db2PreCompileVersion> Optional 0 - 1 String (64),
variable

DB2 DBRM version to use when
recompiling components.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

Physical subsystem ID of DB2 instance
to use in build.

<jobCard01>

<jobCard02>

<jobCard03>

<jobCard04>

Required

Optional

Optional

Optional

1

0 - 1

0 - 1

0 - 1

String (72)

String (72)

String (72)

String (72)

JCL statements needed to set job
parameters, allocate data sets, & define
library concatenations. <jobCard01> is
required. Tags not needed for JCL may
be omitted.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<language> Optional 0 - 1 String (8),
variable

Source language of component(s) to be
compiled. If omitted, ZMF retrieves from
component history.

<libLevel> Optional 1 String (2),
variable

Numeric library level of source code to
recompile. Values:

0 = Baseline library
1 to 99 = Promotion library

NOTE: <promotionSiteName> tag
also required if value > 0.

<linkOptions> Optional 0 - 1 String (34),
variable

Link edit parameters not set elsewhere
(e.g. in component history) or by
default.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<listCount> Optional 0 - 1 Integer Number of components to be
recompiled.

<lockComponent> Optional 0 - 1 String (1) Y = Yes, lock after recompile
N = No, don’t lock component

<overlayPriorVersion> Optional 0 - 1 String (1) Y = Yes, overlay load module
 in staging library
N = No, don’t overlay

<package> Required 1 String (10),
variable

ZMF fixed-format package name where
component resides.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF promotion library site name.

NOTE: If <libLevel> = 1 to 99, this
tag is required.

<release> Optional 0 - 1 String (8),
variable

Name of ZMF release (ERO Option
only).

<releaseArea> Optional 0 - 1 String (8),
variable

Name of the ZMF release area (ERO
Option only).

<suppressNotify> Optional 0 - 1 String (1) Y = Yes, suppress notify messages
N = No, don’t suppress messages

<useDb2PreCompileOption> Optional 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
237

23

Chapter 4: Component Management
<useHistory> Optional 0 - 1 String (1) Y = Yes, use comp hist for compile
 params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemId>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1,
each

String (1) Administrator-defined 1-byte user
option variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

<userOptionsPart1> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userOptionsPart2> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userPanel> Optional 0 - 1 String (8),
variable

User panel ID.

<userVariable01>
 .
 .
 .
<userVariable05>

Optional 0 - 1 String (8),
variable

Administrator-defined 8-byte user
variables for recompile.

<userVariable06>
 .
 .
 .
<userVariable10>

Optional 0 - 1 String (72),
variable

Administrator-defined 72-byte user
variables, if any, for use with recompile.

Exhibit 4-8. CMPONENT SERVICE RECOMP <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
239

24

Chapter 4: Component Management
 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

CMPONENT SERVICE RECOMP Replies

No <result> data structure is returned in the component recompile reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the recompile request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

Relink a Component - CMPONENT SERVICE RELINK

The Serena XML service/scope/message tags and attributes for component relink messages
are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”RELINK”>

These tags appear in both requests and replies.

CMPONENT SERVICE RELINK Requests

The component relink function, like the component recompile function, works on only one
component per request message. It performs only one task: link-editing the named
component. Prior compilation is assumed.

 Note

The component relink function does not compile the named component or
change the source code in any way. Compilation (or assembly) can be performed
on a standalone basis using the Serena XML recompile function, described
earlier in this chapter.

The example below shows how you might code a request to relink a component in Serena
XML. Data structure details for the recompile <request> tag appear in Exhibit 4-9.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Example XML — CMPONENT SERVICE RELINK Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="RELINK">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000014</package>
 <component>ACPSRS00</component>
 <componentType>LOS</componentType>
 <targetLoadLibType>LOD</targetLoadLibType>
 <buildProc>CMNCOB2</buildProc>
 <language>COBOL2</language>
 <linkOptions>NCAL</linkOptions>
 <useDb2PreCompileOption>N</useDb2PreCompileOption>
 <jobCard01>//XMLX035 JOB (AMW,000),'DEFINE UCAT',MSGCLASS=Y,</
jobCard01>
 <jobCard02>// TIME=(,10),NOTIFY=USER24</jobCard02>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<buildProc> Optional 0 - 1 String (8),
variable

8-byte ZMF name for designated build
procedure.

<compileOptions> Optional 0 - 1 String (34),
variable

Compile parameters not set elsewhere
(e.g. in component history) or by default.

<component> Required 1 String (256),
variable

ZMF name of component to relink.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.
241

24

Chapter 4: Component Management
<componentType> Required 1 String (3),
fixed

ZMF “like-source” library type of
component to be recompile. Typical
values:

•COB
•CPY
•SRC

<db2PreCompileLinkLib> Optional 0 - 1 String (44),
variable

Data set name of DB2 library to be used
in build process.

<db2PreCompileVersion> Optional 0 - 1 String (64),
variable

DB2 DBRM version to use when
recompiling components.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

Physical subsystem ID of DB2 instance
to use in build.

<jobCard01>

<jobCard02>

<jobCard03>

<jobCard04>

Required

Optional

Optional

Optional

1

0 - 1

0 - 1

0 - 1

String (72)

String (72)

String (72)

String (72)

JCL statements needed to set job
parameters, allocate data sets, & define
library concatenations. <jobCard01> is
required. Tags not needed for JCL may
be omitted.

<language> Optional 0 - 1 String (8),
variable

Source language of component(s) to be
compiled. If omitted, ZMF retrieves from
component history.

<linkOptions> Optional 0 - 1 String (34),
variable

Link edit parameters not set elsewhere
(e.g. in component history) or by default.

NOTE: The <useHistory> tag must be
set to N to use this tag.

<package> Required 1 String (10),
variable

ZMF fixed-format package name where
component resides.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

<targetLoadLibType> Required 0 - 1 String (3),
variable

Target load library type.

<useDb2PreCompileOption> Optional 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile DB2

<useHistory> Optional 0 - 1 String (1) Y = Yes, use comp hist for compile
 params (default)
N = No, don’t use comp history

NOTE: This tag must be set to N to use
the <useDb2PreCompileOption>,
<compileOptions>, <linkOptions>,
<db2SubSystemId>,
<db2PreCompileLinkLib>, and
<db2PreCompileVersion> tags.

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1,
each

String (1) Administrator-defined 1-byte user option
variables.

NOTE: See your ZMF application
administrator for information.

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
243

24

Chapter 4: Component Management
 Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

<userOptionsPart1> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userOptionsPart2> Optional 0 - 1 String (10),
variable

Administrator-defined component user
variables.

<userPanel> Optional 0 - 1 String (8),
variable

User panel ID.

<userVariable01>
 .
 .
 .
<userVariable05>

Optional 0 - 1 String (8),
variable

Administrator-defined 8-byte user
variables for recompile.

<userVariable06>
 .
 .
 .
<userVariable10>

Optional 0 - 1 String (72),
variable

Administrator-defined 72-byte user
variables, if any, for use with recompile.

Exhibit 4-9. CMPONENT SERVICE RELINK <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SERVICE RELINK Replies

No <result> data structure is returned in the component relink reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
relink request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

A successful request will generate a job with output similar to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB SRB
-SSIDN 00 91 46 .00 .00
-ALLOC 00 14 6 .00 .00
-ALLOCIN 00 38 19 .00 .00
-LINK 00 125 61 .00 .00
-BT90LOD 00 181 79 .00 .00
-COPYLOD 00 235 555 .00 .00
-SUCCESS 00 649 320 .00 .00
-CHKCOND 00 14 5 .00 .00
-FAILURE FLUSH 0 0 .00 .00
-PRINT 00 262 126 .00 .00
-COMPLST 00 137 110 .00 .00
-ILODLST 00 561 301 .00 .00
-XMLX035 ENDED. NAME-DEFINE UCAT TOTAL TCB
$HASP395 XMLX035 ENDED
.
.
**
* DDNAME: SSIDN.SYSPRINT

ChangeMan(R) CMNSSIDN - 6.1.0 THURSDAY FEBRUARY 19, 2009 09:17:08
 PARM=''
SYSIN: LCT=ACPSRS00
SYSIN: SSI=5C6D1B0A
SYSIN: PKG=ACTP000014
SYSIN: RLK=Y
SYSIN: UIL=Y
SYSIN: OPT=CALL
Options compiled from PARM/SYSIN follow:
 NAME - Allow "NAME" directive.
 CALL - Allow "INCLUDE" directives.
 RELINK - Re-Linkage-Edit by INCLUDEing again.
END OF DATA ON "OBJ" DETECTED
STAGING "LCT" OPENED
STAGING "LCT" MEMBER NOT FOUND
FABRICATING LCT CARDS FROM SCRATCH

<...+....1....+....2....+....3....+....4....+....5....+....6....+....7
LCT: INCLUDE INCLIB(ACPSRS00)
LCT: SETSSI 5C6D1B0A
LCT: NAME ACPSRS00(R)
245

246

Chapter 4: Component Management

* DDNAME: LINK.SYSPRINT
* DDNAME: BT90LOD.BAT90LST

z/OS V1 R8 BINDER 09:17:09 THURSDAY FEBRUARY 19, 2009
BATCH EMULATOR JOB(XMLX035) STEP(LINK) PGM= IEWL
IEW2278I B352 INVOCATION PARAMETERS - LIST,XREF,MAP,RENT,NCAL

IEW2322I 1220 1 INCLUDE INCLIB(ACPSRS00)
IEW2322I 1220 2 SETSSI 5C6D1B0A
IEW2322I 1220 3 NAME ACPSRS00(R)
IEW2650I 5102 MODULE ENTRY NOT PROVIDED. ENTRY DEFAULTS TO SECTION
ACPSRS00.

* DDNAME: BT90LOD.SYSPRINT

ChangeMan(R) CMNBAT90 - 6.1.0 THURSDAY FEBRUARY 19, 2009 09:17:10
SYSIN: PKG=ACTP000014
SYSIN: SLT=LOS
SYSIN: SLT=LOS
SYSIN: SNM=ACPSRS00
SYSIN: SID=USER24
SYSIN: SSI=5C6D1B0A
SYSIN: PRC=CMNCOB2
SYSIN: RLK=YES
SYSIN: SUP=NO
SYSIN: LLT=LOD
SYSIN: SLB=ACTPLOSCMNTP.SERT8.DEV.ACTP.#000014.LOS
SYSIN: SLB=ACTPLODCMNTP.SERT8.DEV.ACTP.#000014.LOD
SYSIN: SLB=ACTPLOSCMNTP.SERT8.BASE.ACTP.LOS
SYSIN: SLB=ACTPLODCMNTP.SERT8.BASE.ACTP.LOD
SYSIN: ILB=ACTPLOSCMNTP.SERT8.DEV.ACTP.#000014.LOS
SYSIN: ILB=ACTPLOSCMNTP.SERT8.BASE.ACTP.LOS
CMN5400I - Time of day at end of job: 09:17:11 - Condition Code on exit: 00

Browse a Component - CMPONENT SERVICE BROWSE

The Serena XML service/scope/message tags and attributes for component service browse
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”BROWSE”>

These tags appear in both requests and replies.

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The component browse function of ChangeMan ZMF is actually a component download
function when accessed via XML. Replies come back as XML documents suitable for offline
browsing in a text editor or by XML-aware browser software.

CMPONENT SERVICE BROWSE Request

The example on the next page shows how you might code a component service browse
request in Serena XML. Data structure details for the browse <request> tag appear in
Exhibit 4-10.

Example XML — CMPONENT SERVICE BROWSE Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="BROWSE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <trim>Y</trim>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-10. CMPONENT SERVICE BROWSE <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<browseFromOption> Optional 1 String (1) Code for component library to browse.
Values:

1 = Browse from package
2 = Browse from baseline
3 = Browse from package if
 found, otherwise from
 baseline

NOTE: Options 1 and 3 require the
<package> tag to be specified.
247

24

Chapter 4: Component Management
CMPONENT SERVICE BROWSE Reply

The component service browse reply returns one <result> tag for the component
requested. Component contents are line-oriented in format; that is, each line of component
text is returned in its own <line> tag.

 Tip

If you prefer to download a file without <line> tags, consider using the data
download service instead of component browse.

A standard <response> data structure follows the <result> tag, if any, to indicate the
success or failure of the browse request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a Serena XML reply message, the <response> tag serves as an end-of-list marker.

An example reply to a component service browse request follows.

<component> Required 1 String (256),
variable

ZMF name of component to browse.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3) ZMF library type of component to
browse.

<hashToken> Optional 0 - 1 String (16) ZMF-generated “fingerprint” of
component to browse. If component
has changed since the hash token was
generated, Serena XML returns a
warning.

<package> Required 1 String (10) ZMF fixed-format package name
where component resides.

NOTE: This tag is required if
<browseFromOption> = 1 or 3.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

<trim> Optional 0 - 1 String (1) Define N if you do not want the trailing
blanks to be trimmed before </line> tag

NOTE: Default is Y.

Exhibit 4-10. CMPONENT SERVICE BROWSE <request> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Example XML — Component Service Browse Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="BROWSE">
 <result>
 <line> * ACPCPY00.CAP</line>
 <line> * ACPCPY00.CAP</line>
 <line> 01 ACPCPY00 PIC X(01).</line>
 </result>
 <response>
 <statusMessage>CMN8700I - Download service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Compare Components - CMPONENT SERVICE COMPARE

The Serena XML service/scope/message tags and attributes for component compare
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”COMPARE”>

These tags appear in both requests and replies.

CMPONENT SERVICE COMPARE Requests

You can use Serena XML to compare a component in the staging library against a like-named
component in any baseline or promotion library. The value in the <baseLibLevel> tag
specifies the baseline level (0 to -99) or promotion level (1 to 999) for the comparison.

The example below shows how you might code a request to compare a component in a
staged package with a baselined version of that component. Data structure details for the
compare <request> tag appear in Exhibit 4-11.

Example XML — CMPONENT SERVICE COMPARE Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="COMPARE">
 <header>
249

25

Chapter 4: Component Management
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <baseLibLevel>001</baseLibLevel>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-11. CMPONENT SERVICE COMPARE <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

<baseLibLevel> Required 1 String (3),
variable

Baseline or promotion library level of
component compared against
component in staging.

Baseline range: 0 to -99
Promotion range: 1 to 999

<component> Required 1 String (256),
variable

ZMF component to be compared.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF library type of component to be
compared. Typical values:

• COB
• CPY
• JCL
• LOD
• SRC

<package> Required 1 String (10),
variable

ZMF fixed-format package name where
component resides.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SERVICE COMPARE Replies

The component package browse reply returns one <result> tag, which contains the
component comparison report. Each line of the report is bracketed by a <line> tag.

Example XML — CMPONENT SERVICE COMPARE Reply

<?xml version="1.0"?>

<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="COMPARE">
 <result>
 <line>1 S E R C M P A R (MVS - 560 - 20080929) 2 TEXTONLY FRIDAY
FEBRUARY 13, 2009 (2009/044) 08:36:47 PAGE 1</line>
 <line>
SYSUT1=CMNTP.A013D.#C3BDFBA.#313AB10.WORKSRD(ACPCPY00),SYSUT2=CMNTP.SERT8.D
EV.TES5.#000001.CPY(ACPCPY00)</line>
 <line>0 * ACPCPY00.CAP
O N E 1</line>
 <line> * ACPCPY00.CAP
O N E 2</line>

<line>0++++++++|+++.++++1++++.++++2++++.++++3++++.++++4++++.++++5++++.++++6
++++.++++7++++.++++8+++++++++++++++++++++</line>
 <line> I * ADDED 2/13/2009 8:35 AM
DIF T W O 3 +</line>
 <line>
++++++++|+++.++++1++++.++++2++++.++++3++++.++++4++++.++++5++++.++++6++++.++
++7++++.++++8+++++++++++++++++++++</line>
 <line></line>
 <line> 01 ACPCPY00 PIC X(01).
O N E 3</line>
 <line>0SER71I - END OF TEXT ON FILE SYSUT1</line>
 <line>0SER72I - END OF TEXT ON FILE SYSUT2</line>
 <line>-SER75I - RECORDS PROCESSED: SYSUT1(3)/
SYSUT2(4),DIFFERENCES(0,0,1)</line>
 <line> EXPLANATION - 0 RECORDS DIFFER THAT
SYNCHRONIZED TOGETHER</line>
 <line> 0 RECORDS WERE CONSIDERED
INSERTED ON SYSUT1</line>
 <line> 1 RECORD WAS CONSIDERED
INSERTED ON SYSUT2</line>
 <line>1 S E R C M P A R (MVS - 560 - 20080929) 2 TEXTONLY FRIDAY
FEBRUARY 13, 2009(2009/044) 08:36:47 PAGE 2</line>
 <line>
SYSUT1=CMNTP.A013D.#C3BDFBA.#313AB10.WORKSRD,SYSUT2=CMNTP.SERT8.DEV.TES5.#0
00001.CPY</line>
 <line>0SER71I - END OF DIRECTORY ON FILE SYSUT1</line>
 <line>0SER72I - END OF DIRECTORY ON FILE SYSUT2</line>
 <line>0SER78I - MEMBERS PROCESSED: SYSUT1(1)/
SYSUT2(1),DIFFERENCES(1),REJECTED BY FILTERS: SYSUT1(0)/SYSUT2(0)</line>
251

25

Chapter 4: Component Management
 <line>0SER80I - TIME OF DAY AT END OF JOB: 08:36:47 - CONDITION CODE ON
EXIT: 4</line>
 </result>
 <response>
 <statusMessage>CMN8700I - Download service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

.

Rename a Component - CMPONENT SERVICE RENAME

The Serena XML service/scope/message tags and attributes for component rename
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”RENAME”>

These tags appear in both requests and replies.

CMPONENT SERVICE RENAME Requests

The example below shows how you might code a component rename request in Serena
XML. Data structure details for the rename <request> tag appear in Exhibit 4-12.

Example XML — CMPONENT SERVICE RENAME Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="RENAME">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000009</package>
 <componentType>CPY</componentType>
 <oldComponent>ACPCPY1B</oldComponent>
 <newComponent>ACPCPY2B</newComponent>
 </request>
 </message>
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 </scope>
</service>

CMPONENT SERVICE RENAME Replies

No <result> data structure is returned in the component rename reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
rename request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

Exhibit 4-12. CMPONENT SERVICE RENAME <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<componentType> Required 1 String (3),
fixed

ZMF library type of renamed
component. Typical values:

• COB
• CPY
• JCL
• LOD
• SRC

<newComponent> Required 1 String (256),
variable

New ZMF name of renamed
component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<oldComponent> Required 1 String (256),
variable

Old ZMF name of component to
rename.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<package> Required 1 String (10),
variable

ZMF name of package where
component resides.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.
253

25

Chapter 4: Component Management
Scratch a Component - CMPONENT SERVICE SCRATCH

The Serena XML service/scope/message tags and attributes for component scratch
messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”SCRATCH”>

These tags appear in both requests and replies.

Component Scratch Requests

The example on the next page shows how you might code a component scratch request in
Serena XML. Data structure details for the scratch <request> tag appear in Exhibit 4-13,
following the example.

Example XML — CMPONENT SERVICE SCRATCH Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="SCRATCH">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000009</package>
 <componentType>CPY</componentType>
 <oldComponent>ACPCPY1C</oldComponent>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-13. CMPONENT SERVICE SCRATCH <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SERVICE SCRATCH Replies

No <result> data structure is returned in the component scratch reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
scratch request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK

The component lock and unlock functions in Serena XML share identical request and reply
data structures nested within their <service>, <scope>, and <message> tags. Only the
name attribute of the <message> tag differs.

 The service/scope/message tags and attributes for component lock messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”LOCK”>

The service/scope/message tags and attributes for component unlock messages are:

<service name=”CMPONENT”>
<scope name=”SERVICE”>
<message name=”UNLOCK”>

These tags appear in both requests and replies.

<componentType> Required 1 String (3),
fixed

ZMF library type of component to
scratch. Typical values:

• COB
• CPY
• JCL
• LOD
• SRC

<oldComponent> Required 1 String (256),
variable

Name of component to scratch.

• If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<package> Required 1 String (10),
variable

ZMF name of package where
component resides.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

Exhibit 4-13. CMPONENT SERVICE SCRATCH <request> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
255

25

Chapter 4: Component Management
CMPONENT SERVICE LOCK/UNLOCK Requests

The example below shows how you might code a component lock request in Serena XML. An
unlock request would be coded similarly, substituting the attribute name=”unlock” in the
<message> tag. Data structure details for the <request> tag used in both component lock
and unlock messages appear in Exhibit 4-14.

Example XML — CMPONENT SERVICE LOCK Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SERVICE">
 <message name="LOCK">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>TES5000001</package>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-14. CMPONENT SERVICE LOCK <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no qual-
ifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF library type of component. Typical
values:

• COB
• CPY
• JCL
• LOD
• SRC
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SERVICE LOCK/UNLOCK Replies

No <result> data structure is returned in component lock or unlock reply messages.
However, the standard <response> data structure is returned to indicate the success or
failure of the lock request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

List Load Module Subroutines - CMPONENT LOD_SUBR LIST

The Serena XML service/scope/message tags and attributes for messages to list information
about load module subroutines are:

<service name=”CMPONENT”>
<scope name=”LOD_SUBR”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT LOD_SUBR LIST Requests

The CMPONENT LOD_SUBR LIST request retrieves information about statically linked
subroutines within a load module.

The example below shows how you might code a component subroutine list request in
Serena XML. Data structure details for the <request> tag appear in Exhibit 4-15.

Example XML — CMPONENT LOD_SUBR LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="LOD_SUBR">
 <message name="LIST">
 <header>
 <subsys>4</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 <compositeComponent>ACPSRC1A</compositeComponent>
 <compositeComponentType>LOD</compositeComponentType>
 <sourceComponent>ACPSRC1A</sourceComponent>

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

Exhibit 4-14. CMPONENT SERVICE LOCK <request> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
257

25

Chapter 4: Component Management
 <sourceComponentType>SRC</sourceComponentType>
 </request>
 </message>
 </scope>
</service>

CMPONENT LOD_SUBR LIST Replies

The reply message listing information about a load module and its statically linked
subroutines returns zero to many <result> data elements. Each <result> tag contains
information about one subroutine within the composite component. This information includes
the subroutine name and type, the SETSSI value, and so on.

Exhibit 4-15. CMPONENT LOD_SUBR LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

<compositeComponent> Required 1 String (256),
variable

ZMF name of load module.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

NOTE: Component name may be
masked using standard wildcards.

<compositeComponentType> Required 1 String (3),
fixed

ZMF library type of composite
component.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

<sourceComponent> Required 1 String (256),
variable

ZMF name of source component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

NOTE: Component name may be
masked using standard wildcards.

<sourceComponentType> Required 1 String (3),
fixed

ZMF library type of source
component.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT LOD_SUBR LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="LOD_SUBR">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <compositeComponent>ACPSRC1A</compositeComponent>
 <compositeComponentType>LOD</compositeComponentType>
 <sourceComponent>ACPSRC1A</sourceComponent>
 <sourceComponentType>SRC</sourceComponentType>
 <compositeSetssi>61118F95</compositeSetssi>
 <compositeFromIDR>Y</compositeFromIDR>
 <subroutineComponent>ACPSRC1A</subroutineComponent>
 <subroutineComponentAppl>ACTP</subroutineComponentAppl>
 <subroutineComponentType>LOD</subroutineComponentType>
 <subroutinePackage>ACTP000007</subroutinePackage>
 <subroutineApplName>ACTP</subroutineApplName>
 <subroutinePackageId>000007</subroutinePackageId>
 <subroutineSetssi>61118F95</subroutineSetssi>
 <subroutineFromIDR>Y</subroutineFromIDR>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <compositeComponent>ACPSRC1A</compositeComponent>
 <compositeComponentType>LOD</compositeComponentType>
 <sourceComponent>ACPSRC1A</sourceComponent>
 <sourceComponentType>SRC</sourceComponentType>
 <compositeSetssi>61118F95</compositeSetssi>
 <compositeFromIDR>Y</compositeFromIDR>
 <subroutineComponent>ACPSRS1B</subroutineComponent>
 <subroutineComponentAppl>ACTP</subroutineComponentAppl>
 <subroutineComponentType>LOS</subroutineComponentType>
 <subroutinePackage>ACTP000007</subroutinePackage>
 <subroutineApplName>ACTP</subroutineApplName>
 <subroutinePackageId>000007</subroutinePackageId>
 <subroutineSetssi>60AFD725</subroutineSetssi>
 <subroutineFromIDR>Y</subroutineFromIDR>
 </result>
 .
 .
259

26

Chapter 4: Component Management
 .
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-16.

Exhibit 4-16. CMPONENT LOD_SUBR LIST <result> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<compositeComponent> Required 1 String (256),
variable

ZMF name of load module.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<compositeComponentType> Required 1 String (3),
fixed

ZMF library type of composite
component.

<compositeFromIDR> Optional 0 -1 String (1) Indicates if composite information is
from IDR.

 Y = Yes, information is from IDR.

 N = No, information is not from IDR.

<compositeHashToken> Optional 0 -1 String (16) Composite hash token.

<compositeSetssi> Required 1 String (8) Composite SETSSI value.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<sourceComponent> Required 1 String (256),
variable

ZMF name of source component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Copybook Names in Source - CMPONENT SRC_INCL LIST

The Serena XML service/scope/message tags and attributes for messages to list information
about copybooks included within a source component are:

<service name=”CMPONENT”>
<scope name=”SRC_INCL”>
<message name=”LIST”>

These tags appear in both requests and replies.

<sourceComponentType> Required 1 String (3),
fixed

ZMF library type of source
component.

<subroutineApplName> Optional 0 - 1 String (4),
variable

ZMF application name of subroutine.

<subroutineComponent> Required 1 String (256),
variable

ZMF name of subroutine component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<subroutineComponentAppl> Required 1 String (4),
variable

ZMF application name of subroutine
component.

<subroutineComponentType> Required 1 String (3),
fixed

ZMF library type of subroutine
component.

<subroutineFromIDR> Optional 0 -1 String (1) Indicates if subroutine information is
from IDR.

 Y = Yes, information is from IDR.

 N = No, information is not from IDR.

<subroutineHashToken> Optional 0 -1 String (16) Subroutine hash token.

<subroutinePackage> Required 1 String (10),
fixed

Fixed-format ZMF package name of
subroutine.

<subroutinePackageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number of
subroutine.

<subroutineRelease> Optional 1 String (8),
variable

Subroutine release name.

<subroutineReleaseArea> Optional 1 String (8),
variable

Subroutine release area name.

<subroutineSetssi> Required 1 String (8) Subroutine SETSSI value.

Exhibit 4-16. CMPONENT LOD_SUBR LIST <result> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
261

26

Chapter 4: Component Management
CMPONENT SRC_INCL LIST Requests

The example below shows how you might code a CMPONENT SRC_INCL LIST request in
Serena XML. Data structure details for the <request> tag appear in Exhibit 4-17.

Example XML — CMPONENT SRC_INCL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SRC_INCL">
 <message name="LIST">
 <header>
 <subsys>4</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 <sourceComponent>ACPSRC1A</sourceComponent>
 <sourceComponentType>SRC</sourceComponentType>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-17. CMPONENT SRC_INCL LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

NOTE: OK to omit trailing blanks.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

<sourceComponent> Required 1 String (256),
variable

ZMF name of source component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

NOTE: Component name may be
masked using standard wildcards.

<sourceComponentType> Required 1 String (3),
fixed

ZMF library type of source
component.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SRC_INCL LIST Replies

The reply message listing information about a source component and its included copybooks
returns zero to many <result> data elements. Each <result> tag contains information
about one copybook within the source component. This information includes the copybook
name and type, the version, and so on.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT SRC_INCL LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SRC_INCL">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <sourceComponent>ACPSRC1A</sourceComponent>
 <setssi>61118FA5</setssi>
 <srcHashToken>6E1E9BDD0000035A</srcHashToken>
 <includedVersion>01</includedVersion>
 <includedModLevel>01</includedModLevel>
 <includedHashToken>6721849B000000A3</includedHashToken>
 <includedApplName>ACTP</includedApplName>
 <includedComponentType>CPY</includedComponentType>
 <includedComponent>ACPCPY00</includedComponent>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <sourceComponent>ACPSRC1A</sourceComponent>
 <sourceComponentType>SRC</sourceComponentType>
 <setssi>61118FA5</setssi>
 <srcHashToken>6E1E9BDD0000035A</srcHashToken>
 <includedVersion>01</includedVersion>
 <includedModLevel>01</includedModLevel>
 <includedHashToken>BDC5C909000000BE</includedHashToken>
 <includedApplName>ACTP</includedApplName>
 <includedComponentType>CPY</includedComponentType>
 <includedComponent>ACPCPY1A</includedComponent>
 </result>
 .
 .
 .
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
263

26

Chapter 4: Component Management
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-18.

Exhibit 4-18. CMPONENT INCL_SRC LIST <result> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<includedApplName> Required String (4),
variable

ZMF application name of included
component.

<includedComponent> Required 1 String (256),
variable

ZMF name of included component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<includedComponentType> Required 1 String (3),
fixed

ZMF library type of included
component.

<includedHashToken> Required 1 String (16) Hash token of included component.

<includedModLevel> Required 1 Integer (2),
fixed

Modification level of included
component.

<includedVersion> Required 1 Integer (2),
fixed

Version of included component.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

<release> Optional 0 - 1 String (8),
variable

Release name.

<releaseArea> Optional 0 - 1 String (8),
variable

Release area name.

<setssi> Required 1 String (8) SETSSI value of source component.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
COMPONENT STAGING VERSION MANAGEMENT

Staging version functions for general use include the following:

• List Component Staging Versions - CMPONENT SSV_VER LIST
• Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE

List Component Staging Versions - CMPONENT SSV_VER LIST

The Serena XML service/scope/message tags and attributes for messages to list all staging
versions of a component are:

<service name=”CMPONENT”>
<scope name=”SSV_VER”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT SSV_VER LIST — Requests

The example below shows how you might code a request to list the staging versions of a
component. Staging versions may be listed for only one component per request. Data
structure details for the list staging versions <request> tag appear in Exhibit 4-19, following
the example.

Example XML — CMPONENT SSV_VER LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SSV_VER">
 <message name="LIST">
 <header>
 <subsys>8</subsys>

<sourceComponent> Required 1 String (256),
variable

ZMF name of source component.

• If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.

<sourceComponentType> Required 1 String (3),
fixed

ZMF library type of source
component.

<srcHashToken> Required 1 String (16) Hash token of source component.

Exhibit 4-18. CMPONENT INCL_SRC LIST <result> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
265

26

Chapter 4: Component Management
 <product>CMN</product>
 </header>
 <request>
 <package>CISQ000030</package>
 <componentType>SRC</componentType>
 <component>CI2Q101</component>
 </request>
 </message>
 </scope>
</service>

CMPONENT SSV_VER LIST — Replies

The Serena XML reply message to a component staging versions list request contains zero
to many <result> tags. Each <result> contains information about one previously staged
version of the requested component. The <result> tag repeats for each staging version of
the component.

The standard <response> data structure follows the final <result> tag and indicates the
success or failure of the list request. Successful requests have a return code of 00.

Exhibit 4-19. CMPONENT SSV_VER LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF library type of component. Must
be editable source code (RECFM not
‘U’). Values:

• COB
• CPY
• JCL
• SRC

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Unsuccessful requests have a return code of 04 or higher. As the final data element in the
reply, the <response> tag also serves as an end-of-list marker.

An example reply to a list staging versions request follows. Data structure details for the list
<result> tag appear in Exhibit 4-20.

Example XML — CMPONENT SSV_VER LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="SSV_VER">
 <message name="LIST">
 <result>
 <versionLocation>2</versionLocation>
 <lastUpdater>USER24</lastUpdater>
 <dateLastModified>20081126</dateLastModified>
 <timeLastModified>100700</timeLastModified>
 <changeDesc>BIG SETQUERY PACKAGE</changeDesc>
 <ispfUser>USER24</ispfUser>
 <ispfDateLastModified>20081126</ispfDateLastModified>
 <ispfTimeLastModified>095100</ispfTimeLastModified>
 <ispfUpdateSize>00094</ispfUpdateSize>
 <ispfVersion>001</ispfVersion>
 <ispfModLevel>001</ispfModLevel>
 <ispfInitialDate>20080118</ispfInitialDate>
 <ispfInitialSize>00090</ispfInitialSize>
 <ispfModSize>00000</ispfModSize>
 </result>
 <result>
 <versionLocation>4</versionLocation>
 <lastUpdater>USER24</lastUpdater>
 <dateLastModified>20081126</dateLastModified>
 <timeLastModified>095100</timeLastModified>
 <changeDesc>Baseline version</changeDesc>
 <ispfUser>USER24</ispfUser>
 <ispfDateLastModified>20081126</ispfDateLastModified>
 <ispfTimeLastModified>095100</ispfTimeLastModified>
 <ispfUpdateSize>00094</ispfUpdateSize>
 <ispfVersion>001</ispfVersion>
 <ispfModLevel>001</ispfModLevel>
 <ispfInitialDate>20080118</ispfInitialDate>
 <ispfInitialSize>00090</ispfInitialSize>
 <ispfModSize>00000</ispfModSize>
 </result>
 <response>
 <statusMessage>CMN8700I - SSV service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
267

26

Chapter 4: Component Management
 </scope>
</service>

Exhibit 4-20. CMPONENT SSV_VER LIST <result> Data Structure

Subtag Use Instances
Data Type &
Length Values

<backupDate> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
backed up.

<backupTime> Optional 0 - 1 Time,
hhmmss

Time component version was last
backed up, 24-hour format.

<backupUser> Optional 0 - 1 String (8),
variable

TSO user ID of most recent user to
back up component version.

<changeDesc> Optional 0 - 1 String (35),
variable

Text description of changes made in
this version of component.

<dateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
changed.

<fileFormat> Optional 0 - 1 Integer (1) For regular HFS files, the Unix numeric
code for data organization and record
delimiter. Allowed values:

0 = Not specified

1 = Binary data

2 = New line (NL)

3 = Carriage return (CR)

4 = Line feed (LF)

5 = CR & LF

6 = LF & CR

7 = CR & NL

NOTE: Always supplied for HFS data
files. Irrelevant and omitted for HFS
directories, links or aliases, pipes, or
sockets, or for non-HFS components.

<ispfDateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
changed or staged by ISPF user.

<ispfInitialDate> Optional 0 - 1 Date,
yyyymmdd

Date component version was created.

<ispfInitialSize> Optional 0 - 1 Integer (5),
variable

Lines of code in version before
change.

<ispfModLevel> Optional 0 - 1 Integer (3),
variable

ISPF 2-byte modification level for
component when last staged.

<ispfModSize> Optional 0 - 1 Integer (5),
variable

Lines of code changed in version.

<ispfTimeLastModified> Optional 0 - 1 Time,
hhmmss

Time component version was last
changed or staged by ISPF user, 24-
hour format.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<ispfUpdateSize> Optional 0 - 1 Integer (5),
variable

Lines of code in version after change.

<ispfUser> Optional 0 - 1 String (8),
variable

TSO user ID of last ISPF user to
change or stage this component when
it was the STG version.

<ispfVersion> Optional 0 - 1 Integer (3),
variable

ISPF 2-byte version number for
component when last staged.

<lastUpdater> Optional 0 - 1 String (8),
variable

TSO user ID of last component updater
for this version.

<permissions> Optional 0 - 1 Integer (3),
fixed

Unix access permissions for HFS file
or directory, coded as 3-digit integer,
where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following
values:

7 - Read, write/rename/delete,
execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: Always listed for HFS
components. Irrelevant and omitted for
non-HFS components.

<promotionLevel> Optional 0 - 1 Integer (4),
variable

ZMF promotion level to which this
component was last promoted when it
was the STG version.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF name of promotion level
corresponding to level number in
<promotionLevel>.

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of site to which this
component was last promoted when it
was the STG version.

<timeLastModified> Optional 0 - 1 Time,
hhmmss

Time component version was last
changed, 24-hour format.

Exhibit 4-20. CMPONENT SSV_VER LIST <result> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
269

27

Chapter 4: Component Management
Retrieve Component Staging Version - CMPONENT SSV_VER
RETRIEVE

The Serena XML service/scope/message tags and attributes for messages to retrieve a
specific staging version of a component are:

<service name=”CMPONENT”>
<scope name=”SSV_VER”>
<message name=”RETRIEVE”>

These tags appear in both requests and replies.

The staging version retrieve function is a subset of the staging version recover function seen
in the ISPF user interface. The retrieve function finds the desired version of a component in
the staging version VSAM master, then copies it to a temporary data set for use. The name of
the temporary data set is auto-generated and returned in the Serena XML reply message.

The ISPF recover function goes one step further: it copies the auto-generated data set to any
data set chosen by the user. The XML retrieve function does not perform this second step.

<versionLocation> Optional 0 - 1 Integer (1) Code for library where this version of
the component resides. Values:

2 = Staging library
4 = Baseline library
6 = Staging version backup lib

<versionStamp> Optional 0 - 1 String (8),
fixed

Hexadecimal time-and-date stamp that
uniquely identifies this version of this
component.

Exhibit 4-20. CMPONENT SSV_VER LIST <result> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
CMPONENT SSV_VER RETRIEVE — Requests

Data structure details for the staging version retrieve <request> tag appear in Exhibit 4-21.

CMPONENT SSV_VER RETRIEVE — Replies

The Serena XML reply message for the staging version retrieve function returns one
<result> for the requested component version, if found. The standard <response> data
structure follows the <result> tag and indicates the success or failure of the list request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

Exhibit 4-21. CMPONENT SSV_VER RETRIEVE <request>

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1 String (256),
variable

ZMF name of component to retrieve
from staging version.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF library type of component. Must
be editable source code (RECFM not
‘U’). Values:

• COB
• CPY
• JCL
• SRC

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

<versionStamp> Required 1 String (8),
fixed

Hexadecimal date/time stamp of
particular component version to
retrieve.
271

27

Chapter 4: Component Management
Data structure details for the retrieval <result> tag appear in Exhibit 4-22.

Exhibit 4-22. CMPONENT SSV_VER RETRIEVE <result>

Subtag Use Instances
Data Type &
Length Values

<backupDate> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
backed up.

<backupTime> Optional 0 - 1 Time,
hhmmss

Time component version was last
backed up, 24-hour format.

<backupUser> Optional 0 - 1 String (8),
variable

TSO user ID of most recent user to
back up component version.

<changeDesc> Optional 0 - 1 String (35),
variable

Text description of changes made in
this version of component.

<dateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
changed.

<fileFormat> Optional 0 - 1 Integer (1) For regular HFS files, the Unix numeric
code for data organization and record
delimiter. Allowed values:

0 = Not specified

1 = Binary data

2 = New line (NL)

3 = Carriage return (CR)

4 = Line feed (LF)

5 = CR & LF

6 = LF & CR

7 = CR & NL

NOTE: Always supplied for HFS data
files. Irrelevant and omitted for HFS
directories, links or aliases, pipes, or
sockets, or for non-HFS components.

<ispfDateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date component version was last
changed or staged by ISPF user.

<ispfInitialDate> Optional 0 - 1 Date,
yyyymmdd

Date component version was created.

<ispfInitialSize> Optional 0 - 1 Integer (5),
variable

Lines of code in version before
change.

<ispfModLevel> Optional 0 - 1 Integer (3),
variable

ISPF 2-byte modification level for
component when last staged.

<ispfModSize> Optional 0 - 1 Integer (5),
variable

Lines of code changed in version.

<ispfTimeLastModified> Optional 0 - 1 Time,
hhmmss

Time component version was last
changed or staged by ISPF user, 24-
hour format.

<ispfUpdateSize> Optional 0 - 1 Integer (5),
variable

Lines of code in version after change.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<ispfUser> Optional 0 - 1 String (8),
variable

TSO user ID of last ISPF user to
change or stage this component when
it was the STG version.

<ispfVersion> Optional 0 - 1 Integer (3),
variable

ISPF 2-byte version number for
component when last staged.

<lastUpdater> Optional 0 - 1 String (8),
variable

TSO user ID of last component updater
for this version.

<permissions> Optional 0 - 1 Integer (3),
fixed

Unix access permissions for HFS file
or directory, coded as 3-digit integer,
where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following
values:

7 - Read, write/rename/delete,
execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: Always listed for HFS
components. Irrelevant and omitted for
non-HFS components.

<promotionLevel> Optional 0 - 1 Integer (4),
variable

ZMF promotion level to which this
component was last promoted when it
was the STG version.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF name of promotion level
corresponding to level number in
<promotionLevel>.

<promotionSiteName> Optional 0 - 1 String (8),
variable

ZMF name of site to which this
component was last promoted when it
was the STG version.

<tempLib> Optional 0 - 1 String (256),
variable

Temporary data set name where
version is returned.

<timeLastModified> Optional 0 - 1 Time,
hhmmss

Time component version was last
changed, 24-hour format.

Exhibit 4-22. CMPONENT SSV_VER RETRIEVE <result> (Continued)

Subtag Use Instances
Data Type &
Length Values
273

27

Chapter 4: Component Management
COMPONENT INFORMATION MANAGEMENT TASKS

Component information management tasks retrieve or manage control information and
descriptive metadata about one or more components. Such tasks include:

Note that some component information management functions, such as listing all the
components in a package, are described with package-level component tasks. See
“Package-Level Component Change Management” in Chapter 3, Package Management, for
those functions.

List Component Change Description - CMPONENT CHG_DESC LIST

The Serena XML service/scope/message tags and attributes for messages that list change
descriptions for one or more components are:

<service name=”CMPONENT”>
<scope name=”CHG_DESC”>
<message name=”LIST”>

<versionLocation> Optional 0 - 1 Integer (1) Code for library where this version of
the component resides. Values:

2 = Staging library
4 = Baseline library
6 = Staging version backup lib

<versionStamp> Optional 0 - 1 String (8),
fixed

Hexadecimal time-and-date stamp that
uniquely identifies this version of this
component.

• List Component Change Description -
CMPONENT CHG_DESC LIST

• List Short Component History -
CMPONENT HISTORY LISTSHRT

• Find Component Description -
CMPONENT APL_CDSC FIND

• List Current Component History -
CMPONENT HISTORY LISTCURR

• List Component Description -
CMPONENT APL_CDSC LIST

• List Concurrent Comp. History -
CMPONENT HISTORY LISTCONC

• List Global Component Description -
CMPONENT GBL_CDSC LIST

• List Baselined Component History -
CMPONENT HISTORY LISTBASE

• List Component Promotion History -
CMPONENT PRM_HIST LIST

• List Comp. User Worklist Records -
CMPONENT PKG_WRKL LIST

• Component History List - CMPONENT
HISTORY LIST

Exhibit 4-22. CMPONENT SSV_VER RETRIEVE <result> (Continued)

Subtag Use Instances
Data Type &
Length Values
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
These tags appear in both requests and replies.

CMPONENT CHG_DESC LIST — Request

The following example below shows how you might code a Serena XML request to list the
change description for a single component in a package. Data structure details for the list
<request> tag appear in Exhibit 4-23.

Example XML — CMPONENT CHG_DESC LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="CHG_DESC">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-23. CMPONENT CHG_DESC LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<component> Optional 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: May be masked using the
following wildcard characters:

? = Any one alphanumeric
character.

* = Any number of alphanumeric
characters. Used alone, it
matches all values.

<componentType> Optional 1 String (3),
fixed

ZMF library type of component.

NOTE: May be masked using the
asterisk (*) wildcard character.
275

27

Chapter 4: Component Management
CMPONENT CHG_DESC LIST — Reply

The Serena XML reply message for the component change description list function returns
zero to many <result> tags for the requested component(s). Each result contains a
component change description for the component name and library type in the reply.

The standard <response> data structure follows the final <result> tag and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the final data structure in the
reply, the <response> tag also serves as an end-of-list marker.

An example reply to a component change description list request follows. Data structure
details for the list <result> tag appear in Exhibit 4-24.

Example XML — CMPONENT CHG_DESC LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="CHG_DESC">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY1A</component>
 <componentType>CPY</componentType>
 <changeDesc>SER5904E</changeDesc>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

Exhibit 4-23. CMPONENT CHG_DESC LIST <request> Data Structure (Continued)

Subtag Use Instances
Data Type &
Length Values
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Find Component Description - CMPONENT APL_CDSC FIND

The Serena XML service/scope/message tags and attributes for messages that find the
application-level description for a specific component are:

<service name=”CMPONENT”>
<scope name=”APL_CDSC”>
<message name=”FIND”>

These tags appear in both requests and replies.

CMPONENT APL_CDSC FIND — Request

This function first tries to find the application-level description for a specific component. If no
description is found at the application level, the global records are searched.

Exhibit 4-24. CMPONENT CHG_DESC LIST<result> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<changeDesc> Optional 0 - 1 String (35),
variable

Text description of change to
component.

<component> Optional 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Optional 1 String (3),
fixed

ZMF library type of component.

<package> Optional 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.
277

27

Chapter 4: Component Management
Data structure details for the component description find <request> tag appear in
Exhibit 4-25.

CMPONENT APL_CDSC FIND— Reply

The Serena XML reply message for the component description find function returns one
<result> tag for the requested component. It contains the component description and
library type in the reply.

The standard <response> data structure follows the <result> tag and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Data structure details for the list <result> tag appear in Exhibit 4-26.

List Component Description - CMPONENT APL_CDSC LIST

Exhibit 4-25. CMPONENT APL_CDSC FIND <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Required 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<component> Required 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF library type of component.

Exhibit 4-26. CMPONENT APL_CDSC FIND <result> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<component> Optional 0 - 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentDesc> Optional 0 - 48 String (72),
variable

Text description of component.

<componentType> Optional 0 - 1 String (3),
fixed

ZMF library type of component.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The Serena XML service/scope/message tags and attributes for messages that list the
application-level description for one or more components are:

<service name=”CMPONENT”>
<scope name=”APL_CDSC”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT APL_CDSC LIST — Request

Data structure details for the component description list <request> tag appear in
Exhibit 4-27.

CMPONENT APL_CDSC LIST — Reply

The Serena XML reply message for the component description list function returns zero to
many <result> tags for the requested component(s). Each result contains the component
description and library type in the reply.

The standard <response> data structure follows the <result> tags and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the final data structure in the
reply, the <response> tag also serves as an end-of-list marker.

Data structure details for the list <result> tag are identical to those of CMPONENT
APL_CDSC FIND; refer to Exhibit 4-26.

Exhibit 4-27. CMPONENT APL_CDSC LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<applName> Required 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<component> Required 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: May be masked using the
following wildcard characters:

? = Any one alphanumeric
character.

* = Any number of alphanumeric
characters. Used alone, it
matches all values.

<componentType> Required 1 String (3),
fixed

ZMF library type of component.

NOTE: May be masked using the
asterisk (*) wildcard character.
279

28

Chapter 4: Component Management
List Global Component Description - CMPONENT GBL_CDSC LIST

The Serena XML service/scope/message tags and attributes for messages that list the global
description for a component are:

<service name=”CMPONENT”>
<scope name=”GBL_CDSC”>
<message name=”LIST”>

These tags appear in both requests and replies.

CMPONENT GBL_CDSC LIST — Request

Data structure details for the component global description list <request> tag appear in
Exhibit 4-28.

CMPONENT GBL_CDSC LIST — Reply

The Serena XML reply message for the component global description list function returns
zero to many <result> tags for the requested component(s). Each result contains the
component global description and library type in the reply.

The standard <response> data structure follows the <result> tags and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the final data structure in the
reply, the <response> tag also serves as an end-of-list marker.

Data structure details for the list <result> tag are similar to those of CMPONENT
APL_CDSC FIND; the only difference is that the <applName> subtag is omitted. Refer to
Exhibit 4-26.

Exhibit 4-28. CMPONENT GBL_CDSC LIST <request> Data Structure

Subtag Use Instances
Data Type &
Length Values

<component> Required 1 String (256),
variable

ZMF name of component.

• If component is PDS member, this is
member name (max 8 bytes, no
qualifiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: May be masked using the
following wildcard characters:

? = Any one alphanumeric
character.

* = Any number of alphanumeric
characters. Used alone, it
matches all values.

<componentType> Required 1 String (3),
fixed

ZMF library type of component.

NOTE: May be masked using the
asterisk (*) wildcard character.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Component Promotion History - CMPONENT PRM_HIST LIST

A Serena XML message to list component promotion history has the following
service/scope/message names:

<service name=”CMPONENT”>
<scope name=”PRM_HIST”>
<message name=”LIST”>

These tags appear in both request and reply messages.

CMPONENT PRM_HIST LIST — Requests

Serena XML provides component promotion history for selected components in a named
package. Component name, component type, and promotion site name may be masked
using a wildcard pattern.

Data structure details for the <request> tag of this message appear in Exhibit 4-29.

Exhibit 4-29. CMPONENT PRM_HIST LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Optional 0 -1 String (256),
variable

One ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

NOTE: May be masked using asterisk (*)
wildcard character.

<componentType> Optional 0 -1 String (3),
variable

ZMF component library type.

NOTE: May be masked using asterisk (*)
wildcard character.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

<promotionSiteName> Optional 0 -1 String (8),
variable

Site where promotion library of interest
resides.

NOTE: May be masked using asterisk (*)
wildcard character.
281

28

Chapter 4: Component Management
CMPONENT PRM_HIST LIST — Replies

The Serena XML reply message for a component promotion history list contains zero to many
<result> tag, each of which provides promotion history and status information for one
component that matches your request criteria.

The standard <response> data structure follows the final <result> tag and indicates the
success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the final data structure in the
reply, the <response> tag also serves as an end-of-list marker.

Data structure details for the <request> tag of this message appear in Exhibit 4-30.

Exhibit 4-30. CMPONENT PRM_HIST LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<cleanupComponent> Optional 0 - 1 String (1) Y = Yes, clean up component
N = No, don’t clean up component

<component> Optional 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 1 String (3),
fixed

ZMF component library type.

<isComponentDeleted> Optional 0 - 1 String (1) Y = Yes, component deleted
N = No, not deleted

<isComponentOverlaid> Optional 0 - 1 String (1) Y = Yes, component overlaid
N = No, not overlaid

<isComponentRestaged> Optional 0 - 1 String (1) Y = Yes, component restaged
N = No, component not restaged

<package> Optional 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

<priorPromoter> Optional 0 -1 String (8),
variable

TSO ID of prior promoter.

<priorPromotionDate> Optional 0 - 1 Date,
yyyymmdd

Prior promotion/demotion date.

<priorPromotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric promotion level for prior
component promotion library.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Component History List - CMPONENT HISTORY LIST

A Serena XML message to retrieve and list a comprehensive history of selected components
has the following service/scope/message names:

<service name=”CMPONENT”>
<scope name=”HISTORY”>
<message name=”LIST”>

These tags appear in both request and reply messages.

CMPONENT HISTORY LIST — Request

Requests may be filtered by the following component status tags:

<baselinedStatus>

<checkedOutStatus>

<delArchStatus>

<deletedStatus>

<priorPromotionName> Optional 0 - 1 String (8),
variable

Name of library corresponding to
hierarchical level number in
<priorPromotionLevel> tag.

<priorPromotionTime> Optional 0 - 1 Time,
hhmmss

Prior promotion/demotion time.

<promoter> Optional 0 - 1 String (8),
variable

TSO ID of most recent promoter.

<promotionDate> Optional 0 - 1 Date,
yyyymmdd

Date component was last promoted.

<promotionJobStatus> Optional 0 -1 String (1) Code for status of promotion job.
Values:

1 = Submitted
2 = Succeeded
3 = Failed

<promotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric promotion level for current
component promotion library.

<promotionName> Optional 0 - 1 String (8),
variable

Name of library corresponding to
hierarchical level number in
<promotionLevel> tag.

<promotionSiteName> Optional 0 - 1 String (8),
variable

Promotion/demotion site.

<promotionTime> Optional 0 - 1 Time,
hhmmss

Time component was last promoted, in
24-hour format.

Exhibit 4-30. CMPONENT PRM_HIST LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
283

28

Chapter 4: Component Management
<demotedStatus>

<promotedStatus>

Yes/no flags for component status filtering take default values as a group. The default
changes based on whether or not you enter explicit values in these tags, as follows:

• If no status flag has an explicitly typed value, the default for all tags is “Y”.

• If any status flag has an explicitly typed value, the default for the remaining tags is “N”.

The following example shows how you might code a Serena XML request for a
comprehensive component history list. Data structure details follow the example in
Exhibit 4-31.

Example XML — CMPONENT HISTORY LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="HISTORY">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 </request>
 </message>
 </scope>
</service>

Exhibit 4-31. CMPONENT HISTORY LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name.

<baselinedStatus> Optional 0 - 1 String (1) Y = Include baselined components
N = Omit baselined components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<buildProc> Optional 0 - 1 String (8),
variable

8-byte ZMF name for designated build
procedure.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<checkedOutStatus> Optional 0 - 1 String (1) Y = Include checked-out components
N = Omit checked-out components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is a PDS member, this is
the member name (max 8 bytes, no
qualifiers).

• If component is an HFS file, this is the
Unix-style long file name, optionally
prefixed by path from installation root,
max 256 bytes.

NOTE: Component name may be
masked using standard wildcards.

<componentType> Required 1 String (3) 3-byte component library type to include
in results.

NOTE: Component type may be
masked using standard wildcards.

<delArchStatus> Optional 0 - 1 String (1) Y = Include del-archived components
N = Omit del-archived components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<deletedStatus> Optional 0 - 1 String (1) Y = Include deleted components
N = Omit deleted components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<demotedStatus> Optional 0 - 1 String (1) Y = Include demoted components
N = Omit demoted components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromBaselinePkgDate> Optional 0 -1 Date,
yyyymmdd

Baseline package date.

<fromDateLastModified> Optional 0 -1 Date,
yyyymmdd

Start of range for desired component
modification dates.

<language> Optional 0 - 1 String (8),
variable

Source language of component(s) to be
compiled. If omitted, ZMF retrieves from
component history.

Exhibit 4-31. CMPONENT HISTORY LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
285

28

Chapter 4: Component Management
CMPONENT HISTORY LIST — Reply

The reply to a Serena XML component history list request returns zero to many <result>
tags. Each <result> tag contains change history information about one component that
meets the search criteria in your request. If one component appears in multiple packages, a
<result> tag will appear for each instance of each component in each package.

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last data element returned in a Serena
XML reply message, the <response> tag serves as an end-of-list marker.

An example Serena XML reply message for a component history list request appears below.
Data structure details for the <result> tag follow in Exhibit 4-32.

Example XML — CMPONENT HISTORY LIST Reply

<?xml version=”1.0”?>
<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="HISTORY">
 <message name="LIST">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <package>ACTP000002</package>
 <applName>ACTP</applName>

<package> Optional 0 - 1 String (10),
variable

ZMF package name.

NOTE: May be masked using standard
wildcards.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

<promotedStatus> Optional 0 - 1 String (1) Y = Include promoted components
N = Omit promoted components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<toBaselinePkgDate> Optional 0 -1 Date,
yyyymmdd

To baseline package date.

<toDateLastModified> Optional 0 -1 Date,
yyyymmdd

End of range desired component
modification dates.

<updater> Optional 0 -1 String (8),
variable

TSO ID of last user to update
component.

Exhibit 4-31. CMPONENT HISTORY LIST <request> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <packageId>000002</packageId>
 <updater>SERT</updater>
 <dateLastModified>20081019</dateLastModified>
 <timeLastModified>204620</timeLastModified>
 <versionModLevel>0101</versionModLevel>
 <version>01</version>
 <modLevel>01</modLevel>
 <hashToken>E1C3A019000001FD</hashToken>
 <checkedOutStatus>N</checkedOutStatus>
 <deletedStatus>N</deletedStatus>
 <promotedStatus>N</promotedStatus>
 <demotedStatus>N</demotedStatus>
 <baselinedStatus>N</baselinedStatus>
 <delArchStatus>N</delArchStatus>
 <baselinePkgDate>20081019</baselinePkgDate>
 <baselinePkgTime>204620</baselinePkgTime>
 <language>COBOL2</language>
 <buildProc>CMNCOB2</buildProc>
 <linkOptions>NCAL</linkOptions>
 <useDb2PreCompileOption>N</useDb2PreCompileOption>
 <size>00000020</size>
 <setssi>5BCB7948</setssi>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 4-32. CMPONENT HISTORY LIST <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name.

<baselinePkgDate> Optional 0 -1 Date,
yyyymmdd

Baseline package date.

<baseLinePkgTime> Optional 0 - 1 Time,
hhmmss

Time component was last baselined, in
24-hour format.

<baselinedStatus> Optional 0 - 1 String (1) Y = Yes, component baselined
N = No, component not baselined

<buildProc> Optional 0 - 1 String (8),
variable

8-byte ZMF name for designated build
procedure.
287

28

Chapter 4: Component Management
<checkedOutStatus> Optional 0 - 1 String (1) Y = Yes, component checked out
N = No, not checked out

<compileOptions> Optional 0 - 1 String (34) Compile options for component not
stored elsewhere.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<componentBuildNumber> Optional 1 String (10),
variable

Component build number

<componentType> Required 1 String (3) ZMF component library type.

<dateLastModified> Optional 0 -1 Date,
yyyymmdd

Date component was last changed.

<delArchStatus> Optional 0 - 1 String (1) Y = Yes, component del-archived.
N = No, component not del-archived

<deletedStatus> Optional 0 - 1 String (1) Y = Yes, component deleted.
N = No, component not deleted.

<demotedStatus> Optional 0 - 1 String (1) Y = Yes, component demoted.
N = No, component not demoted.

<hashToken> Optional 0 - 1 String (16),
variable

Hash Token

<language> Optional 0 - 1 String (8) Name of source code language for
component.

<linkOptions> Optional 0 - 1 String (34) Link options for component not stored
elsewhere.

<modLevel> Optional 0 - 1 Integer Modification level

<package> Optional 1 String (10) ZMF name of package that includes this
component.

NOTE: If a component appears in
multiple packages, a <result> tag for
each package is returned with package-
specific component change information.

<packageId> Optional 0 - 1 Integer (6) ZMF package ID number. Same as last
6 bytes of package name.

<processingtype> Optional 0 - 1 String (1) Processing type.

<promotedStatus> Optional 0 - 1 String (1) Y = Yes, component promoted
N = No, not promoted

<promoter> Optional 0 - 1 String (8) TSO ID of most recent promoter.

Exhibit 4-32. CMPONENT HISTORY LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<promotionDate> Optional 0 - 1 Date,
yyyymmdd

Date component was last promoted.

<promotionLevel> Optional 0 - 1 Integer Numeric promotion level for current
component promotion library.

<promotionName> Optional 0 - 1 String (8) Name of library corresponding to
hierarchical level number in
<promotionLevel> tag.

<promotionSite> Optional 0 - 1 String (8),
variable

Promotion site

<promotionTime> Optional 0 - 1 Time,
hhmmss

Time component was last promoted, in
24-hour format.

<renameFrom> Optional 0 - 1 String (256),
variable

Rename FROM component name.

<renameTo> Optional 0 - 1 String (256),
variable

Rename TO component name.

<setssi> Optional 0 - 1 String (8) Component SETSII date (seconds since
1/1/1960)

<size> Optional 0 - 1 Integer(8) Number of lines of code.

<timeLastModified> Optional 0 -1 Time,
hhmmss

Time component was last changed, in
24-hour format.

<updater> Optional 0 -1 String (8),
variable

TSO ID of last user to update
component.

<useDb2PreCompileOption> Optional 0 - 1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile for DB2

<userOption01>
 .
 .
 .
<userOption20>

Optional 0 - 1 String (1) Set of up to 20 one-byte, custom,
administrator-defined variables. Values:

Y = Yes
N = No

<userOption0101>
 .
 .
 .
<userOption0105>

Optional 0 - 1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

<userOption0201>
 .
 .
 .
<userOption0203>

Optional 0 - 1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

Exhibit 4-32. CMPONENT HISTORY LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
289

29

Chapter 4: Component Management
<userOption0301>
 .
 .
 .
<userOption0303>

Optional 0 - 1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

<userOption0401>
 .
 .
 .
<userOption0403>

Optional 0 - 1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

<userOption0801>
 .
 .
 .
<userOption0805>

Optional 0 - 1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

<userOption1001>
 .
 .
 .
<userOption1002>

Optional 0 - 1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

<userOption1601>
 .
 .
 .
<userOption1602>

Optional 0 - 1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

<userOption3401>
 .
 .
 .
<userOption3402>

Optional 0 - 1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

<userOption4401>
 .
 .
 .
<userOption4402>

Optional 0 - 1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

<userOption6401>
 .
 .
 .
<userOption6405>

Optional 0 - 1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

<userOption7201>
 .
 .
 .
<userOption7205>

Optional 0 - 1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

Exhibit 4-32. CMPONENT HISTORY LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Tip

Tags: <userOption01> to <userOption20>, <userOptionsPart1>, <userOptionsPart2>,
<userOption0101> to <userOption7205>. See topic “Staging User Options” in the
ChangeMan ZMF Customization Guide.

List Short Component History - CMPONENT HISTORY LISTSHRT

The Serena XML service/scope/message names in messages to retrieve and list the short
version of selected component history records are:

<service name=”CMPONENT”>
<scope name=”HISTORY”>
<message name=”LISTSHRT”>

These tags appear in both request and reply messages.

CMPONENT HISTORY LISTSHRT — Requests

The short form of the component history list request is similar to the comprehensive
component history list function (CMPONENT HISTORY LIST). The differences for the short
form are:

• The name attribute of the <message> tag is “LISTSHRT”.

• The <component> and <componentType> tag values may not be masked using
wildcard patterns; you must enter a single component name and component type.

• The <package> and <packageId> tags are omitted.

Data structure details for the <request> tag of the CMPONENT HISTORY LIST message
appeared previously in Exhibit 4-31.

<userOptionsPart1> Optional 0 - 10 String (10) Set of up to 10 one-byte, custom,
administrator-defined variables. User
options 01-10. Values:

Y = Yes
N = No

<userOptionsPart2> Optional 0 - 10 String (10) Set of up to 10 one-byte, custom,
administrator-defined variables. User
options 11 - 20. Values:

Y = Yes
N = No

<version> Optional 0 - 1 Integer ISPF version of component.

<versionModLevel> Optional 0 - 1 Integer ISPF modification level for component.

Exhibit 4-32. CMPONENT HISTORY LIST <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
291

29

Chapter 4: Component Management
CMPONENT HISTORY LISTSHRT — Replies

Other than the name attribute of the <message> tag, replies to a short component history list
are identical in syntax to a comprehensive component history list. Data structure details for
the <result> tag of this message appeared previously in Exhibit 4-32.

List Current Component History - CMPONENT HISTORY LISTCURR

The Serena XML service/scope/message names in messages to retrieve and list component
history for the current, active version of a selected component are:

<service name=”CMPONENT”>
<scope name=”HISTORY”>
<message name=”LISTCURR”>

These tags appear in both request and reply messages.

CMPONENT HISTORY LISTCURR — Requests

Data structure details for this request message appear in Exhibit 4-33.

CMPONENT HISTORY LISTCURR — Replies

Other than the name attribute of the <message> tag, reply messages for a current
component history list are identical to those for a comprehensive component history list. Data
structure details for the <result> tag of this message appeared previously in Exhibit 4-32.

Exhibit 4-33. CMPONENT HISTORY LISTCURR <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF component library type.

<package> Optional 0 - 1 String (10),
variable

ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Concurrent Comp. History - CMPONENT HISTORY LISTCONC

The Serena XML service/scope/message names in messages to retrieve and list history
records for components in concurrent development are:

<service name=”CMPONENT”>
<scope name=”HISTORY”>
<message name=”LISTCONC”>

These tags appear in both request and reply messages.

CMPONENT HISTORY LISTCONC — Requests

Data structure details for this request message appear in Exhibit 4-34.

CMPONENT HISTORY LISTCONC — Replies

Other than the name attribute of the <message> tag, and the additional tag
<packageType>, the reply messages for a concurrent component history list are identical to
those for a comprehensive component history list. Data structure details for the <result>
tag of this message appeared previously in Exhibit 4-32.

The <packageType> tag is a one-byte string and may contain a value of 1, 2, 3, or 4:

1 = Planned Permanent

2 = Planned Temporary

3 = Unplanned Permanent

4 = Unplanned Temporary

Exhibit 4-34. CMPONENT HISTORY LISTCONC <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF component library type.
293

29

Chapter 4: Component Management
List Baselined Component History - CMPONENT HISTORY LISTBASE

The Serena XML service/scope/message names in messages to retrieve and list component
history for the baselined version of a selected component are:

<service name=”CMPONENT”>
<scope name=”HISTORY”>
<message name=”LISTBASE”>

These tags appear in both request and reply messages.

CMPONENT HISTORY LISTBASE — Requests

Data structure details for this request message appear in Exhibit 4-35.

CMPONENT HISTORY LISTBASE — Replies

Other than the name attribute of the <message> tag, reply messages for a baselined
component history list are identical to those for a comprehensive component history list. Data
structure details for the <result> tag of this message appeared previously in Exhibit 4-32.

List Comp. User Worklist Records - CMPONENT PKG_WRKL LIST

The Serena XML service/scope/message names in messages to list user work records for
developers who have worked on a component are:

<service name=”CMPONENT”>
<scope name=”PKG_WRKL”>
<message name=”LIST”>

These tags appear in both request and reply messages.

CMPONENT PKG_WRKL LIST — Requests

Requests for a list of user work records concerning a component in a package — the so-
called ICWK records in the package master — consist almost entirely of required tags. You

Exhibit 4-35. CMPONENT HISTORY LISTBASE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF component library type.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
must supply the package name, component name, component type, and the TSO ID of the
component updater whose work records you want to list. No wildcard patterns for these
values are supported in Serena XML.

Example XML — CMPONENT PKG_WRKL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_WRKL">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000007</package>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <updater>USER24</updater>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> tag of this request appear in Exhibit 4-36.

Exhibit 4-36. CMPONENT PKG_WRKL LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Required 1 String (3),
fixed

ZMF component library type.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.
295

29

Chapter 4: Component Management
List Component User Worklist Records — Replies

The Serena XML reply for a component user work record list request returns zero to many
<result> tags. Each <result> tag contains information about the last action taken by the
user on the component in question, the date and time of that action, a flag identifying this
user as the last user to modify the component (if applicable), and the last action performed on
the component by any user. Other control information, if any, related to the user audit trail
also appears in the <result>.

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last data element returned in a Serena
XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT PKG_WRKL LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="PKG_WRKL">
 <message name="LIST">
 <result>
 <package>ACTP000007</package>
 <applName>ACTP</applName>
 <packageId>000007</packageId>
 <component>ACPCPY00</component>
 <componentType>CPY</componentType>
 <updater>USER24</updater>
 <lastAction>9</lastAction>
 <setssi>5C4EBCC3</setssi>
 <updateDate>20090127</updateDate>
 <updateTime>082643</updateTime>
 <useCount>0001</useCount>
 <isComponentDeleted>N</isComponentDeleted>
 <mostRecentUpdate>Y</mostRecentUpdate>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

<updater> Required 1 String (8),
variable

TSO ID of component updater.

Exhibit 4-36. CMPONENT PKG_WRKL LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 </message>
 </scope>
</service>

Data structure details for the <result> tag follow in Exhibit 4-37.

Exhibit 4-37. CMPONENT PKG_WRKL LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<component> Optional 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 1 String (3),
fixed

ZMF component library type.

<isComponentDeleted> Optional 0 - 1 String (1) Y = Yes, component deleted
N = No, component not deleted

<lastAction> Optional 0 - 1 Integer (1) Code for user function performed by last
component updater. Values:

1 = Browse
2 = Check Out
3 = Create
4 = Delete
5 = Edit
6 = Edit & Stage
7 = Recompile
8 = Relink
9 = Stage
A = Update
B = Checkin
C = Build

<mostRecentUpdate> Optional 0 - 1 String (1) Y = this is the most recent update
N = this is not the most recent update

<package> Optional 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of package name.

<setssi> Optional 0 - 1 String (8),
variable

setssi.

<updateDate> Optional 0 -1 Date,
yyyymmdd

Update date.
297

29

Chapter 4: Component Management
COMPONENT SECURITY TASKS

For general use, Serena XML supports the following application-level component security
tasks:

• Check Component Security - CMPONENT APL_SECR CHECK

• Find Component Authorized Users - CMPONENT APL_SECR FIND

• List Component Authorized Users - CMPONENT APL_SECR LIST

These application-level security tasks share the following scope name attribute:

<scope name=”apl_secr”>

Serena XML supports the following global-level component security task:

List Global Component Authorized Users - CMPONENT GBL_SECR LIST

This global-level security task has the following scope name attribute:

<scope name=”gbl_secr”>

Check Component Security - CMPONENT APL_SECR CHECK

Serena XML lets you determine whether a specific user is authorized to access a particular
component. The service/scope/message name attributes for this message are:

<service name=”CMPONENT”>
<scope name=”APL_SECR”>
<message name=”CHECK”>

These tags appear in both request and reply messages.

CMPONENT APL_SECR CHECK — Requests

Example XML — CMPONENT APL_SECR CHECK Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">

<updateTime> Optional 0 -1 Time,
hhmmss

Update time

<updater> Optional 0 - 1 String (8),
variable

Userid of updater.

<usecount> Optional 0 - 1 Integer(4) Use count

Exhibit 4-37. CMPONENT PKG_WRKL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <message name="CHECK">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 <user>USER24</user>
 </request>
 </message>
 </scope>
</service>

CMPONENT APL_SECR CHECK — Requests

A request to check a user’s security authorization for access to a component must satisfy the
data structure requirements in Exhibit 4-38.

CMPONENT APL_SECR CHECK — Replies

No <result> tag is returned in response to a request to check a user’s authorization to
access a component. However, the standard <response> data structure of the reply
message contains the necessary information in the <statusReturnCode> tag and its
associated <statusMessage> tag.

Exhibit 4-38. Check Component Security <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType Required 1 String (3),
variable

ZMF component library type.

<user> Optional 1 String (8),
variable

TSO ID of user to be checked for
authorization to access component.
299

30

Chapter 4: Component Management
CMPONENT APL_SECR CHECK — Reply

Example XML — CMPONENT APL_SECR CHECK Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">
 <message name="CHECK">
 <response>
 <statusMessage>CMN8700I - CHECK service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
</service>

For more information about specific return code values and what they mean in the context of
this function, see the documentation for your mainframe security system.

Find Component Authorized Users - CMPONENT APL_SECR FIND

A Serena XML message to find authorized users for a specific component in an application
has the following service/scope/message name attributes:

<service name=”CMPONENT”>
<scope name=”APL_SECR”>
<message name=”FIND”>

These tags appear in both request and reply messages.

CMPONENT APL_SECR FIND — Requests

Example XML — CMPONENT APL_SECR FIND Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">
 <message name="FIND">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 </request>
 </message>
 </scope>
</service>

The <request> tag in a Serena XML request to find the authorized users of a specific
component in an application has the data structure requirements in Exhibit 4-39.

CMPONENT APL_SECR FIND— Reply

The Serena XML reply message for a request to find the authorized users of a specific
component in an application returns zero to many <result> tags. Each <result> tag
contains security information for a particular TSO user ID authorized to access the named
component.

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last data element returned in a Serena
XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT APL_SECR FIND Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">
 <message name="FIND">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 <user>USER24</user>
 <isEntity>N</isEntity>
 </result>

Exhibit 4-39. CMPONENT APL_SECR FIND <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType Required 1 String (3),
variable

ZMF component library type.
301

30

Chapter 4: Component Management
 <response>
 <statusMessage>CMN8700I - FIND service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag are identical to those for CMPONENT APL_SECR
LIST. See Exhibit 4-41.

List Component Authorized Users - CMPONENT APL_SECR LIST

A Serena XML message to list authorized users for components in a particular application
has the following service/scope/message name attributes:

<service name=”CMPONENT”>
<scope name=”APL_SECR”>
<message name=”LIST”>

These tags appear in both request and reply messages.

CMPONENT APL_SECR LIST — Requests

Example XML — CMPONENT APL_SECR LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 </request>
 </message>
 </scope>
</service>
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The <request> tag in a Serena XML request to list the authorized users of a component in
a particular application has the data structure requirements in Exhibit 4-40.

CMPONENT APL_SECR LIST— Reply

The Serena XML reply message for a request to list the authorized users of a component in a
particular application returns zero to many <result> tags. Each <result> tag contains
security information for a particular TSO user ID authorized to access the named component.

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last data element returned in a Serena
XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — CMPONENT APL_SECR LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="APL_SECR">
 <message name="LIST">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <applName>ACTP</applName>
 <user>USER24</user>
 <isEntity>N</isEntity>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>

Exhibit 4-40. CMPONENT APL_SECR LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

NOTE: May be masked using asterisk (*)
wildcard character.

<componentType Required 1 String (3),
variable

ZMF component library type.

<exactMatch> Optional 0 - 1 String (1) Y = exact match, no filtering
N = filtering, no exactmatch
303

30

Chapter 4: Component Management
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-41.

List Global Component Authorized Users - CMPONENT GBL_SECR
LIST

A Serena XML message to list authorized users for components in all applications has the
following service/scope/message name attributes:

<service name=”CMPONENT”>
<scope name=”GBL_SECR”>
<message name=”LIST”>

These tags appear in both request and reply messages.

CMPONENT GBL_SECR LIST — Requests

Example XML — CMPONENT GBL_SECR LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="GBL_SECR">

Exhibit 4-41. CMPONENT APL_SECR LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of package name.

<component> Optional 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 1 String (3),
fixed

ZMF component library type.

<isEntity> Optional 1 String (1) Y = Yes, security entity (group)
N = No, not a security entity

<user> Optional 1 String (8),
variable

TSO ID of authorized component user or
security entity (group).
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 </request>
 </message>
 </scope>
</service>

The <request> tag in a Serena XML request to list the authorized users of a component in
any application has the data structure requirements in Exhibit 4-42.

CMPONENT GBL_SECR LIST— Reply

The Serena XML reply message for a request to list the authorized users of a component in
any application returns zero to many <result> tags. Each <result> tag contains security
information for a particular TSO user ID authorized to access the named component.

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last data element returned in a Serena
XML reply message, the <response> tag serves as an end-of-list marker.

Exhibit 4-42. CMPONENT GBL_SECR LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<component> Required 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

NOTE: May be masked using asterisk (*)
wildcard character.

<componentType Required 1 String (3),
variable

ZMF component library type.

<exactMatch> Optional 0 - 1 String (1) Y = exact match, no filtering
N = filtering, no exactmatch
305

30

Chapter 4: Component Management
Example XML — CMPONENT GBL_SECR LIST Reply

<?xml version="1.0"?>
<service name="CMPONENT">
 <scope name="GBL_SECR">
 <message name="LIST">
 <result>
 <component>ACPSRS00</component>
 <componentType>SRS</componentType>
 <user>USER24</user>
 <isEntity>N</isEntity>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 4-43.

Exhibit 4-43. CMPONENT GBL_SECR LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<component> Optional 1 String (256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 1 String (3),
fixed

ZMF component library type.

<isEntity> Optional 1 String (1) Y = Yes, security entity (group)
N = No, not a security entity

<user> Optional 1 String (8),
variable

TSO ID of authorized component user or
security entity (group).
6

SEARCH, SUMMARY, AND
ANALYSIS TASKS
 5
XML Services supports search, summary, and analysis tasks by developers, managers, and
administrators. The scope of these services encompasses multiple packages, multiple
components, or multiple servers. Most support complex filters, flags, and processing options
that require some experience using ChangeMan ZMF. All can be performed interactively or in
batch mode using the appropriate Serena XML client application.

The following tasks are supported for general use:

• Package Search and Summary Tasks — Query multiple packages, search for
packages awaiting approval, or compute multi-package summary statistics. Typical
commands are search and summary.

• Audit Trail Management — Work with ChangeMan ZMF log files. Typical
commands include create and list.

• Impact Analysis Functions — Component Impact Analysis.

SYNTAX CONVENTIONS FOR SEARCH, SUMMARY, AND
ANALYSIS

Serena XML adopts certain syntax conventions that apply in all search, summary, and
analysis contexts. For example, a few commonly used tags support alternate uses or
alternate data type conventions in a search, summary, or analysis context. Other conventions
involve data dependencies and default value interactions among multiple, related tags.

Semicolon-Delimited Lists

The allowed contents of commonly used tags may be different in search contexts than in non-
search contexts. For example, many user ID and security entity tags, which elsewhere permit
only a single value, may accept a semicolon-delimited list of TSO user IDs or RACF security
entities in a search context. Similar lists may be allowed in package or component name tags
as well. For the services discussed in this chapter, the following tags support such lists:

• <component>
• <package>
• <creator>
• <stager>
• <workRequest>
307

30

Chapter 5: Search, Summary, and Analysis Tasks
Yes/No Flag Tags

All search, summary, and analysis services in Serena XML follow common default value
conventions for yes/no flag tags. They also share common conventions for Boolean
relationships among flag tag values.

The key to these conventions is the flag tag group. The values of all flag tags within a group
are considered together; in fact, such mutual processing is the basis for identifying such tags
as a group. Many flag tag groups may be supported by a single service. For example, all
package status flag tags are treated as a group, as are all package type tags, and package
level tags. Flag tag groups, however, are evaluated independently of each other.

Default Values Within a Group

All yes/no flag tags in a group default to the value “Y” if no tag in the group has an explicitly
assigned value. But if any flag tag in the group is explicitly assigned a value, all other tags in
the group change their default values to “N.”

This is actually the behavior you would expect if you weren’t thinking too hard about it. For
example, if your XML request says nothing about which package types to include, the
package type flag tags all default to “Y” values, and you will get all package types in your
reply. But if your XML request explicitly states you want all planned permanent packages, the
assumption is made that you don’t want any other package types. The flag tag value that you
have set to “Y” retains that value, but the defaults for all other flag tags in the group default to
“N”. To request multiple package types, you would set the yes/no flags for each desired
package type to an explicit “Y” value.

 Tip

If you explicitly set flag tag values, always include at least one “Y” value in each
flag tag group. This is necessary because Serena XML does not fully support Boolean
NOT operations. You can include an item in a given state, and you can exclude an
item in a given state, but you cannot include in your search results an item that is not
in a given state. If you explicitly set just one flag tag in a group to a value of “N” and
take the defaults for the rest, no results will be returned.

Boolean Relationships Within a Group

The “Y” values of all tags within a yes/no flag tag group are related by Boolean OR in search,
summary, or analysis contexts. Any item in any state requested by a “Y” flag is returned in the
results.

Tags with a value of “N” in a group are related by Boolean AND to the other tags in the group.
Any item in any state identified by a flag with a value of “N” is excluded from the results.
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
PACKAGE SEARCH AND SUMMARY TASKS

Serena XML supports several types of multi-package queries and statistical analysis for
general use. These are:

• General Package Search - PACKAGE GENERAL SEARCH
• Search for Limbo Packages - PACKAGE LIMBO SEARCH
• Search for Packages Pending Approval - PACKAGE APPROVE SEARCH
• Search for Linked Packages - PACKAGE PKG_LINK SEARCH
• Package Summary Statistics - PACKAGE SERVICE SUMMARY

General Package Search - PACKAGE GENERAL SEARCH

A general package search retrieves comprehensive information about one or more packages
listed in the package master on the queried LPAR. Only one ChangeMan ZMF instance is
included in the scope of this function. Limbo packages are also outside the scope of this
function.

The Serena XML service/scope/message tags and attributes for messages to search for any
package are:

<service name=”PACKAGE”>
<scope name=”GENERAL”>
<message name=”SEARCH”>

These tags appear in both requests and replies.

PACKAGE GENERAL SEARCH Requests

General package search criteria can include any of the following options:

• Semicolon-delimited name lists and/or wildcard patterns for package names,
component names, user IDs, and work change request IDs.

• Yes/no flag tag sets for desired package level, type, status, and scheduler.

• Standalone yes/no flag tags for packages pending completion, packages with deleted
staging libraries, packages checked into a release, packages linked to other packages,
and the like.

• Date range criteria for lifecycle state history such as date frozen, date promoted, date
approved, date installed, and date baselined. Date ranges need not include an end-of-
range date if all packages after the given start date are desired in the results.

• Selective package search criteria for packages that share a common install site,
requestor department, approval entity, audit return code, package master record type,
component library type, online form number, complex/super package name, linked
package name, or release name.

• String search for words in the package title.

The following example shows two of these options used in combination, it requests a list of
packages that begin with ACTP, that are also in the Approval Pending state.
309

31

Chapter 5: Search, Summary, and Analysis Tasks
Example XML — PACKAGE GENERAL SEARCH Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="GENERAL">
 <message name="SEARCH">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP*</package>
 <searchForApprovalPending>Y</searchForApprovalPending>
 </request>
 </message>
 </scope>
</service>

Details of the Serena XML general package search <request> data structure appear in
Exhibit 5-1.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<approvalEntity> Optional 0 - 1 String (8) TSO user ID of approval entity.

<auditLockUserid> Optional 0 - 1 String (8) TSO user ID that locked package for
audit.

<auditReturnCode> Optional 0 - 1 String (2),
variable

Return code issued by package audit
function. Values:

00 = No major errors found
04 = Errors found, fix suggested
08 = Major errors found
12 = Possibly fatal errors found

<complexSuperPackage> Optional 0 - 1 String (255),
variable

ZMF name of complex or super
package to which a participating
package belongs.

NOTE: Returned only if value in
<packageLevel> = 4.
0

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<component> Optional 0 - 1 String (256),
variable

ZMF component names in package.

NOTE: A maximum of 25 names may
be specified, delimited by semicolons.
The total length of the <component>
subtag may not exceed 256 bytes.
Each component name may be masked
using asterisk (*) wildcard.

• If components are PDS members,
each member name is max 8 bytes,
no qualifiers.

• If components are HFS files, each
component has Unix-style long file
name, optionally prefixed by path from
installation root. Each name may have
a maximum of 64 bytes, but the total
length of the <component> subtag
may not exceed 256 bytes.

<componentType> Optional 0 - 1 String (3) ZMF component type in package.

<creator> Optional 0 -1 String (255),
variable

One or more 8-byte TSO user IDs for
package creators, delimited by
semicolons.

NOTE: Each creator ID in list may be
masked using asterisk (*) wildcard.

<formNumber> Optional 0 - 1 String (3) ZMF online form number in package.

<lastPromoter> Optional 0 - 1 String (8),
variable

TSO user ID of most recent promoter/
demoter of desired package(s).

<lastPromotionLevel> Optional 0 - 1 String (2),
variable

Most recent numeric promotion level of
package in promotion hierarchy.

<lastPromotionName> Optional 0 - 1 String (8),
variable

Name corresponding to code in
<lastPromotionLevel>.

<lastPromotionSite> Optional 0 - 1 String (8),
variable

ZMF name of site where most recent
promotion action took place.

<linkPackage> Optional 0 - 1 String (255),
variable

One or more ZMF link package name(s)
of up to 10 bytes each, delimited by
semicolons.

NOTE: Each package name in list may
be masked using asterisk (*) wildcard.

<linkRequestor> Optional 0 -1 String (20),
variable

Link requestor.

<package> Required 0 - 1 String (255),
variable

One or more ZMF package name(s) of
up to 10 bytes each, delimited by
semicolons.

NOTE: Each package name in list may
be masked using asterisk (*) wildcard.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
311

31

Chapter 5: Search, Summary, and Analysis Tasks
<packageTitle> Optional 0 -1 String (255),
variable

Exact search words for text search in
package working title.

<release> Optional;
ZMF with
ERO
only

0 -1 String (255) Name of release to which desired
packages are attached.

<requestorDept> Optional 0 -1 String (4),
variable

Workgroup or department code for
desired packages.

<requestorName> Optional 0 -1 String (25),
variable

Name of developer or contact person
responsible for current work status of
package(s) in motion.

<requestorPhone> Optional 0 -1 String (15),
variable

Phone number of developer or contact
person responsible for current work
status of package(s) in motion.

<searchForApprovalPending> Optional 0 -1 String (1) Y = include approval pending pkgs
 N = omit approval pending pkgs

<searchForApprovedStatus> Optional 0 -1 String (1) Y = include approved packages
 N = omit approved packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForAuditPending> Optional 0 -1 String (1) Y = include audit pending pkgs
 N = omit audit pending pkgs

<searchForBackedOutStatus> Optional 0 -1 String (1) Y = Yes, include backed out pkgs
 N = No, omit backed out pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForBackoutPending> Optional 0 -1 String (1) Y = include backout pending pkgs
 N = omit backout pending pkgs

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchForBaselineStatus> Optional 0 -1 String (1) Y = Yes, include baselined pkgs
 N = No, omit baselined pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForBuildXNodePending> Optional 0 -1 String (1) Y = include build xnode pending pkgs
 N = omit build xnode pending pkgs

<searchForClosedStatus> Optional 0 -1 String (1) Y = Yes, include closed packages
 N = No, omit closed packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForCmnScheduler> Optional 0 - 1 String (1) Y = Yes, find packages that use
 ChangeMan scheduler
N = No, omit ChangeMan scheduler

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”

<searchForComplexLevel> Optional 0 -1 String (1) Y = Yes, include complex packages
 N = No, omit complex packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from request,
default value is “Y”. If any yes/no filter
tag for package level is included, default
value is “N”.

<searchForCustComponents> Optional 0 - 1 String (1) Y = find packages with custom comp.
N = omit packages with custom comp.

<searchForDeletedStageLib> Optional 0 - 1 String (1) Y = Yes, find deleted staging libs
N = No, omit deleted staging libs

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
313

31

Chapter 5: Search, Summary, and Analysis Tasks
<searchForDeletedStatus> Optional 0 -1 String (1) Y = Yes, include deleted packages
 N = No, omit deleted packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForDeliveredStatus>

NOTE: In the context of this
service, “delivered” means
“distributed.”

Optional 0 -1 String (1) Y = Yes, include distributed pkgs
 N = No, omit distributed pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForDevelopmentStatus> Optional 0 -1 String (1) Y = Yes, include development pkgs
 N = No, omit development pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForFreezePending> Optional 0 - 1 String (1) Y = find packages that are freeze
pending
N = omit packages that are freeze
pending

<searchForFrozenStatus> Optional 0 -1 String (1) Y = Yes, include frozen packages
 N = No, omit frozen packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForInstallPending> Optional 0 - 1 String (1) Y = find packages that are install
pending
N = omit packages that are install
pending

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchForInstalledStatus> Optional 0 -1 String (1) Y = Yes, include installed packages
 N = No, omit installed packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForLinkedPackage> Optional 0 - 1 String (1) Y = Yes, find linked packages
N = No, omit linked packages

<searchForLoadComponents> Optional 0 - 1 String (1) Y = Find load components
N = Omit load components

<searchForManualScheduler> Optional 0 - 1 String (1) Y = Yes, find packages that require
 manual installation
N = No, omit manual install packages

NOTE: Part of package scheduler tag
group. If all yes/no filter tags for
package scheduler are omitted from
request, default value is “Y”. If any yes/
no filter tag for package scheduler is
included, default value is “N”.

<searchForNonSource
Components>

Optional 0 - 1 String (1) Y = Yes, find packages with non
source components

 N = No, omit packages with non
source components

<searchForOpenedStatus> Optional 0 -1 String (1) Y = Yes, include opened packages
 N = No, omit opened packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForOtherScheduler> Optional 0 - 1 String (1) Y = Yes, find packages that used
 3rd-party installation scheduler
N = No, omit packages that use
 3rd-party scheduler

NOTE: Part of package scheduler tag
group. If all yes/no filter tags for
package scheduler are omitted from
request, default value is “Y”. If any
yes/no filter tag for package scheduler
is included, default value is “N”.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
315

31

Chapter 5: Search, Summary, and Analysis Tasks
<searchForPackageChecked
IntoRelease>

Optional;
ZMF with
ERO
only

0 -1 String (1) Y = Yes, find packages checked into
 a release area.
 N = No, omit packages checked into
 a release area.

<searchForPartLevel> Optional 0 -1 String (1) Y = Yes, include participating pkgs
 N = No, omit participating pkgs

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from request,
default value is “Y”. If any
yes/no filter tag for package level is
included, default value is “N”.

<searchForPlannedPermType> Optional 0 -1 String (1) Y = Yes, include planned perm pkgs
 N = No, omit planned perm pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from request,
default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForPlannedTempType> Optional 0 -1 String (1) Y = Yes, include planned temp pkgs
 N = No, omit planned temp pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from request,
default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForPostApproval
Pending>

Optional 0 - 1 String (1) Y = Find post approval pending pkgs
N = Omit post approval pending pkgs

<searchForPostApprovers
Added>

Optional 0 - 1 String (1) Y = Yes, find packages with newly
 added post-approvers
N = No, omit packages with newly
 added post-approvers

<searchForPostRejected> Optional 0 - 1 String (1) Y = find packages rejected in post
approval
N = omit packages rejected in post
approval

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchForRecordType> Optional 0 - 1 String (1) Search all staging libraries for a specific
record type in the package master.
Values:

4 = Source or non-source
5 = Load component
6 = Non-source component
7 = Online forms or custom comp
8 = Rename utility component
9 = Scratch utility component
A = Source component
B = Utility component

<searchForRejectedStatus> Optional 0 -1 String (1) Y = Yes, include rejected packages
 N = No, omit rejected packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForRename
Components>

Optional 0 - 1 String (1) Y = find packages with renamed
components
N = omit packages with renamed
components

<searchForRevertPending> Optional 0 - 1 String (1) Y = Find revert pending pkgs
N = Omit revert pending pkgs

<searchForScratch
Components>

Optional 0 - 1 String (1) Y = find packages with scratched
components
N = omit packages with scratched
components

<searchForShortApproverList
Used>

Optional 0 - 1 String (1) Y = find packages using short
approver list
N = omit packages using short
approver list

<searchForSimpleLevel> Optional 0 -1 String (1) Y = Yes, include simple packages
 N = No, omit simple packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from request,
default value is “Y”. If any
 yes/no filter tag for package level is
included, default value is “N”.

<searchForSource
Components>

Optional 0 - 1 String (1) Y = find packages with source
components
N = omit packages with source
components

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
317

31

Chapter 5: Search, Summary, and Analysis Tasks
<searchForSuperLevel> Optional 0 -1 String (1) Y = Yes, include super packages
 N = No, omit super packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from request,
default value is “Y”. If any yes/no filter
tag for package level is included, default
value is “N”.

<searchForTempChange
CycledStatus>

Optional 0 -1 String (1) Y = Yes, include TCC packages
 N = No, omit TCC packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any yes/
no filter tag for package status is
included, default value is “N”.

<searchForUnplannedPerm
Type>

Optional 0 -1 String (1) Y = Yes, include unplanned perm
 N = No, omit unplanned perm pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from request,
default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForUnplanned
TempType>

Optional 0 -1 String (1) Y = Yes, include unplanned temp pkg
 N = No, omit unplanned temp pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from request,
default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForXNodeBuild
Required>

Optional 0 -1 String (1) Y = include build xnode required pkgs
 N = omit build xnode required pkgs

<searchFromDateApproved> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
approval dates for package(s).

NOTE: Returns all packages approved
on or after this date if not paired with
<searchToDateApproved> tag.

<searchFromDateBackedOut> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
backout dates for package(s).

NOTE: Returns all packages backed
out on or after this date if not paired with
<searchToDateBackedOut>.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchFromDateBaselined> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
baselined dates for package(s).

NOTE: Returns all packages baselined
on or after this date if not paired with
<searchToDateBaselined> tag.

<searchFromDateCreated> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
creation dates for package(s).

NOTE: Returns all packages created on
or after this date if not paired with
<searchToDateCreated> tag.

<searchFromDateFrozen> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of freeze
dates for package(s).

NOTE: Returns all packages frozen on
or after this date if not paired with
<searchToDateFrozen> tag.

<searchFromDateInstalled> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of install
dates for package(s).

NOTE: Returns all packages installed
on or after this date if not paired with
<searchToDateInstalled> tag.

NOTE: Invalid with complex or super
packages.

<searchFromDateRejected> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
rejection dates for package(s).

NOTE: Returns all packages rejected
on or after this date if not paired with
<searchToDateRejected> tag.

<searchFromDateReverted> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of revert
dates for package(s).

NOTE: Returns all packages reverted
on or after this date if not paired with
<searchToDateReverted> tag.

<searchToDateApproved> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of
approval dates for package(s).

NOTE: Returns all packages approved
before or on this date if not paired with
<searchfromDateApproved> tag.

<searchToDateBackedOut> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of backout
dates for package(s).

NOTE: Returns all packages backed
out before or on this date if not paired
with <searchfromDateBackedOut>

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
319

32

Chapter 5: Search, Summary, and Analysis Tasks
<searchToDateBaselined> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of
baseline dates for package(s).

NOTE: Returns all packages baselined
before or on this date if not paired with
<searchfromDateBaselined> tag.

<searchToDateCreated> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of creation
dates for package(s).

NOTE: Returns all packages created
before or on this date if not paired with
<searchfromDateCreated> tag.

<searchToDateFrozen> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of freeze
dates for package(s).

NOTE: Returns all packages frozen
before or on this date if not paired with
<searchfromDateFrozen> tag.

<searchToDateInstalled> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of install
dates for package(s).

NOTE: Returns all packages installed
before or on this date if not paired with
<searchfromDateInstalled> tag.

NOTE: Invalid with complex or super
packages.

<searchToDateRejected> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of
rejection dates for package(s).

NOTE: Returns all packages rejected
before or on this date if not paired with
<searchfromDateRejected> tag.

<searchToDateReverted> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of revert
dates for package(s).

NOTE: Returns all packages reverted
before or on this date if not paired with
<searchfromDateReverted> tag.

<siteName> Optional 0 - 1 String (8),
variable

Name of site where desired packages
reside.

<sourceLinkIpAddress> Optional 0 - 1 String (255),
variable

String of masked link package URLs.

<sourceLinkPortid> Optional 0 - 1 String (8),
variable

Link package port number.

<stager> Optional 0 -1 String (255),
variable

One or more 8-byte TSO user IDs for
package version stagers, delimited by
semicolons.

NOTE: Each stager ID in list may be
masked by asterisk (*) wildcard.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
PACKAGE GENERAL SEARCH Replies

The Serena XML reply message to a general package search request returns zero to many
<result> tags. Each <result> tag contains detailed information about any packages found
that satisfied the search criteria in the request.

A standard <response> data structure always follows the <result> tags, if any, to indicate
the overall success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a reply message, the <response> tag also serves as an end-of-list indicator.

An example Serena XML reply to a general package search request follows. Data structure
details for the <result> tag appear after the example in Exhibit 5-2.

Example XML — PACKAGE GENERAL SEARCH Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="GENERAL">
 <message name="SEARCH">
 <result>
 <package>ACTP000002</package>
 <applName>ACTP</applName>
 <packageId>000002</packageId>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <packageStatus>8</packageStatus>
 <requestorName>USER24</requestorName>
 <requestorPhone>5555555</requestorPhone>
 <creator>USER24</creator>
 <tempChangeDuration>000</tempChangeDuration>
 <isStageLibDeleted>N</isStageLibDeleted>
 <isPackageLinked>N</isPackageLinked>
 <isCmnSchedulerUsed>N</isCmnSchedulerUsed>
 <isManualSchedulerUsed>Y</isManualSchedulerUsed>
 <isOtherSchedulerUsed>N</isOtherSchedulerUsed>
 <isAuditPending>N</isAuditPending>
 <workChangeRequest>USER24</workChangeRequest>
 <requestorDept>IDD</requestorDept>
 <dateCreated>20081019</dateCreated>

<tempChangeDuration> Optional 0 -1 Integer (3) Number of days for temporary package
to remain in production before
automatic deletion.

<workChangeRequest> Optional 0 -1 String (12),
variable

Work order ID or change request
number for desired packages.

Exhibit 5-1. PACKAGE GENERAL SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
321

32

Chapter 5: Search, Summary, and Analysis Tasks
 <dateInstalled>20081231</dateInstalled>
 <timeInstalled>0200</timeInstalled>
 <dateFrozen>20081112</dateFrozen>
 <dateApproved>20081019</dateApproved>
 <dateBaselined>20081019</dateBaselined>
 <dateBackedOut>20081019</dateBackedOut>
 <dateReverted>20081019</dateReverted>
 <dateDelivered>20081019</dateDelivered>
 <dateReceived>20081019</dateReceived>
 <lastPromotionLevel>00</lastPromotionLevel>
 <isFreezePending>N</isFreezePending>
 <isApprovalPending>N</isApprovalPending>
 <isXNodeBuildRequired>Y</isXNodeBuildRequired>
 <isInstallPending>N</isInstallPending>
 <isRevertPending>N</isRevertPending>
 <isBackoutPending>N</isBackoutPending>
 <isBuildXNodePending>N</isBuildXNodePending>
 <isPostApprovalPending>N</isPostApprovalPending>
 <isPostApproversAdded>N</isPostApproversAdded>
 <isPostRejected>N</isPostRejected>
 <isShortApproverListUsed>N</isShortApproverListUsed>
 <approvalEntity>ACTPLEAD</approvalEntity>
 <packageTitle>TURNOVER 17 IVP NEW CMNIAU00</packageTitle>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8600I - The Package search list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 5-2. PACKAGE GENERAL SEARCH <reply> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name for packages
to include in statistics.

NOTE: May be masked using
asterisk (*) wildcard.

<approvalEntity> Optional 0 - 1 String (8) TSO user ID of approval entity.

<auditLockUserid> Optional 0 - 1 String (8) TSO user ID that locked package for
audit.
2

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<auditReturnCode> Optional 0 - 1 String (2),
variable

Return code issued by package audit
function. Values:

00 = No major errors found
04 = Errors found, fix suggested
08 = Major errors found
12 = Possibly fatal errors found

<complexSuperPackage> Optional 0 - 1 String
(255),
variable

ZMF name of complex or super
package to which a participating
package belongs.

NOTE: Returned only if value in
<packageLevel> = 4.

<creator> Optional 0 -1 String (8),
variable

TSO user IDs for package creators.

<dateApproved> Optional 0 -1 Date (8),
yyyymmdd

Date package approved.

<dateBackedOut> Optional 0 -1 Date (8),
yyyymmdd

Date package backed out.

<dateBaselined> Optional 0 -1 Date (8),
yyyymmdd

Date package baselined.

<dateCreated> Optional 0 -1 Date (8),
yyyymmdd

Date package created.

<dateDelivered> Optional 0 -1 Date (8),
yyyymmdd

Date distributed.

<dateFrozen> Optional 0 -1 Date (8),
yyyymmdd

Date package frozen.

<dateInstalled> Optional 0 -1 Date (8),
yyyymmdd

Date package actually installed.

NOTE: This is the actual install date,
not the scheduled install date. The
latter appears in the <installDate>
tag.

<dateReceived> Optional 0 -1 Date (8),
yyyymmdd

Date package received at remote
site.

<dateRejected> Optional 0 -1 Date (8),
yyyymmdd

Date package rejected.

<dateReverted> Optional 0 -1 Date (8),
yyyymmdd

Date package reverted.

<isApprovalPending> Optional 0 -1 String (1) Y =package approval outstanding
N = package approval not
outstanding

<isAuditPending> Optional 0 -1 String (1) Y =package audit outstanding
N = package audit not outstanding

Exhibit 5-2. PACKAGE GENERAL SEARCH <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
323

32

Chapter 5: Search, Summary, and Analysis Tasks
<isBackoutPending> Optional 0 -1 String (1) Y =package backout outstanding
N = package backout not
outstanding

<isBuildXNodePending> Optional 0 -1 String (1) Y = build xnode outstanding
N = build xnode not outstanding

<isCmnSchedulerUsed> Optional 0 -1 String (1) Y = CMN scheduling
N = Non CMN scheduling

<isFreezePending> Optional 0 -1 String (1) Y = package freeze outstanding
N = package freeze not outstanding

<isInstallPending> Optional 0 -1 String (1) Y = package install outstanding
N = package install not outstanding

<isManualSchedulerUsed> Optional 0 -1 String (1) Y = Manual scheduling
N = No manual scheduling

<isOtherSchedulerUsed> Optional 0 -1 String (1) Y = Other scheduling
N = No other scheduling

<isPackageLinked> Optional 0 -1 String (1) Y = Yes, linked to remote pkg
N = No, not linked to remote pkg

<isPostApprovalPending> Optional 0 - 1 String (1) Y = post approval pending pkg

 N = non post approval pending pkg

<isPostApproversAdded> Optional 0 - 1 String (1) Y = Yes, post-approver list added
N = No, list not added

<isPostRejected> Optional 0 - 1 String (1) Y = Yes, package post-rejected
N = No, not post-rejected

<isRevertPending> Optional 0 - 1 String (1) Y = revert pending pkg

 N = non revert pending pkg

<isShortApproverListUsed> Optional 0 - 1 String (1) Y = Yes, post-approver list has
 emergency approvers only
N = No, not using emergency list
 of package approvers

<isStageLibDeleted> Optional 0 -1 String (1) Y = Yes, staging library deleted
N = No, staging lib not deleted

<isXNodeBuildRequired> Optional 0 -1 String (1) Y = build xnode required pkg
 N = non build xnode required pkgs

<lastPromoter> Optional 0 - 1 String (8),
variable

TSO user ID of most recent promoter/
demoter.

<lastPromotionLevel> Optional 0 - 1 String (2),
variable

Previous numeric promotion level of
package in promotion hierarchy.

<lastPromotionName> Optional 0 - 1 String (8),
variable

Name corresponding to level code in
<lastPromotionLevel>.

Exhibit 5-2. PACKAGE GENERAL SEARCH <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<lastPromotionSite> Optional 0 - 1 String (8),
variable

Site name where most recent
promotion action took place.

<package> Require
d

1 String (10),
fixed

Fixed-format ZMF package name.

<packageCheckedIntoRelease> Optional,
ZMF
with
ERO
only

0 - 1 String (1) Y = Yes, checked into release
N = No, not checked into release

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package number, zero-filled.

<packageLevel> Optional 0 -1 Integer (1) Code for package complexity level.
Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package

NOTE: If value = 4, the complex or
super package in which this package
participates is named in
<complexSuperPackage>.

<packageStatus> Optional 0 -1 String (1) Code for status of package in change
lifecycle. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
 completed
K = Release package blocked

<packageTitle> Optional 0 -1 String (72),
variable

Working title of package.

<packageType> Optional 0 -1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

Exhibit 5-2. PACKAGE GENERAL SEARCH <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
325

32

Chapter 5: Search, Summary, and Analysis Tasks
Search for Limbo Packages - PACKAGE LIMBO SEARCH

The Serena XML service/scope/message names for a message to search for limbo packages
are:

<service name=”PACKAGE”>
<scope name=”LIMBO”>
<message name=”SEARCH”>

These tags appear in both request and reply messages.

<release> Optional,
ZMF
with
ERO
only

0 -1 String (8) Name of ERO release to which
package is attached or joined.

<releaseArea> Optional,
ZMF
with
ERO
only

0 -1 String (8) Name of starting release area for
release package check-in.

<releaseJoinedDate> Optional,
ZMF
with
ERO
only

0 -1 Date (8),
yyyymmdd

Date package joined release.

<releaseJoinedTime> Optional,
ZMF
with
ERO
only

0 -1 Time (8),
hhmmss

Time package joined release,
24-hour format.

<requestorDept> Optional 0 -1 String (4),
variable

Workgroup or department code
associated with package.

<requestorName> Optional 0 -1 String (25),
variable

Name of developer or contact person
responsible for package.

<requestorPhone> Optional 0 -1 String (15),
variable

Phone of developer or contact person
responsible for package.

<siteName> Optional 0 - 1 String (8),
variable

Name of development site where
package resides.

<tempChangeDuration> Optional 0 -1 Integer (3) Number of days for temporary
package to remain in production
before automatic deletion.

<workChangeRequest> Optional 0 -1 String (12),
variable

Work order ID or change request
number for package.

Exhibit 5-2. PACKAGE GENERAL SEARCH <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
PACKAGE LIMBO SEARCH — Requests

The <request> data structure for a limbo package search request is identical to that for a
general package search (Exhibit 5-1). The <scope> attribute limits the scope of what would
otherwise be a general search, so that only packages in limbo appear in the results.

PACKAGE LIMBO SEARCH — Replies

The <result> data structure for a limbo package search request is also identical to that for a
general package search (Exhibit 5-2). The Serena XML reply message to a limbo package
search request returns zero to many <result> tags, each of which contains information
about one limbo package that also satisfied your search criteria. If no such packages are
found, no <result> tag is returned.

A standard <response> data structure always follows the <result> tags, if any, to indicate
the overall success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a reply message, the <response> tag also serves as an end-of-list indicator.

Search for Packages Pending Approval - PACKAGE APPROVE SEARCH

A search for packages pending approval retrieves comprehensive information about all
packages in the “pending approval” state for a specified application.

The Serena XML service/scope/message tags and attributes for messages to search for
packages pending approval are:

<service name=”PACKAGE”>
<scope name=”APPROVE”>
<message name=”SEARCH”>

These tags appear in both requests and replies.

PACKAGE APPROVE SEARCH Requests

A request to search for pending packages for an application contains one subtag and is
defined in Exhibit 5-3.

PACKAGE APPROVE SEARCH Replies

The Serena XML reply message to a Package Approve Search request returns zero to many
<result> tags. Each <result> tag contains detailed information about each package found
that is pending approval for the requested application. Data structure details for the
<result> tag are identical to those for a general package search (see Exhibit 5-2).

Exhibit 5-3. PACKAGE APPROVE SEARCH <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.
327

32

Chapter 5: Search, Summary, and Analysis Tasks
A standard <response> data structure always follows the <result> tags, if any, to indicate
the overall success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a reply message, the <response> tag also serves as an end-of-list indicator.

Search for Linked Packages - PACKAGE PKG_LINK SEARCH

Serena XML provides a means to search for packages on remote LPARs or non-mainframe
servers that are linked (via external software) to an explicitly named ChangeMan ZMF
package on the local mainframe LPAR.

The Serena XML service/scope/message tags and attributes for messages to search for
linked packages are:

<service name=”PACKAGE”>
<scope name=”PKG_LINK”>
<message name=”SEARCH”>

These tags appear in both requests and replies.

PACKAGE PKG_LINK SEARCH Requests

Serena XML supports the following linked package search options:

• Semicolon-delimited name lists and/or wildcard patterns for package names, linked
package names, and IP addresses.

• Yes/no flag tag sets for desired package level, type, and status.

• Standalone yes/no flag tag for packages pending approval.

• Date range criteria for date installed.

• Selective package search criteria for packages that share a common approval entity or
for specific linked package information (such as package name, requestor, IP address,
and port ID).

The following example shows how you might code a request to search for all remote, linked
packages for a named local package using Serena XML.

Example XML — PACKAGE PKG_LINK SEARCH Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PKG_LINK">
 <message name="SEARCH">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000037</package>
 </request>
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
 </message>
 </scope>
</service>

Data structure details for the linked package search <request> tag appear in Exhibit 5-4.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<approvalEntity> Optional 0 - 1 String (8) TSO user ID of approval entity.

<linkPackage> Optional 0 - 1 String
(255),
variable

Name of a linked package on remote
server. Package naming conventions
are those of remote system.

NOTE: May be masked using
asterisk (*) wildcard.

<linkRequestor> Optional 0 -1 String (20),
variable

Name or TSO user ID of package link
requestor.

<package> Required 0 - 1 String
(255),
variable

One or more ZMF package name(s)
of up to 10 bytes each, delimited by
semicolons.

NOTE: Each package name in list
may be masked using asterisk (*)
wildcard.

<searchForApprovalPending> Optional 0 -1 String (1) Y = include approval pending pkgs
 N = omit approval pending pkgs

<searchForApprovedStatus> Optional 0 -1 String (1) Y = include approved packages
 N = omit approved packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForBackedOutStatus> Optional 0 -1 String (1) Y = Yes, include backed out pkgs
 N = No, omit backed out pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.
329

33

Chapter 5: Search, Summary, and Analysis Tasks
<searchForBaselineStatus> Optional 0 -1 String (1) Y = Yes, include baselined pkgs
 N = No, omit baselined pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForClosedStatus> Optional 0 -1 String (1) Y = Yes, include closed packages
 N = No, omit closed packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForComplexLevel> Optional 0 -1 String (1) Y = Yes, include complex packages
 N = No, omit complex packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from
request, default value is “Y”. If any
yes/no filter tag for package level is
included, default value is “N”.

<searchForDeletedStatus> Optional 0 -1 String (1) Y = Yes, include deleted packages
 N = No, omit deleted packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForDeliveredStatus>

NOTE: In the context of this
service, “delivered” means
“distributed.”

Optional 0 -1 String (1) Y = Yes, include distributed pkgs
 N = No, omit distributed pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchForDevelopmentStatus> Optional 0 -1 String (1) Y = Yes, include development pkgs
 N = No, omit development pkgs

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForFrozenStatus> Optional 0 -1 String (1) Y = Yes, include frozen packages
 N = No, omit frozen packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForInstalledStatus> Optional 0 -1 String (1) Y = Yes, include installed packages
 N = No, omit installed packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForOpenedStatus> Optional 0 -1 String (1) Y = Yes, include opened packages
 N = No, omit opened packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForPartLevel> Optional 0 -1 String (1) Y = Yes, include participating pkgs
 N = No, omit participating pkgs

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from
request, default value is “Y”. If any
yes/no filter tag for package level is
included, default value is “N”.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
331

33

Chapter 5: Search, Summary, and Analysis Tasks
<searchForPlannedPermType> Optional 0 -1 String (1) Y = Yes, include planned perm pkgs
 N = No, omit planned perm pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from
request, default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForPlannedTempType> Optional 0 -1 String (1) Y = Yes, include planned temp pkgs
 N = No, omit planned temp pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from
request, default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForRejectedStatus> Optional 0 -1 String (1) Y = Yes, include rejected packages
 N = No, omit rejected packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForSimpleLevel> Optional 0 -1 String (1) Y = Yes, include simple packages
 N = No, omit simple packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from
request, default value is “Y”. If any
 yes/no filter tag for package level is
included, default value is “N”.

<searchForSuperLevel> Optional 0 -1 String (1) Y = Yes, include super packages
 N = No, omit super packages

NOTE: Part of package level tag
group. If all yes/no filter tags for
package level are omitted from
request, default value is “Y”. If any
yes/no filter tag for package level is
included, default value is “N”.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<searchForTempChange
CycledStatus>

Optional 0 -1 String (1) Y = Yes, include TCC packages
 N = No, omit TCC packages

NOTE: Part of package status tag
group. If all yes/no filter tags for
package status are omitted from
request, default value is “Y”. If any
yes/no filter tag for package status is
included, default value is “N”.

<searchForUnplannedPermType> Optional 0 -1 String (1) Y = Yes, include unplanned perm
 N = No, omit unplanned perm pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from
request, default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchForUnplannedTempType> Optional 0 -1 String (1) Y = Yes, include unplanned temp
pkg
 N = No, omit unplanned temp pkgs

NOTE: Part of package type tag
group. If all yes/no filter tags for
package type are omitted from
request, default value is “Y”. If any
yes/no filter tag for package type is
included, default value is “N”.

<searchFromDateInstalled> Optional 0 - 1 Date,
yyyymmdd

Starting date in desired range of
install dates for package(s).

NOTE: Returns all packages installed
on or after this date if not paired with
<searchToDateInstalled> tag.

NOTE: Invalid with complex or super
packages.

<searchToDateInstalled> Optional 0 - 1 Date,
yyyymmdd

Ending date in desired range of install
dates for package(s).

NOTE: Returns all packages installed
before or on this date if not paired
with <searchfromDateInstalled>
tag.

NOTE: Invalid with complex or super
packages.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
333

33

Chapter 5: Search, Summary, and Analysis Tasks
PACKAGE PKG_LINK SEARCH — Replies

The linked package search reply contains zero to many <result> tags. Each <result>
contains information about a package on the local LPAR that is linked to at least one remote
package with the requested characteristics. Remote package information, such as link
package name, requestor, and IP address are included, as they are stored in the package
master records for the local package. Information such as package level, type, and status
pertain to the local package, not the linked remote package(s).

A standard <response> data structure follows the <result> tags, if any, to indicate the
success or failure of the search request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher. As the last data element returned
in a Serena XML reply message, the <response> tag serves as an end-of-list marker.

An example reply to a linked package search request follows.

Example XML — PACKAGE PKG_LINK SEARCH Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="PKG_LINK">
 <message name="SEARCH">
 <result>
 <package>ACTP000037</package>
 <applName>ACTP</applName>
 <packageId>000037</packageId>
 <packageLevel>1</packageLevel>
 <packageType>1</packageType>
 <packageStatus>6</packageStatus>
 <installDate>20130103</installDate>
 <linkPackage>test-control-item</linkPackage>
 <sourceLinkIpAddress>TestLinkURL</sourceLinkIpAddress>
 <linkDateStamp>20121210</linkDateStamp>
 <linkTimeStamp>121525</linkTimeStamp>
 <linkRequestor>USER01</linkRequestor>

<sourceLinkIpAddress> Optional 0 - 1 String
(255),
variable

Network IP address for remote server
where linked package resides.

NOTE: May be masked using
asterisk (*) wildcard.

NOTE: ZMF stores address as
provided by external link
management software. May contain
server name known to that software
instead of an IP address.

<sourceLinkPortid> Optional 0 - 1 String (8),
variable

Network port ID for remote server
where linked package resides.

Exhibit 5-4. PACKAGE PKG_LINK SEARCH <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
 </result>
 <response>
 <statusMessage>CMN8600I - The Package search list is complete.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the linked package search <result> tag appear in Exhibit 5-5.

Exhibit 5-5. PACKAGE PKG_LINK SEARCH <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first
4 bytes of <package>.

<installDate> Optional 0 - 1 Date,
yyyymmdd

Planned install date for local package.

<linkControlCodePage> Optional 0 - 1 String (4),
fixed

Link code page.

<linkDateStamp> Optional 0 - 1 Date,
yyyymmdd

Link date.

<linkPackage> Optional 0 -1 String (255),
variable

Name(s) of one or more linked package(s)
on remote server, delimited by semicolons.
Naming conventions are those of remote
system.

<linkRequestor> Optional 0 - 1 String (20),
variable

Name or TSO user ID of package link
requestor.

<linkTimeStamp> Optional 0 - 1 Time,
hhmmss

Link time.

<package> Optional 0 - 1 String (10),
fixed

ZMF fixed-format package name for local
package.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as last
6 bytes of <package>.

<packageLevel> Optional 0 - 1 String (1) Code for package level of local package.
Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package
335

Chapter 5: Search, Summary, and Analysis Tasks
Package Summary Statistics - PACKAGE SERVICE SUMMARY

The Serena XML service/scope/message names for a request to calculate package summary
statistics are:

<service name=”PACKAGE”>
<scope name=”SERVICE”>
<message name=”SUMMARY”>

These tags appear in both request and reply messages.

PACKAGE SERVICE SUMMARY — Requests

A package summary statistics request obtains a count of the packages on the local
Changeman ZMF server that conform to your search criteria. Subtotals by package level,
package type, package status, and other categories are provided along with a total package
count. You can request package counts by application, by release, by requestor department,
by planned install date rate, and by a variety of yes/no flag tags.

<packageStatus> Optional 0 - 1 String (1) Code for status of local package. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle completed

<packageType> Optional 0 - 1 String (1) Code for package install type of local
package. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

<sourceLinkIpAddress> Optional 0 - 1 String (255),
variable

Network IP address for remote server
where linked package resides.

NOTE: ZMF stores address as provided by
external link management software. May
contain server name known to that software
instead of an IP address.

<sourceLinkPortid> Optional 0 - 1 String (8),
variable

Network port ID for remote server where
linked package resides.

Exhibit 5-5. PACKAGE PKG_LINK SEARCH <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
336

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
An example of how you might code a Serena XML request for a package summary
statistics report follows. Data structure details for the <request> tag appear in
Exhibit 5-6.

Example XML —PACKAGE SERVICE SUMMARY Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="SUMMARY">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>ACTP</applName>
 </request>
 </message>
 </scope>
</service>

Exhibit 5-6. PACKAGE SERVICE SUMMARY <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name for packages to
include in statistics.

NOTE: May be masked using asterisk (*)
wildcard.

<filterApprovedStatus> Optional 0 -1 String (1) Y = Yes, include approved pkgs
N = No, omit approved pkgs

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterBackedOutStatus> Optional 0 -1 String (1) Y = Yes, include backed out pkgs
N = No, omit backed out pkgs

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterBaselineStatus> Optional 0 -1 String (1) Y = Yes, include baselined pkgs
N = No, omit baselined pkgs

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.
337

33

Chapter 5: Search, Summary, and Analysis Tasks
<filterClosedStatus> Optional 0 -1 String (1) Y = Yes, include closed packages
N = No, omit closed packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterComplexLevel> Optional 0 -1 String (1) Y = Yes, include complex packages
N = No, omit complex packages

NOTE: Part of level tag group. If no
level filter tags appear in request, default
value is “Y”. If any level filter tag appears
in request, default value is “N”.

<filterDeletedStatus> Optional 0 -1 String (1) Y = Yes, include deleted packages
N = No, omit deleted packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterDeliveredStatus> Optional 0 -1 String (1) Y = Yes, include delivered pkgs
N = No, omit delivered pkgs

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterDevelopmentStatus> Optional 0 -1 String (1) Y = Yes, include development pkgs
N = No, omit development pkgs

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterFrozenStatus> Optional 0 -1 String (1) Y = Yes, include frozen packages
N = No, omit frozen packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterInstalledStatus> Optional 0 -1 String (1) Y = Yes, include installed packages
N = No, omit installed packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

Exhibit 5-6. PACKAGE SERVICE SUMMARY <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<filterOpenedStatus> Optional 0 -1 String (1) Y = Yes, include opened packages
N = No, omit opened packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterPartLevel> Optional 0 -1 String (1) Y = Yes, include participating pkgs
N = No, omit participating pkgs

NOTE: Part of level tag group. If no
level filter tags appear in request, default
value is “Y”. If any level filter tag appears
in request, default value is “N”.

<filterPlannedPermType> Optional 0 -1 String (1) Y = Yes, include planned perm pkgs
N = No, omit planned perm pkgs

NOTE: Part of type tag group. If no type
filter tags appear in request, default
value is “Y”. If any type filter tag appears
in request, default value is “N”.

<filterPlannedTempType> Optional 0 -1 String (1) Y = Yes, include planned temp pkgs
N = No, omit planned temp pkgs

NOTE: Part of type tag group. If no type
filter tags appear in request, default
value is “Y”. If any type filter tag appears
in request, default value is “N”.

<filterRejectedStatus> Optional 0 -1 String (1) Y = Yes, include rejected packages
N = No, omit rejected packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterSimpleLevel> Optional 0 -1 String (1) Y = Yes, include simple packages
N = No, omit simple packages

NOTE: Part of level tag group. If no
level filter tags appear in request, default
value is “Y”. If any level filter tag appears
in request, default value is “N”.

<filterSuperLevel> Optional 0 -1 String (1) Y = Yes, include super packages
N = No, omit super packages

NOTE: Part of level tag group. If no
level filter tags appear in request, default
value is “Y”. If any level filter tag appears
in request, default value is “N”.

Exhibit 5-6. PACKAGE SERVICE SUMMARY <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
339

34

Chapter 5: Search, Summary, and Analysis Tasks
PACKAGE SERVICE SUMMARY — Replies

A maximum of one <result> tag appears in a package summary statistics reply. It contains
counts of the packages that meet your search criteria. Subtotals for level, type, and status
should each add up to the grand total provided in the <packageTotalCount> tag.

<filterTempChangeCycled
Status>

Optional 0 -1 String (1) Y = Yes, include TCC packages
N = No, omit TCC packages

NOTE: Part of status tag group. If no
status filter tags appear in request,
default value is “Y”. If any status filter tag
appears in request, default value is “N”.

<filterUnplannedPermType> Optional 0 -1 String (1) Y = Yes, include unplanned perm
N = No, omit unplanned perm pkgs

NOTE: Part of type tag group. If no type
filter tags appear in request, default
value is “Y”. If any type filter tag appears
in request, default value is “N”.

<filterUnplannedTempType> Optional 0 -1 String (1) Y = Yes, include unplanned temp
N = No, omit unplanned temp pkgs

NOTE: Part of type tag group. If no type
filter tags appear in request, default
value is “Y”. If any type filter tag appears
in request, default value is “N”.

<fromInstallDate> Optional 0 -1 Date,
yyyymmdd

Start of range for planned install date of
packages to include.

NOTE: Does not apply to complex or
super packages.

<release> Optional;
ZMF with
ERO only

0 - 1 String (8),
variable

Name of release with which packages
are associated.

<requestorDept> Optional 0 -1 String (4),
variable

Workgroup or department code
associated with package.

<toInstallDate> Optional 0 -1 Date,
yyyymmdd

End of range for planned install date of
packages to include.

NOTE: Does not apply to complex or
super packages.

<workChangeRequest> Optional 0 -1 String (12),
variable

Work order ID or change request number
for package.

Exhibit 5-6. PACKAGE SERVICE SUMMARY <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
 Note

If you do not identify a specific requestor department, work change request,
install date range, or release name in your request message, package subtotals
cannot be calculated for these items. The related <result> subtags will be
omitted from the reply.

A standard <response> data structure follows the <result> tag, if any, to indicate the
success or failure of the package summary statistics request. Successful requests have a
return code of 00. Unsuccessful requests have a return code of 04 or higher.

An example Serena XML reply message for a package summary statistics request appears
below. Data structure details for the <result> tag follow in Exhibit 5-7.

Example XML — PACKAGE SERVICE SUMMARY Reply

<?xml version="1.0"?>
<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="SERVICE">
 <message name="SUMMARY">
 <result>
 <applName>ACTP</applName>
 <packageTotalCount>00007</packageTotalCount>

<totalsByStatus>00000000000000200000000000000300000000020000000000000000000
0</totalsByStatus>
 <totalsByApprovedStatus>00000</totalsByApprovedStatus>
 <totalsByBackedOutStatus>00000</totalsByBackedOutStatus>
 <totalsByBaselineStatus>00002</totalsByBaselineStatus>
 <totalsByClosedStatus>00000</totalsByClosedStatus>
 <totalsByDeletedStatus>00000</totalsByDeletedStatus>
 <totalsByDevelopmentStatus>00003</totalsByDevelopmentStatus>
 <totalsByDeliveredStatus>00000</totalsByDeliveredStatus>
 <totalsByFrozenStatus>00002</totalsByFrozenStatus>
 <totalsByInstalledStatus>00000</totalsByInstalledStatus>
 <totalsByOpenedStatus>00000</totalsByOpenedStatus>
 <totalsByRejectedStatus>00000</totalsByRejectedStatus>
 <totalsByTempChangeCycledStatus>00000</totalsByTempChangeCycledStatus>
 <totalsByLevel>00007000000000000000</totalsByLevel>
 <totalsBySimpleLevel>00007</totalsBySimpleLevel>
 <totalsByComplexLevel>00000</totalsByComplexLevel>
 <totalsBySuperLevel>00000</totalsBySuperLevel>
 <totalsByPartLevel>00000</totalsByPartLevel>
 <totalsByType>00007000000000000000</totalsByType>
 <totalsByPlannedPermType>00007</totalsByPlannedPermType>
 <totalsByPlannedTempType>00000</totalsByPlannedTempType>
 <totalsByUnplannedPermType>00000</totalsByUnplannedPermType>
 <totalsByUnplannedTempType>00000</totalsByUnplannedTempType>
 <releaseTotals>00000</releaseTotals>
341

34

Chapter 5: Search, Summary, and Analysis Tasks
 <totalsByInstallDate>00002</totalsByInstallDate>
.
.
.
 </service>

Exhibit 5-7. PACKAGE SERVICE SUMMARY <reply> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name for packages
summarized.

<packageTotalCount> Optional 1 Integer (5),
variable

Count of all packages that meet search
criteria.

<releaseTotals> Optional 0 - 1 Integer (5),
variable

Count of packages in named release that
also meet other search criteria.

NOTE: Value returned only if release
specified in XML request.

<totalsByApprovedStatus> Optional 0 -1 Integer (5),
variable

Count of approved packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByBackedOutStatus> Optional 0 -1 Integer (5),
variable

Count of backed out packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByBaselineStatus> Optional 0 -1 Integer (5),
variable

Count of baselined packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByClosedStatus> Optional 0 -1 Integer (5),
variable

Count of closed packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByComplexLevel> Optional 0 -1 Integer (5),
variable

Count of complex packages that meet
search criteria.

NOTE: Part of level tag group. Sum of
level tag subtotals should equal
<packageTotalCount>.

<totalsByDeletedStatus> Optional 0 -1 Integer (5),
variable

Count of deleted packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.
2

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<totalsByDeliveredStatus> Optional 0 -1 Integer (5),
variable

Count of delivered packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByDept> Optional 0 -1 Integer (5),
variable

Count of packages for named
department that also meet other search
criteria.

NOTE: Returned only if department
specified in XML request.

<totalsByDevelopment
Status>

Optional 0 -1 Integer (5),
variable

Count of packages in development that
meet search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByFrozenStatus> Optional 0 -1 Integer (5),
variable

Count of frozen packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByInstallDate> Optional 0 -1 Integer (5),
variable

Count of packages with planned install
dates within named date range and that
also meet other search criteria.

NOTE: Returned only if install date range
included in XML request.

<totalsByInstalledStatus> Optional 0 -1 Integer (5),
variable

Count of installed packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByLevel> Optional 0 -1 Integer (5),
variable

Count of simple packages that meet
search criteria.

NOTE: Part of level tag group. Sum of
level tag subtotals should equal
<packageTotalCount>.

<totalsByOpenedStatus> Optional 0 -1 Integer (5),
variable

Count of opened packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

Exhibit 5-7. PACKAGE SERVICE SUMMARY <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
343

34

Chapter 5: Search, Summary, and Analysis Tasks
<totalsByPartLevel> Optional 0 -1 Integer (5),
variable

Count of participating packages that
meet search criteria.

NOTE: Part of level tag group. Sum of
level tag subtotals should equal
<packageTotalCount>.

<totalsByPlannedPerm
Type>

Optional 0 -1 Integer (5),
variable

Count of planned permanent packages
that meet search criteria.

NOTE: Part of type tag group. Sum of
type tag subtotals should equal
<packageTotalCount>.

<totalsByPlannedTemp
Type>

Optional 0 -1 Integer (5),
variable

Count of planned temporary packages
that meet search criteria.

NOTE: Part of type tag group. Sum of
type tag subtotals should equal
<packageTotalCount>.

<totalsByReasonCode> Optional 0 -1 Integer (5),
variable

Count of packages that meet search
criteria.

<totalsByRejectedStatus> Optional 0 -1 Integer (5),
variable

Count of rejected packages that meet
search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsBySimpleLevel> Optional 0 -1 Integer (5),
variable

Count of simple packages that meet
search criteria.

NOTE: Part of level tag group. Sum of
level tag subtotals should equal
<packageTotalCount>.

<totalsByStatus> Optional 0 -1 Integer (5),
variable

Totals by status.

<totalsBySuperLevel> Optional 0 -1 Integer (5),
variable

Count of super packages that meet
search criteria.

NOTE: Part of level tag group. Sum of
level tag subtotals should equal
<packageTotalCount>.

<totalsByTempChange
CycledStatus>

Optional 0 -1 Integer (5),
variable

Count of temporary packages that have
cycled past their automatic uninstall date
& meet search criteria.

NOTE: Part of status tag group. Sum of
status tag subtotals should equal
<packageTotalCount>.

<totalsByType> Optional 0 -1 Integer (5),
variable

Totals by type.

Exhibit 5-7. PACKAGE SERVICE SUMMARY <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
AUDIT TRAIL MANAGEMENT

Work with activity log file entries is supported by Serena XML. User tasks include:

• Create Log File Entry - LOG SERVICE CREATE
• List Activity Log File Entries - LOG SERVICE LIST

Create Log File Entry - LOG SERVICE CREATE

This service posts a date-and-time-stamped entry to the activity log file in order to maintain
an audit trail of change activities. All activity log entry types are included in the scope of this
function.

The Serena XML service/scope/message names for a request to create a log file entry are:

<service name=”LOG”>
<scope name=”SERVICE”>
<message name=”CREATE”>

These tags appear in both request and reply messages.

<totalsByUnplannedPerm
Type>

Optional 0 -1 Integer (5),
variable

Count of unplanned permanent
packages that meet search criteria.

NOTE: Part of type tag group. Sum of
type tag subtotals should equal
<packageTotalCount>.

<totalsByUnplannedTemp
Type>

Optional 0 -1 Integer (5),
variable

Count of unplanned temporary
packages that meet search criteria.

NOTE: Part of type tag group. Sum of
type tag subtotals should equal
<packageTotalCount>.

<totalsByWorkChange
Request>

Optional 0 -1 Integer (5),
variable

Count of packages for specified work
change request that also meet other
search criteria.

NOTE: Returned only if work change
request number specified in XML
request.

Exhibit 5-7. PACKAGE SERVICE SUMMARY <reply> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
345

34

Chapter 5: Search, Summary, and Analysis Tasks
LOG SERVICE CREATE — Requests

This functions accepts a free-format text entry for the activity log file of the type
identified in the <logType> tag. Data structure details for the <request> tag appear
in Exhibit 5-8.

Exhibit 5-8. LOG SERVICE CREATE<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<logPackage> Required 1 String (10),
variable

Package/Application.

<logText> Required 1 String (54),
variable

Free-format log file entry text.
6

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
<logType> Required 1 String (2),
variable

Log activity type.

01 Backout a Package

02 Install a Package

03 Temporary Change Cycle

04 Distribute a Package

05 Unauthorized Member Access

07 Generate Package Information

08 Delete a Package

09 Generate Application Information

10 Revert a Package

11 Generate Global Information

12 Activate a Component

13 Package Memo Delete

14 Undelete a Package

15 Baseline Ripple

16 Baseline Reverse Ripple

18 Install Package Aged

20 Approve a Package

21 Calendar Re-Synch

22 Staging Libraries Aged

23 Backout A Release

24 Install A Release

25 Distribute a Release

26 Delete a Release

27 Revert a Release

28 Approve a Release

29 Reject a Release

30 Reject a Package

31 Memo Delete a Release

32 Undelete a Release

33 Baseline a Release

34 Install Release Aged

35 Block a Release

36 Unblock a Release

37 Create/Update a Release

40 Freeze a Package

Exhibit 5-8. LOG SERVICE CREATE<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
347

34

Chapter 5: Search, Summary, and Analysis Tasks
Required 1 String (2),
variable

More Log activity types.

42 Selectively Unfreeze a Package

43 Demote a Component

44 Demote a Package

45 Promote a Release Area

46 Demote a Release Area

48 Promote a Package

49 Promote a Component

50 Audit a Package

51 Alter audit return code

52 Audit a Release Area

53 Approve a Release Area

54 Reject a Release Area

55 Block a Release Area

56 Unblock a Release Area

60 Link a Package

62 Unlink a Package

64 Scratch a Component

66 Rename a Component

68 Component Copied

70 File Tailoring Started

71 File Tailoring Failed

72 File Tailoring Completed

80 Create a Package

81 Checkin Component to Release

82 Checkout a Component

83 Potential Checkout Conflict

84 Stage a Component

85 Overlay Previous Module

86 Delete Module From Package

87 Checkout Component from Release

88 Copy Forward a Package

89 Retrieve Component from Release

90 Monitor Limbo, Internal Scheduler

91 Update Global Release Approvers

92 Update Release Definitions

93 Update Release Applications

94 Attach a Package to a Release

95 Detach a Package from a Release

Exhibit 5-8. LOG SERVICE CREATE<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
LOG SERVICE CREATE — Replies

No <result> data structure is returned in the create log file entry reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the
checkout request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher.

List Activity Log File Entries - LOG SERVICE LIST

This service requests a list of activity log file entries by activity type, date range, or both. This
retrieves an audit trail of change activities. All activity log entry types are included in the
scope of this function.

The Serena XML service/scope/message names for a request to list log file entries are:

<service name=”LOG”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both request and reply messages.

LOG SERVICE LIST — Requests

Request messages should include either a log file entry type or a date range; otherwise, all
log file entries of all types and dates will be returned. If a date range is used, only a starting
date is required.

Data structure details appear in Exhibit 5-9.

Exhibit 5-9. LOG SERVICE LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<fromDateStamp> Optional 0 - 1 Date,
yyyymmdd

Starting date of log entries desired.

NOTE: Need not be paired with ending
date if all entries from start date to present
are desired.

<fromTimeStamp> Optional 0 - 1 Time,
HHmmssthtt

Starting time of log entries desired.

<logPackage> Optional 1 String (10),
variable

Package/Application.

<logTypes> Optional 0 - 1 String (150),
variable

Semicolon-delimited list of 2 byte activity
type codes desired. Type codes are
detailed inExhibit 5-8

<toDateStamp> Optional 0 - 1 Date,
yyyymmdd

Ending date of log entries desired.

NOTE: If used, <fromDateStamp> also
required.
349

35

Chapter 5: Search, Summary, and Analysis Tasks
LOG SERVICE LIST — Replies

This function returns zero to many <result> tags. Each <result> contains a single date-and-
time-stamped log file entry.

A standard <response> data structure follows the final <result> tag, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

Data structure details for the <result> tag appear in Exhibit 5-10.

IMPACT ANALYSIS FUNCTIONS

The XML Services CMPONENT/IMP_ANAL/LIST and CMPONENT/XAP_ANAL/LIST have
been retired. New services exist as follows:

• IMPACT BUN LIST
• IMPACT CMPONENT LIST
• IMPACT TABLE LIST

<toTimeStamp> Optional 0 - 1 Time,
HHmmssthtt

Ending time of log entries desired.

<user> Optional 0 - 1 String (8),
variable

TSO user ID of desired log entries.

Exhibit 5-10. List Activity Log File Entries <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<logDate> Optional 0 - 1 Date,
yyyymmdd

Date of activity log entry.

<logPackage> Optional 1 String (10),
variable

Package/Application.

<logText> Optional 0 - 1 String (64),
variable

Free-format log file entry text.

<logTime> Optional 0 - 1 Time,
hhmmss

Time of activity log entry in 24-hour
format.

<logType> Optional 0 - 1 String (2),
variable

Code for type of activity log entry.

<user> Optional 0 - 1 String (8),
variable

TSO user ID associated with entry.

Exhibit 5-9. LOG SERVICE LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
IMPACT BUN LIST

This service is used to list information about appl/libtype/baseline correlations. There are
three types of queries:

• BUN01: list entry for a specific BUN (or all BUNs if the BUN input tag is omitted)

• BUN02: list entry for a specific application and library type

• BUN03: list all entries for a specific baseline dataset name

IMPACT BUN LIST — Request

The following request supplies only the query type, BUN01. This will produce a list of all the
BUNs with their corresponding data set names and library types.

Example XML — IMPACT BUN LIST Request

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="BUN">
 <message name="LIST">
 <header>
 <subsys>3</subsys>
 <product>CMN</product>
 </header>
 <request>
 <queryType>BUN01</queryType>
 </request>
 </message>
 </scope>
</service>

Data structure details appear in Exhibit 5-11.

Exhibit 5-11IMPACT BUN LIST<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<appl> Optional 0 - 1 String (4),
variable

Application name.

<baseline> Optional 0 - 1 String (44),
variable

Baseline repository.

<bun> Optional 0 - 1 String (8),
variable

Baseline Unique Number.

<libLike> Optional 0 - 1 String (1) Library like type.

<libType> Optional 0 - 1 String (3),
variable

Library type.

<queryType> Required 1 - 1 String (5) Query type.
351

35

Chapter 5: Search, Summary, and Analysis Tasks
IMPACT BUN LIST — Reply

Example XML — IMPACT BUN LIST Reply

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="BUN">
 <message name="LIST">
 <result>
 <bun>00025000</bun>
 <appl>ACTP</appl>
 <libType>CPS</libType>
 <libLike>C</libLike>
 <baseline>CMNTP.SERT3.BASE.ACTP.CPS</baseline>
 </result>
 <result>
 <bun>0002501B</bun>
 <appl>ACTP</appl>
 <libType>CPY</libType>
 <libLike>C</libLike>
 <baseline>CMNTP.SERT3.BASE.ACTP.CPY</baseline>
 </result>
 <result>
 <bun>00025036</bun>
 <appl>ACTP</appl>
 <libType>DBR</libType>
 <libLike>P</libLike>
 <baseline>CMNTP.SERT3.BASE.ACTP.DBR</baseline>
 </result>
 <result>
 <bun>00025051</bun>
 <appl>ACTP</appl>
 <libType>LCT</libType>
 <libLike>K</libLike>
 <baseline>CMNTP.SERT3.BASE.ACTP.LCT</baseline>
 </result>
.
.
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
2

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
Data structure details appear in Exhibit 5-12.

IMPACT CMPONENT LIST

This service can be used to list information held in the I/A table about baselined components.
This will be mostly used to extract version identifier information (hash tokens, setssi values).

IMPACT CMPONENT LIST — Request

The following requests information for SRS component GNLSRS00 in the ACTP application.

Example XML — IMPACT CMPONENT LIST Request

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="CMPONENT">
 <message name="LIST">
 <header>
 <subsys>3</subsys>
 <product>CMN</product>
 </header>
 <request>
 <appl>ACTP</appl>
 <libType>SRS</libType>
 <component>GNLSRS00</component>
 </request>
 </message>
 </scope>
</service>

Exhibit 5-12IIMPACT BUN LIST<reply> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<appl> Optional 0 - 1 String (4),
variable

Application name.

<baseline> Optional 0 - 1 String (44),
variable

Baseline repository.

<bun> Optional 0 - 1 String (8),
variable

Baseline Unique Number.

<libLike> Optional 0 - 1 String (1) Library like type.

<libType> Optional 0 - 1 String (3),
variable

Library type.
353

35

Chapter 5: Search, Summary, and Analysis Tasks
Data structure details appear in Exhibit 5-13.

IMPACT CMPONENT LIST — Reply

Example XML — IMPACT CMPONENT LIST Reply

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="CMPONENT">
 <message name="LIST">
 <result>
 <bun>000250D8</bun>
 <appl>ACTP</appl>
 <libType>SRS</libType>
 <component>GNLSRS00</component>
 <currentBaseline>Y</currentBaseline>
 <versionId>C8977307000002A3</versionId>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Exhibit 5-13IMPACT CMPONENT LIST<request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<appl> Required 1 - 1 String (4),
variable

Application name.

<bun> Optional 0 - 1 String (8),
variable

Baseline Unique Number.

<component> Required 1 - 1 String(256),
variable

ZMF component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<currentBaseline> Optional 0 - 1 String (44),
variable

Current baseline? (Y/N)

<libType> Required 1 - 1 String (3),
variable

Library type.
4

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
Data structure details appear in Exhibit 5-14.

IMPACT TABLE LIST

Use this service to access impact analysis relationship information. Several types of query
are available within this service and the user will have to know which one they wish to use.
Current types are:

• IAQ01: all rows for a top level component name

• IAQ02: all rows for a top level component name and BUN

• IAQ03: all rows for a top level component name and BUN and relationship

• IAQ04: all rows for bottom level component name and relationship

There are further XAPnn query types where knowledge of the BUN is not required. In the
descriptions that follow only the component names may be wild carded. All other specified
predicates must be fully explicit. If a field is not listed in the description of the query then it
plays no part in selection. A number of these queries will overlap in function if a name is fully
wildcarded. To use these queries you need to decide which one you want to use. The ISPF
dialog functions Q.B and Q.I will use the appropriate query based on the fields provided in the
input panel.

• XAP00:all rows for top component name, relationship and bottom component name

• XAP01:all rows for top component name, top application, top libtype, relation and
bottom component name

Exhibit 5-14IMPACT CMPONENT LIST<reply> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<appl> Required 1 - 1 String (4),
variable

Application name.

<bun> Optional 0 - 1 String (8),
variable

Baseline Unique Number.

<component> Required 1 - 1 String(256),
variable

Component name.

• If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

• If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<currentBaseline> Required 0 - 1 String (44),
variable

Current baseline.

<libType> Required 1 - 1 String (3),
variable

Library type.

<versionid> Required 1 - 1 String (16),
variable

Version Identifier.
355

35

Chapter 5: Search, Summary, and Analysis Tasks
• XAP02:all rows for top component name, relation and bottom component name,
bottom appl, bottom libtype

• XAP03:all rows for top component name, top application, top libtype, relation and
bottom component name, bottom appl, bottom libtype

• XAP04:all rows for top component name, top libtype, relation and bottom component
name

• XAP05:all rows for top component name, relation and bottom component name,
bottom libtype

• XAP06:all rows for top component name, top libtype, relation and bottom component
name, bottom libtype

• XAP07:all rows for top component name, and relation

• XAP08:all rows for top component name, top application, top libtype and relation

• XAP09:all rows for top component name, top libtype and relation

• XAP14:all rows for top component name, top libtype, relation and bottom component
name, bottom appl, bottom libtype

• XAP15:all rows for top component name, top application, top libtype, relation and
bottom component name, bottom libtype

IMPACT TABLE LIST — Request

The following requests information for CPY component GNLCPY00.

Example XML — IMPACT TABLE LIST Request

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="TABLE">
 <message name="LIST">
 <header>
 <subsys>3</subsys>
 <product>CMN</product>
 </header>
 <request>
 <queryType>XAP00</queryType>
 <topLevelComponent>*</topLevelComponent>
 <topLevelAppl>*</topLevelAppl>
 <topLevelType>*</topLevelType>
 <relation>CPY</relation>
 <bottomLevelComponent>GNLCPY00</bottomLevelComponent>
 </request>
 </message>
 </scope>
</service>
6

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
 Data structure details appear in Exhibit 5-13.

IMPACT TABLE LIST — Reply

The following requests information for CPY component GNLCPY00.

Example XML — IMPACT TABLE LIST Reply

<?xml version="1.0"?>
<service name="IMPACT">
 <scope name="TABLE">
 <message name="LIST">
 <result>
 <topLevelComponent>ACPSRC1A</topLevelComponent>
 <topLevelAppl>ACTP</topLevelAppl>
 <topLevelType>SRC</topLevelType>
 <topLevelBUN>000250BD</topLevelBUN>
 <topVerID>0B5DEB4D000004BA</topVerID>
 <relation>CPY</relation>
 <bottomLevelComponent>GNLCPY00</bottomLevelComponent>
 <bottomLevelAppl>ACTP</bottomLevelAppl>
 <bottomLevelType>CPY</bottomLevelType>
 <bottomLevelBUN>0002501B</bottomLevelBUN>
 <bottomVerID>0000000000000000</bottomVerID>

Exhibit 5-15IMPACT TABLE LIST<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<bottomLevelAppl> Required 1 - 1 String (4),
variable

Bottom level component application
name.

<bottomLevelBUN> Optional 0 - 1 String (8),
variable

Bottom level BUN.

<bottomLevelComponent
>

Optional 1 - 1 String(16),
variable

Bottom level Component name.

<bottomLevelType> Optional 0 - 1 String (4),
variable

Bottom level library type

<bottomVerID> Optional 0 - 1 String (16),
variable

Bottom level version ID.

<queryType> Required 1 - 1 String (5) Query type.

<relation> Optional 1 - 1 String (3) Relationship.

<topLevelAppl> Optional 1 - 1 String
(4),variable.

Top level application name.

<topLevelBUN> Optional 1 - 1 String
(8),variable.

Top level BUN.

<topLevelComponent> Optional 1 - 1 String (256),
variable.

Top level component name.

<topLevelType> Optional 1 - 1 String (3) Top level library type.
357

35

Chapter 5: Search, Summary, and Analysis Tasks
 </result>
 <result>
 <topLevelComponent>ACPSRC1A</topLevelComponent>
 <topLevelAppl>ACTP</topLevelAppl>
 <topLevelType>SRS</topLevelType>
 <topLevelBUN>000250D8</topLevelBUN>
 <topVerID>0B5DEB4D000004BA</topVerID>
 <relation>CPY</relation>
 <bottomLevelComponent>GNLCPY00</bottomLevelComponent>
 <bottomLevelAppl>ACTP</bottomLevelAppl>
 <bottomLevelType>CPY</bottomLevelType>
 <bottomLevelBUN>0002501B</bottomLevelBUN>
 <bottomVerID>7CD43F6F00000155</bottomVerID>
 </result>
.
.
.
 <result>
 <topLevelComponent>GNLSRS5C</topLevelComponent>
 <topLevelAppl>GENL</topLevelAppl>
 <topLevelType>SRS</topLevelType>
 <topLevelBUN>000251F2</topLevelBUN>
 <topVerID>414E1E1300000244</topVerID>
 <relation>CPY</relation>
 <bottomLevelComponent>GNLCPY00</bottomLevelComponent>
 <bottomLevelAppl>GENL</bottomLevelAppl>
 <bottomLevelType>CPY</bottomLevelType>
 <bottomLevelBUN>00025135</bottomLevelBUN>
 <bottomVerID>7CD43F6F00000155</bottomVerID>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service> <?xml

 Data structure details appear in Exhibit 5-16.

Exhibit 5-16IMPACT TABLE LIST<reply> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<bottomLevelAppl> Optional 1 - 1 String (4),
variable

Bottom level component application
name.

<bottomLevelBUN> Optional 0 - 1 String (8),
variable

Bottom level BUN.

<bottomLevelComponent> Optional 1 - 1 String(16),
variable

Bottom level Component name.
8

Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
The ISPF I/A query function is largely unchanged from the DB2 license version currently in
force. It is sometimes difficult to comprehend the difference between the "Bill of Materials"
query (Q.B) and the "Impact Analysis" query. Q.B is intended for a top down search, i.e. I
know the name of the top level component I want enquire about, now show me its constituent
parts (Bill of Materials). The Q.I function is focussed on a bottom up search, i.e. given this
particular subcomponent show me all components that reference it. This approach has not
changed but will be new for all current non-DB2 license customers.

There have been some minor changes to the functionality. We no longer accept partially
wildcarded applications or library types in these queries, they can be fully explicit or omitted
(or fully wildcarded).

We no longer attempt to convert applications and library types to BUNs and use those for
lookup, we will use the appl/libtype as supplied by the customer (as is) and match against
those recorded in the i/a table. If a customer wishes to see all relationships for a shared
baseline (in a Q.I query) then they need to leave application and/or library type as fully
wildcarded. As a corollary of this, we also no longer display the full list of appl/libtypes which
share the same baseline as the component in question.

The preceding XML IMPACT TABLE LIST request is the same query issued by option Q.I
from the ISPF interface, as shown below.

<bottomLevelType> Optional 0 - 1 String (4),
variable

Bottom level library type

<bottomVerID> Optional 0 - 1 String (16),
variable

Bottom level version ID.

<queryType> Optional 1 - 1 String (5) Query type.

<relation> Optional 1 - 1 String (3) Relationship.

<topLevelAppl> Optional 1 - 1 String
(4),variable.

Top level application name.

<topLevelBUN> Optional 1 - 1 String
(8),variable.

Top level BUN.

<topLevelComponent> Optional 1 - 1 String (256),
variable.

Top level component name.

<topLevelType> Optional 1 - 1 String (3) Top level library type.

<topVerID> Optional 1 - 1 String (16),
variable.

Top level version ID.

Exhibit 5-16IMPACT TABLE LIST<reply> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies
359

36

Chapter 5: Search, Summary, and Analysis Tasks
Example ISPF Request — Q.I

 ------------------ IMPACT ANALYSIS OF SUBORDINATE COMPONENTS
 COMMAND ===>

 SPECIFY SEARCH CRITERIA:

 Subordinate component name ===> GNLCPY00
 Library type ===>
 Application ===>

 Type of relationship ===> C

 SPECIFY RESULTS FILTER CRITERIA:

 Superior component name ===> *
 Library type ===> *
 Application ===> *

 Press ENTER to process; Enter END command to exit.

Example ISPF Reply — Q.I

 -------------------- Impact Analysis Results Selection List Row 1 to 11
 Command ===> Scroll ===

 List of components which reference
 Appl:Type * : * Name GNLCPY00
 with a relationship of COPYBOOK
 which satisfy these criteria
 Appl:Type * : * Name *

 Found in
 Appl:Lib Component Name
 _ ACTP:SRC ACPSRC1A
 _ ACTP:SRS ACPSRC1A
 _ GENL:SRC GNLSRC1A
 _ GENL:SRS GNLSRC1A
 _ ACTP:SRS GNLSRS00
 _ GENL:SRS GNLSRS00
 _ GENL:SRS GNLSRS1B
 _ GENL:SRS GNLSRS1C
 _ GENL:SRS GNLSRS5A
 _ GENL:SRS GNLSRS5B
 _ GENL:SRS GNLSRS5C
 ******************************* Bottom of data *************************
0

DATASET MANAGEMENT
6

Serena XML lets you work directly with z/OS datasets and members on the mainframe.
Partitioned datasets (PDS and PDS/E), ISPF files, and baseline members in stacked reverse
delta (SRD) format are supported. Tasks are provided to create, delete, or list a dataset,
dataset member, or dataset directory on the host system.

The syntax that identifies a dataset management message in Serena XML appears in the
name attribute of the <service> tag, as follows:

<service name=”DSS”>

z/OS Unix Hierarchical File System (HFS) files are not supported by these services. DB2
database tables and IMS database files are likewise not supported.

Services to manage z/OS Unix Hierarchical File System (HFS) files are discussed in
Chapter 7, “Hierarchical File System Services,” on page 379.

Database files and tables managed under IMS or DB2 are discussed in Chapter 8, “Database
Management,” on page 405.

DATASET LIFECYCLE TASKS

Serena XML supports the following dataset lifecycle tasks for general use:

• Allocate a Dataset - DSS SERVICE
ALLOCATE

• List Dataset Member Directory - DSS
SERVICE LIST

• Delete a Dataset - DSS SERVICE
DELETE

• List ISPF Dataset Allocation Information
- DSS ISPFILE INFO

• Delete a Dataset Member - DSS
SERVICE MBRDEL

• List Statistics for Baseline Members -
DSS SERVICE BASESTAT

• List Dataset Allocation Information -
DSS SERVICE INFO

• Expand Member in SRD Format - DSS
SERVICE EXPAND
361

362

Chapter 6: Dataset Management
Allocate a Dataset - DSS SERVICE ALLOCATE

This function allocates an empty dataset on the host. Access permissions for the resources
requested must first be defined for you in your mainframe security system.

The Serena XML service/scope/message names for a message to allocate a host dataset
are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”ALLOCATE”>

These tags appear in both requests and replies.

DSS SERVICE ALLOCATE Requests

Data structure details for the <request> tag appear in Exhibit 6-1.

Exhibit 6-1. DSS SERVICE ALLOCATE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<blockSize> Required 1 Integer (6),
variable

Block size in bytes.

<dataOrg> Required 1 String (8),
variable

Data set organization. Values:

DAM = Direct Access Method
ISAM = Indexed Sequential Access
 Method
MIG = Migrate
NULL = Null File
PDS = Partitioned Data Set
PDSE = Partitioned Data Set,
Extended
PS = Physical Sequential
SEQ = Sequential File
VSAM = Virtual Sequential Access
 Method

<dirBlocks> Optional 0 - 1 Integer (6),
variable

Directory allocation for data set in blocks.
Required if allocating a PDS

<eAttr> Optional 0 - 1 String (1) Extended attribute option. Values:

N = Dataset cannot have extended
 attributes or reside in EAS.

O = Dataset can have extended
 attributes and reside in EAS.

blank = Use default based on data type.

<mvsLib> Required 1 String (255),
variable

Fully qualified dataset name for dataset
to be allocated.

<primarySpace> Required 1 String (8),
variable

DASD space allocation for primary
dataset region, in units specified by
<spaceType>.

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<recordFormat> Required 1 String(3),
variable

Code for physical data set record format.
Values:

F = Fixed
FA = Fixed ASA
FM = Fixed Machine
FB = Fixed Block
FBA = Fixed Block ASA
FBM = Fixed Block Machine
FBS = Fixed Block Standard
FS = Fixed Standard
FSA = Fixed Standard ASA
FSM = Fixed Standard Machine
V = Variable
VA = Variable ASA
VM = Variable Machine
VB = Variable Block
VBA = Variable Block ASA
VBM = Variable Block Machine
VS = Variable Spanned
VSA = Variable Spanned ASA
VSM =Variable Spanned Machine
U = Undefined
UA = Undefined ASA
UM = Undefined Machine
UB = Undefined Block
UBA = Undefined Block ASA
UBM = Undefined Block Machine
US = Undefined Spanned
USA = Undefined Spanned ASA
USM =Undefined Spanned
 Machine

<recordLength> Required 1 Integer (6),
variable

Record length in bytes.

<secondarySpace> Required 1 String (8),
variable

DASD space allocation for dataset
extents, in units specified by
<spaceType>.

<spaceType> Required 1 String (3),
variable

DASD space allocation type. Values:

Blk = Blocks
Cyl = Cylinders
Trk = Tracks

<unitName> Optional 0 - 1 String (8),
variable

Logical unit name for DASD volume in
<volume> tag.

<volume> Optional 0 - 1 String (6),
variable

DASD reference volume serial ID.

Exhibit 6-1. DSS SERVICE ALLOCATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
363

364

Chapter 6: Dataset Management
DSS SERVICE ALLOCATE Replies

No <result> data structure is returned in response to a Serena XML data allocation
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Delete a Dataset - DSS SERVICE DELETE

This function physically deletes an empty dataset or a sequential file on the host. Delete
permissions must first be defined for you in your mainframe security system before you run
this function. You may not delete a ChangeMan ZMF package with this function.

The Serena XML service/scope/message names for a message to delete a host dataset are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”DELETE”>

These tags appear in both requests and replies.

DSS SERVICE DELETE Requests

The Serena XML function to delete a dataset on the host requires only one data element in
the <request> tag: the name of the dataset to delete. It may also require the serial ID of the
DASD volume on which the data set resides if ambiguity exists.

Data structure details for the <request> tag appear in Exhibit 6-2.

DSS SERVICE DELETE Replies

No <result> data structure is returned in response to a Serena XML data deletion request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Exhibit 6-2. DSS SERVICE DELETE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<mvsLib> Required 1 String (255),
variable

Fully qualified dataset name of dataset
to be deleted.

<volume> Optional 0 - 1 String (6),
variable

DASD reference volume serial ID.

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Delete a Dataset Member - DSS SERVICE MBRDEL

This function physically deletes the named member of a partitioned dataset — for example, a
component in a package in the native z/OS PDS or PDSE file management system. This
function does not apply to z/OS Unix Hierarchical File System (HFS) files. Delete permissions
must first be defined for you in your mainframe security system before you run this function.

 Note

Deleting a dataset member does not delete any component records
associated with that member in the package and component masters.
Component history information is preserved.

The Serena XML service/scope/message names for messages that delete a member of a
host partitioned data set are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”MBRDEL”>

These tags appear in both requests and replies.

DSS SERVICE MBRDEL Requests

The Serena XML function to delete a partitioned dataset member on the host requires the
dataset name (e.g., for a package) and the name of the member (e.g., package component)
to delete.

Data structure details for the <request> tag appear in Exhibit 6-3.

DSS SERVICE MBRDEL Replies

No <result> data structure is returned in response to a Serena XML request to delete a
dataset member. However, the reply message does return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Exhibit 6-3. DSS SERVICE MBRDEL <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<component> Required 1 String (8),
variable

Name of dataset member to delete, max
8 bytes.

<mvsLib> Required 1 String (255),
variable

Fully qualified dataset name of partitioned
dataset containing member to be deleted.
365

36

Chapter 6: Dataset Management
List Dataset Allocation Information - DSS SERVICE INFO

This function lists DASD allocation and usage information for a previously allocated dataset.
In addition to the specifications given to allocate the dataset initially, the function returns
DASD space actually used, creation and expiration dates, date of last access, and a member
count. Included in the scope of this function are active ChangeMan ZMF datasets and
(optionally) migrated datasets.

The Serena XML service/scope/message names for to list DASD usage information for a
dataset are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”INFO”>

These tags appear in both requests and replies.

DSS SERVICE INFO — Requests

The request message for this function requires the fully qualified dataset name of the dataset
desired. A yes/no flag tag provides an option to include migrated datasets.

Data structure details for the <request> tag of the message to list data set information
appear in Exhibit 6-4.

DSS SERVICE INFO — Replies

Only one <result> data element is returned in a reply message for this function. It is
followed by a standard <response> data structure, which indicates the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

Data structure details for the <result> tag of a message to list data set information appear
in Exhibit 6-5.

Exhibit 6-4. DSS SERVICE INFO <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<mvsLib> Required 1 String (255),
variable

Fully qualified dataset name for which
usage information is requested.

<processMigratedDatasets> Optional 0 - 1 String (1) Y = Yes, include migrated datasets.
N = No, omit migrated datasets.

Exhibit 6-5. DSS SERVICE INFO <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<blockSize> Optional 0 - 1 Integer (6),
variable

Block size allocated to <mvsLib>
dataset in bytes.

<createDate> Optional 0 - 1 Date,
yyyymmdd

Date dataset was created.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<createJob> Optional 0 - 1 String (8),
variable

Job in which dataset was created.

<createStep> Optional 0 - 1 String (8),
variable

Job step in which dataset was created.

<createTime> Optional 0 - 1 Time,
hhmmss

Time dataset was created.

<dataOrg> Optional 0 - 1 String (8),
variable

Data set organization. Values:

DAM = Direct Access Method
ISAM = Indexed Sequential Access
 Method
MIG = Migrate
NULL = Null File
PDS = Partitioned Data Set
PDSE = Partioned Data Set, Extended
PS = Physical Sequential
SEQ = Sequential File
VSAM = Virtual Sequential Access
 Method

<dirBlocks> Optional 0 - 1 Integer (6),
variable

Directory allocation for dataset in blocks.

<eAttr> Optional 0 - 1 String (1) Extended attribute option. Values:

N = Dataset cannot have extended
 attributes or reside in EAS.

O = Dataset can have extended
 attributes and reside in EAS.

blank = Default based on data type.

<expirationDate> Optional 0 - 1 Date,
yyyymmdd

Expiration date for dataset.

<extent> Optional 0 - 1 Integer (6),
variable

Size of dataset extent area used (total),
in units specified by <spaceType>.

<memberCount> Optional 0 - 1 Integer (6),
variable

Number of members in dataset.

<mvsLib> Optional 0 - 1 String (255),
variable

Fully qualified dataset name for which
DASD data is returned.

<percentUsed> Optional 0 - 1 Integer (6),
variable

Percent of total DASD allocation used by
dataset.

<primarySpace> Optional 0 - 1 String (8),
variable

Minimum DASD allocation for dataset, in
units specified by <spaceType>.

Exhibit 6-5. DSS SERVICE INFO <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
367

36

Chapter 6: Dataset Management
<recordFormat> Optional 0 - 1 String(3),
variable

Code for logical data set record format.
Values:

F = Fixed
FA = Fixed ASA
FM = Fixed Machine
FB = Fixed Block
FBA = Fixed Block ASA
FBM = Fixed Block Machine
FBS = Fixed Block Standard
FS = Fixed Standard
FSA = Fixed Standard ASA
FSM = Fixed Standard Machine
V = Variable
VA = Variable ASA
VM = Variable Machine
VB = Variable Block
VBA = Variable Block ASA
VBM = Variable Block Machine
VS = Variable Spanned
VSA = Variable Spanned ASA
VSM =Variable Spanned Machine
U = Undefined
UA = Undefined ASA
UM = Undefined Machine
UB = Undefined Block
UBA = Undefined Block ASA
UBM = Undefined Block Machine
US = Undefined Spanned
USA = Undefined Spanned ASA
USM =Undefined Spanned
 Machine

<recordLength> Optional 0 - 1 Integer (6),
variable

Record length for dataset in bytes.

<referenceDate> Optional 0 - 1 Date,
yyyymmdd

Date of last access for dataset.

<secondarySpace> Optional 0 - 1 String (8),
variable

DASD allocation for extents, in units
specified by <spaceType>.

<spaceType> Optional 0 - 1 String (3),
variable

Type of DASD space allocation for
<mvsLib> dataset. Values:

Blk = Blocks
Cyl = Cylinders
Trk = Tracks

<tracks> Optional 0 - 1 Integer (10),
variable

Total number of tracks currently
allocated to dataset.

<unitName> Optional 0 - 1 String (8),
variable

Logical unit name for DASD volume in
<volume> tag.

Exhibit 6-5. DSS SERVICE INFO <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Dataset Member Directory - DSS SERVICE LIST

This function lists a directory of dataset member names or sequential file names. Optionally it
provides information about DASD usage, usage change history, and access history for each
member to authorized requestors. A single directory request can retrieve information about
PDS dataset members, sequential files, and ISPF files. Only active ChangeMan ZMF
datasets are included in the scope of this function; no directory service is available for
migrated datasets.

The Serena XML service/scope/message names for a message to list a dataset member
directory are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

DSS SERVICE LIST — Requests

Serena XML supports two types of dataset member directory lists:

• Full Directory Contents — Name the dataset of interest in the <mvsLib> tag and
set the <listComponentOnly> flag tag value to N. If the component fingerprint or
hash token is desired in the listing, set the <returnHashToken> flag tag to Y. The
function lists a complete directory of dataset member names, DASD usage, and
access history information.

• Member Name Only — Name the dataset of interest in the <mvsLib> tag and set
the <listComponentOnly> flag tag value to Y. The returned listing includes only
member names.

Additional filtering by component name or wildcard pattern is supported for both list types.
Data structure details for the <request> tag appear in Exhibit 6-6.

<usedDirBlocks> Optional 0 - 1 Integer (6),
variable

Number of directory blocks actually
used.

<usedPages> Optional 0 - 1 Integer (10),
variable

Total number of pages actually used by
PDSE dataset.

<usedTracks> Optional 0 - 1 Integer (10),
variable

Total number of tracks actually used by
non-PDSE dataset.

<volume> Optional 0 - 1 String (6),
variable

DASD reference volume serial ID for
dataset in <mvsLib>.

Exhibit 6-5. DSS SERVICE INFO <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
369

37

Chapter 6: Dataset Management

DSS SERVICE LIST — Replies

The Serena XML reply message for this function contains zero to many <result> data
elements. Each <result> provides directory information for one dataset member.

A standard <response> data structure follows the final <result> tag to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. Because the <response> tag is the last data
element returned in the reply, it also serves as an end-of-list indicator.

Data structure details for the <result> data structure appear in Exhibit 6-7.

Exhibit 6-6. DSS SERVICE LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<component> Optional 0 - 1 String (32),
variable

Name or wildcard pattern matching
dataset members (components) to list.

NOTE: Use asterisk (*) wildcard or omit
tag to list all members of a dataset.

<listComponentOnly> Optional 1 String (1) Y = Yes, list component names only.
N = No, don’t restrict to component
 names; list all DASD info.

<mvsLib> Required 1 String (255),
variable

Fully qualified dataset name whose
members are to be listed.

<returnHashToken> Optional 1 String (1) Y = Yes, return fingerprinting hash
 token for each member in list.
N = No, omit hash token.

<typeOfDataset> Optional 1 String(3),
variable

Dataset organization. Values:

LIB - Librarian
OTH - Other
PAN - Panvalet
PDS - Partitioned dataset
SEQ - Sequential

Exhibit 6-7. DSS SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<aliasOf> Optional 0 - 1 String (8),
variable

Name of component for which this member
serves as an alias. Returned for load
members only.

<amode> Optional 0 - 1 String (10),
variable

Link-edit parameters for addressing mode of
component. Returned for load members
only.

<attributes> Optional 0 - 1 Integer (6),
variable

System attribute flags for member. Returned
for load members only.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<authCode> Optional 0 - 1 String (2),
variable

Authentication code for component.
Returned for load members only.

<component> Required 1 String (8),
variable

Name of dataset member returned.

<currentSize> Optional 0 - 1 Integer (6),
variable

Current size of member in bytes. Returned
for ISPF files only.

<dateCreated> Optional 0 - 1 Date,
yyyymmdd

Date component was created. Returned for
ISPF files only.

<dateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date component was last modified. Returned
for ISPF files only.

<extCurrentSize> Optional 0 - 1 Long Extended size - current (for ISPF directory
type)

<extInitialSize> Optional 0 - 1 Long Extended size - initial (for ISPF directory
type)

<extModificationSize> Optional 0 - 1 Long Extended size - modifications (for ISPF
directory type)

<hashToken> Optional 0 -1 String (16) Hash token (if requested by
returnHashToken)

<initialSize> Optional 0 - 1 Integer (6),
variable

Size of member when first created in bytes.
Returned for ISPF files only.

<lastUpdater> Optional 0 - 1 String (8),
variable

TSO ID of last updater. Returned for ISPF
files only.

<linkedDate> Optional 0 - 1 Date,
yyyymmdd

Date member was last link-edited. Returned
for load members only.

<linkedTime> Optional 0 - 1 Time,
hhmmss

Time component was last link-edited.
Returned for load members only.

<loadSize> Optional 0 - 1 Integer (6),
variable

Size of load member in bytes. Returned for
load members only.

<modLevel> Optional 0 - 1 String (2),
variable

ISPF modification level of component.
Returned for ISPF files only.

<modificationSize> Optional 0 - 1 Integer (6),
variable

Size of last modification to member in bytes.
Returned for ISPF files only.

<relativeTrack> Optional 0 - 1 Integer (6),
variable

Relative offset of starting track for this
dataset member. Returned for load
members only.

<rmode> Optional 0 - 1 String (10),
variable

Link-edit parameters for residency mode of
component. Returned for load members
only.

<setssi> Optional 0 - 1 String (8) SETSSI for LOAD directory type.

<timeLastModified> Optional 0 - 1 Time,
hhmmss

Time component was last modified. Returned
for ISPF files only.

Exhibit 6-7. DSS SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
371

37

Chapter 6: Dataset Management
List ISPF Dataset Allocation Information - DSS ISPFILE INFO

This function lists temporary dataset allocation information for a ChangeMan ZMF started
task. Typically this information concerns datasets used for ISPF file tailoring. Returned
information includes the dataset name, DASD unit name, and DASD allocation amounts for
each temporary dataset known to the started task at the global level.

The Serena XML service/scope/message names for a message to list ISPF dataset
allocation information are:

<service name=”DSS”>
<scope name=”ISPFILE”>
<message name=”INFO”>

These tags appear in both requests and replies.

DSS ISPFILE INFO — Requests

The Serena XML request message for this function includes an empty <request> data
element (that is, one that contains no subtags). The <request> tag itself is required.

<typeOfDirectory> Required 1 String (8),
variable

Code for type of directory containing dataset
member. Values:

1 = ISPF
2 = Load
3 = None

NOTE: If value is 1, the following tags are
also returned: <currentSize>,
<initialSize>, <modificationSize>,
<dateCreated>, <dateLastModified>,
<timeLastModified>, <version>,
<modLevel>, & <lastUpdater>.

NOTE: If value is 2, the following tags are
also returned: <aliasOf>, <attributes>,
<authCode>, <relativeTrack>,
<loadSize>, <amodeRmode>, <setssi>,
<linkedDate>, & <linkedTime>.

<version> Optional 0 - 1 String (2),
variable

ISPF version number of component.
Returned for ISPF files only.

Exhibit 6-7. DSS SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

DSS ISPFILE INFO — Replies

The Serena XML reply message for this function contains zero to many <result> data
elements. Each <result> provides DASD allocation information for one ISPF file tailoring
dataset (or other temporary dataset).

A standard <response> data structure follows the final <result> tag to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. Because the <response> tag is the last data
element returned in the reply, it also serves as an end-of-list indicator.

Data structure details for the <result> data structure appear in Exhibit 6-8.

Exhibit 6-8. DSS ISPFILE INFO <result>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<blockSize> Optional 1 Integer (6),
variable

Block size allocated to <mvsLib>
dataset in bytes.

<eAttr> Optional 0 - 1 String (1) Extended attribute option. Values:

N = Dataset cannot have extended
 attributes or reside in EAS.

O = Dataset can have extended
 attributes and reside in EAS.

blank = Default based on data type.

<lastNodeOrigin> Optional 0 - 1 Integer (6),
variable

Code for origin of last node in dataset
name when dataset used to store a
component in a temporary dataset.
Values:

1 = Component library type
2 = Component language
3 = Component name

<mvsLib> Optional 1 String (255),
variable

Fully qualified dataset name for which
DASD data is returned.

<primarySpace> Optional 0 - 1 String (8),
variable

Minimum DASD allocation for dataset, in
units specified by <spaceType>.
373

37

Chapter 6: Dataset Management
List Statistics for Baseline Members - DSS SERVICE BASESTAT

This function lists statistics for baseline library members stored in PDS or SRD (stacked
reverse delta) format.

The Serena XML service/scope/message names for a message to list statistics for baseline
members are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”BASESTAT”>

These tags appear in both requests and replies.

DSS SERVICE BASESTAT — Requests

The following example shows how you might code a Serena XML request to list the statistics
for a baseline library component. Data structure details for the <request> tag appear in
Exhibit 6-9.

Example XML — DSS SERVICE BASESTAT Request

<?xml version="1.0"?>
<service name="DSS">
 <scope name="SERVICE">
 <message name="BASESTAT">
 <header>
 <subsys>4</subsys>
 <test> </test>
 <product>CMN</product>
 </header>
 <request>
 <applName>ACTP</applName>
 <libType>SRC</libType>
 <version>001</version>
 <component>ACPSRC1A</component>
 </request>

<secondarySpace> Optional 0 - 1 String (8),
variable

DASD allocation for extents, in units
specified by <spaceType>.

<spaceType> Required 1 String (3),
variable

Type of DASD space allocation for
<mvsLib> dataset. Values:

Blk = Blocks
Cyl = Cylinders
Trk = Tracks

<unitName> Required 1 String (8),
variable

Logical unit name for DASD volume in
<volume> tag.

Exhibit 6-8. DSS ISPFILE INFO <result> (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 </message>
 </scope>
</service>

DSS SERVICE BASESTAT — Replies

Only one <result> data element is returned in the reply message for this function. It is
followed by a standard <response> data structure, which indicates the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

The following example shows what a reply message might look like. Data structure details for
the <result> tag appear in Exhibit 6-10.

Example XML — DSS SERVICE BASESTAT Result

<?xml version="1.0"?>
<service name="DSS">
 <scope name="SERVICE">
 <message name="BASESTAT">
 <result>
 <createDate>20120407</createDate>
 <dateLastModified>20130427</dateLastModified>
 <timeLastModified>173204</timeLastModified>
 <maxVersion>001</maxVersion>
 <user>USER99</user>
 </result>
 <response>
 <statusMessage>CMN8700I - Baseline stat service completed
 </statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>

Exhibit 6-9. DSS SERVICE BASESTAT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 1 String (4),
variable

Application name.

<component> Required 1 String (8),
variable

Component name.

<libType> Required 1 String (3) Library type.

<version> Required 1 Integer (3) Baseline version number.
375

37

Chapter 6: Dataset Management
 </scope>
</service>

Expand Member in SRD Format - DSS SERVICE EXPAND

This function expands a baseline library member stored in stacked reverse delta (SRD)
format and writes it to a data set.

The Serena XML service/scope/message names for a message to expand a baseline
member are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”EXPAND”>

These tags appear in both requests and replies.

DSS SERVICE EXPAND — Requests

The following example shows how you might code a Serena XML request to expand a
baseline library component in SRD format and write it to the dataset specified in the
<targetLib> subtag. Data structure details for the <request> tag appear in Exhibit 6-11.

Example XML — DSS SERVICE EXPAND Request

<?xml version="1.0"?>
<service name="DSS">
 <scope name="SERVICE">
 <message name="EXPAND">
 <header>

Exhibit 6-10. DSS SERVICE BASESTAT <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<createDate> Optional 0 - 1 Date,
yyyymmdd

Date created.

<dateLastModified> Optional 0 - 1 Date,
yyyymmdd

Date last modified.

<maxVersion> Optional 0 - 1 Integer (3) Total number of baseline versions.

NOTE: This tag is only returned for a
SRD baseline member. The maximum
versions for a PDS member is not
known.

<timeLastModified> Optional 0 - 1 Time,
hhmmss

Time last modified.

<user> Optional 0 - 1 String (8),
variable

User ID of user who last modified
component.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <subsys>4</subsys>
 <test> </test>
 <product>CMN</product>
 </header>
 <request>
 <baseLib>WSER99.BASE0.SRC</baseLib>
 <deltaLib>WSER99.BASE1.SRC</deltaLib>
 <targetLib>WSER99.TEMP.PDS</targetLib>
 <version>002</version>
 <component>ACPSJW2</component>
 </request>
 </message>
 </scope>
</service>

DSS SERVICE EXPAND — Replies

No <result> data structure is returned for this function. However, the reply message does
return a standard <response> data structure to indicate the success or failure of the
request. Successful requests have a return code of 00. Unsuccessful requests have a return
code of 04 or higher.

In a successful request, the SRD component will be expanded and written to the dataset
specified in the <targetLib> subtag.

The following example shows what a successful reply message looks like.

Example XML — DSS SERVICE EXPAND Result

<?xml version="1.0"?>
<service name="DSS">
 <scope name="SERVICE">
 <message name="EXPAND">
 <response>

Exhibit 6-11. DSS SERVICE EXPAND <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<baseLib> Required 1 String (255),
variable

Baseline library name.

<component> Required 1 String (8),
variable

Component name.

<deltaLib> Required 1 String (255),
variable

Delta library name.

<targetLib> Required 1 String (255),
variable

Dataset name where expanded
component will be written.

<version> Required 1 Integer (3) Version number.
377

37

Chapter 6: Dataset Management
 <statusMessage>CMN8700I - Expand service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
8

HIERARCHICAL FILE SYSTEM
SERVICES
 7

OVERVIEW

The ZMF XML Services let you work directly with the z/OS Unix Hierarchical File System
(HFS) on the mainframe. Operations on files and directories are supported.

Hierarchical File System Functions

The following HFS data management functions are supported for general use:

• HFS Directory Services — Create, delete, rename, or list the contents of a directory.

• HFS File Lifecycle Services — Create, delete, rename, or copy an HFS file, change
certain file attributes, test for file existence and verify user access permissions, or scan
files for strings.

• File Conversion Services — Import a z/OS PDS (Partitioned Data Set) member as an
HFS file or export an HFS file as a PDS member.

High-Level Syntax

The syntax that identifies a z/OS Unix HFS message in Serena XML appears in the name
attribute of the <service> tag, as follows:

<service name=”file”>

HFS directory services use the following <scope> tags:

<scope name=”dirs”>
<scope name=”files”>
<scope name=”service”>

HFS file lifecycle services and file transfer/conversion services both use the following
<scope> tag:

<scope name=”service”>

Case is significant in all attribute values (delimited by double quotes).
379

38

Chapter 7: Hierarchical File System Services
Related Services

Package, component, and other services have been extended to support the new HFS data
objects with new tags or new allowed values in existing tags. See the chapters addressing
the relevant package, component, or other services for details.

Services to manage native z/OS PDS datasets are discussed in Chapter 6, “Dataset
Management,” on page 361.

Database files and tables managed under DB2 or IMS are discussed in Chapter 8, “Database
Management,” on page 405.

 Note

Each Service listed requires the user ID running the service to have the
appropriate access permissions for the resources requested defined for it in your
mainframe security system.

HFS DIRECTORY SERVICES

Serena XML supports the following HFS directory functions for general use:

Create a Directory — FILE SERVICE MKDIR

This function allocates an empty HFS directory on the host. The resulting data object has a
“file type code” of 1. Access permissions for the resources requested must first be defined for
you in your mainframe security system.

The XML service/scope/message names for a message to create an HFS directory are:

<service name=”file”>
<scope name=”service”>
<message name=”mkdir”>

These tags appear in both requests and replies. Case is significant.

• Create a Directory —
FILE SERVICE MKDIR

• List All Directory Contents —
FILE SERVICE LIST

• Delete a Directory —
FILE SERVICE RMDIR

• List Files in a Directory —
FILE FILES LIST

• Rename a Directory —
FILE SERVICE RENAME

• List Directories in a Directory
— FILE DIRS LIST
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE MKDIR Requests

Data structure details for the <request> tag appear in Exhibit 7-1. All subtags are required.

FILE SERVICE MKDIR Results

No <result> data structure is returned in response to an XML HFS directory creation
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Exhibit 7-1. FILE SERVICE MKDIR <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<createInterPath> Required 1 String (1) Include intermediate path in <pathName>?

Y = Yes, include full path from installation
 root node as prefix to new directory
 name in <pathName>

N = No, omit path; include only the name of
 the new directory in <pathName>

<pathName> Required 1 String (1024),
variable

Name of new directory, optionally prefixed
by path from installation root.

• If <createInterPath> = Y,
<pathName> includes full path name from
install root plus name of new directory.

• If <createInterPath> = N,
<pathName> is new directory name only.

<permissions> Required 1 Integer (3),
fixed

Unix access permissions for new directory,
coded as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute”
permissions should be read as “open
directory” or “view files in directory”.
381

38

Chapter 7: Hierarchical File System Services
Delete a Directory — FILE SERVICE RMDIR

This function deletes an HFS directory on the host. Access permissions for the resources
requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to delete an HFS directory are:

<service name=”file”>
<scope name=”service”>
<message name=”rmdir”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE RMDIR Requests

Data structure details for the <request> tag appear in Exhibit 7-2. All subtags are required.

FILE SERVICE RMDIR Results

No <result> data structure is returned in response to an XML HFS directory deletion
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Rename a Directory — FILE SERVICE RENAME

This function renames an HFS directory (or file) on the host. Access permissions for the
resources requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to rename an HFS directory are:

<service name=”file”>
<scope name=”service”>
<message name=”rename”>

These tags appear in both requests and replies. Case is significant.

Exhibit 7-2. FILE SERVICE RMDIR <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<deleteContents> Required 1 String (1) If the directory is not empty, should the
deletion go forward anyway, taking with it
any subordinate files or directories?

Y = Yes, delete even if the directory has
 content.

N = No, don’t delete if the directory has
 content,

<pathName> Required 1 String (1024),
variable

Name of directory to be deleted, prefixed by
path from installation root.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE RENAME Requests

Data structure details for the <request> tag appear in Exhibit 7-3. All subtags are required.

FILE SERVICE RENAME Results

No <result> data structure is returned in response to an XML HFS directory rename
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

List All Directory Contents — FILE SERVICE LIST

This function lists allocation information for all Unix data object contained in an HFS directory.
The listing includes both files and subdirectories. Subdirectories may be expanded
recursively for listing. Other output filtering options also exist. Access permissions for the
resources requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to list all contents of an HFS
directory are:

<service name=”file”>
<scope name=”service”>
<message name=”list”>

These tags appear in both requests and replies. Case is significant.

Optimized variants of this service are:

• List Files in a Directory — FILE FILES LIST

Same as FILE SERVICE LIST with subdirectories excluded from listing.

• List Directories in a Directory — FILE DIRS LIST

Exhibit 7-3. FILE SERVICE RENAME <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<fromPathName> Required 1 String (1024),
variable

Old name of directory, prefixed by path from
installation root.

<replace> Required 1 String (1) If the new directory name is already in use,
should that preexisting directory be deleted
so the rename can proceed?

Y = Yes, replace any existing directory of
 the same name with the renamed
 directory.

N = No, don’t rename if another directory
 with the same name already exists.

<toPathName> Required 1 String (1024),
variable

New name of directory, prefixed by path
from installation root.
383

38

Chapter 7: Hierarchical File System Services
Same as FILE SERVICE LIST with <fileType> set to 1.

FILE SERVICE LIST Requests

Data structure details for the <request> tag appear in Exhibit 7-4.

Exhibit 7-4. FILE SERVICE LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<caseSensitive> Required 1 String (1) Treat values in <fileName> and <pathName>
as case sensitive?

Y = Yes, respect case as typed in tags.

N = No, normalize values to upper case.

<expandDirectory> Required 1 String (1) Expand and list contents of subdirectories?

Y = Yes, expand & list subdirectories

N = No, don’t expand subdirectories

<fileName> Optional 0 - 1 String (256),
variable

Name of a particular file, subdirectory, or other
Unix data object in the directory identified by
<pathName> whose allocation information
should be listed. Path is not included. Wildcards
‘*” and ‘?’ may be used.

If this tag is used, only the named data object is
included in the returned listing. If omitted, all
data objects of the type requested in
<fileType> are listed.

NOTE: Concurrent use of <fileName> and
<fileType> is not recommended. If the actual
file type of the data object in <fileName>
conflicts with the value in <fileType>, no
objects will be listed, even if an object with the
requested name exists in the directory.

<fileType> Optional 0 - 1 Integer (1) Unix data object type desired in listing. If used,
only objects of the type specified are listed. If
omitted, all object types are listed. Values:

1 = Directory

2 = Character special file

3 = Regular file

4 = Named pipe (FIFO) file

5 = Symbolic link (alias/shortcut to other file)

6 = Reserved for block special file

7 = Socket file

NOTE: Concurrent use of <fileType> and
<fileName> is not recommended. If the actual
file type of the named data object conflicts with
the value supplied in <fileType>, no data will
be returned, even if a data object with the
requested name exists in the directory.

<pathName> Required 1 String (1024),
variable

Name of directory whose contents are to be
listed, prefixed by path from installation root.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE LIST Results

Data structure details for the <result> tag appear in Exhibit 7-5. One result data structure is
returned for each file, directory, or other Unix data object listed.

A standard <response> data structure is returned after the final <result> tag to indicate
success or failure of the request and the completion of the listing if successful. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

<returnHashToken> Required 1 String (1) Return a ZMF hash token with any listed files?

Y = Yes, return hash token for files

N = No, don’t return hash token

Exhibit 7-5. FILE SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<createdDate> Required 1 Integer (8),
fixed

Creation date in yyyyMMdd format.

<createdTime> Required 1 Integer (6),
fixed

Creation time in HHmmss format.

<fileFormat> Optional 0 - 1 Integer (1) Record formatting and delimiter convention
used by listed file or data object. Values:

0 = Not specified

1 = Binary data

2 = New line (NL)

3 = Carriage return (CR)

4 = Line feed (LF)

5 = CR & LF

6 = LF & CR

7 = CR & NL

NOTE: Not relevant for directories.

<fileGroupOwner> Required 1 String (8),
variable

User ID of file group owner associated with the
listed file or data object.

<fileName> Required 1 String (256),
variable

Name of the current file, subdirectory, or other
Unix data object listed.

<fileOwner> Required 1 String (8),
variable

User ID of owner associated with the listed file
or data object.

<fileSize> Optional 0 - 1 Integer (9),
variable

File or directory size in bytes. Values 0 -
999999999.

NOTE: For directories, size is for directory
object itself, not for files within directory.

Exhibit 7-4. FILE SERVICE LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
385

38

Chapter 7: Hierarchical File System Services
<fileType> Required 1 Integer (1) Unix data object type of listed file or
subdirectory. Values:

1 = Directory

2 = Character special file

3 = Regular file

4 = Named pipe (FIFO) file

5 = Symbolic link (alias/shortcut to other file)

6 = Reserved for block special file

7 = Socket file

NOTE: If <fileType> = 5, <linkName>,
<linkType> will also be present.

<hashToken> Optional 0 - 1 Integer (16),
fixed

ZMF hash token stored with a component. Can
be compared to a reference value to determine
whether component has changed.

NOTE: Not applicable to directories.

<lastAccessedDate> Required 1 Integer (8),
fixed

Date last accessed in yyyyMMdd format.

<lastAccessedTime> Required 1 Integer (6),
fixed

Time last accessed in HHmmss format.

<lastModifiedDate> Required 1 Integer (8),
fixed

Date last modified in yyyyMMdd format.

<lastModifiedTime> Required 1 Integer (6),
fixed

Time last modified in HHmmss format.

<linkCount> Required 1 Integer (5),
variable

Count of inbound links pointing to this data
object. Allowed values 0 - 65536.

• For files (<fileType> ≠ 1) the link count is
the number of hard links pointing to the file.
Symbolic or soft links (<fileType> = 5)are
not included in this count.

• For directories (<fileType> = 1), the link
count is the number of subdirectories.

<linkName> Optional 0 - 1 String (1024),
variable

Name of file pointed to by the current link or
alias, prefixed by path from installation root.

NOTE: Required if <fileType> = 5, not
applicable otherwise.

Exhibit 7-5. FILE SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Files in a Directory — FILE FILES LIST

This function lists all the files in an HFS directory. Under the covers, it is the same service as
FILES SERVICE LIST with certain predefined request options and output filters built in.
Access permissions for the resources requested must first be defined for you in your
mainframe security system.

The XML service/scope/message names for a message to list only files in an HFS directory
are:

<service name=”file”>
<scope name=”files”>
<message name=”list”>

<linkType> Optional 0 - 1 Integer (1) Unix data object type of file identified in
<linkName>. Values:

1 = Directory

2 = Character special file

3 = Regular file

4 = Named pipe (FIFO) file

5 = Symbolic link (points to another file)

6 = Reserved for block special file

7 = Socket file

NOTE: Required if <fileType> = 5, not
applicable otherwise.

<permissions> Required 1 Integer (3),
fixed

Unix access permissions for listed file or
subdirectory. Coded as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

 7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute” permissions
should be read as “open directory” or “view files
in directory”.

<realPath> Optional 0 - 1 string (1024),
variable

Real path name.

Exhibit 7-5. FILE SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
387

38

Chapter 7: Hierarchical File System Services
These tags appear in both requests and replies. Case is significant.

FILE FILES LIST Requests

Data structure details for the <request> tag appear in Exhibit 7-6. All subtags shown are
required. Request tags <fileName> and <fileType> should not be used.

FILE FILES LIST Results

Data structure details for the <result> tag appear in Exhibit 7-7. One result data structure is
returned for each file listed.

A standard <response> data structure is returned after the final <result> tag to indicate
success or failure of the request and the completion of the listing if successful. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

Exhibit 7-6. FILE FILES LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<caseSensitive> Required 1 String (1) Treat values in <fileName> and <pathName>
as case sensitive?

Y = Yes, respect case as typed in tags.

N = No, normalize values to upper case.

<expandDirectory> Required 1 String (1) Expand and list contents of subdirectories?

Y = Yes, expand & list subdirectories

N = No, don’t expand subdirectories

<pathName> Required 1 String (1024),
variable

Name of directory whose contents are to be
listed, prefixed by path from installation root.

<returnHashToken> Required 1 String (1) Return a ZMF hash token with the listed files?

Y = Yes, return hash token for files

N = No, don’t return hash token

Exhibit 7-7. FILE FILES LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<createdDate> Required 1 Integer (8),
fixed

Creation date in yyyyMMdd format.

<createdTime> Required 1 Integer (6),
fixed

Creation time in HHmmss format.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<fileFormat> Optional 0 - 1 Integer (1) Record formatting and delimiter convention
used by listed file. Values:

0 = Not specified

1 = Binary data

2 = New line (NL)

3 = Carriage return (CR)

4 = Line feed (LF)

5 = CR & LF

6 = LF & CR

7 = CR & NL

<fileGroupOwner> Required 1 String (8),
variable

User ID of file group owner.

<fileName> Required 1 String (256),
variable

Name of listed file.

<fileOwner> Required 1 String (8),
variable

User ID of file owner.

<fileSize> Optional 0 - 1 Integer (9),
variable

File size in bytes. Values 0 - 999999999.

NOTE: For directories, size is for directory
object itself, not for files within directory.

<fileType> Required 1 Integer (1) Unix data object type of listed file. Values:

2 = Character special file

3 = Regular file

4 = Named pipe (FIFO) file

5 = Symbolic link (points to another file)

6 = Reserved for block special file

7 = Socket file

NOTE: If <fileType> = 5, <linkName> and
<linkType> will also be present.

<hashToken> Optional 0 - 1 Integer (16),
fixed

ZMF hash token stored with a component. Can
be compared with a stored value to determine
whether the component has changed.

<lastAccessedDate> Required 1 Integer (8),
fixed

Date last accessed in yyyyMMdd format.

<lastAccessedTime> Required 1 Integer (6),
fixed

Time last accessed in HHmmss format.

<lastModifiedDate> Required 1 Integer (8),
fixed

Date last modified in yyyyMMdd format.

<lastModifiedTime> Required 1 Integer (6),
fixed

Time last modified in HHmmss format.

<linkCount> Required 1 Integer (5),
variable

Count of inbound hard links pointing to this file.
Symbolic or soft links (aliases/shortcuts) are not
included in count. Allowed values 0 - 65536.

Exhibit 7-7. FILE FILES LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
389

39

Chapter 7: Hierarchical File System Services
List Directories in a Directory — FILE DIRS LIST

This function lists all the subdirectories in an HFS directory. Under the covers, it is the same
service as FILES SERVICE LIST with certain predefined request options and output filters
built in. Access permissions for the resources requested must first be defined for you in your
mainframe security system.

<linkName> Optional 0 - 1 String (1024),
variable

Name of file pointed to by the listed link file (ie
alias or shortcut) in <fileName>, prefixed by
path from installation root.

NOTE: Required if <fileType> = 5, not
applicable otherwise.

<linkType> Optional 0 - 1 Integer (1) Unix data object type of file or data object
identified in <linkName>. Values:

1 = Directory

2 = Character special file

3 = Regular file

4 = Named pipe (FIFO) file

5 = Symbolic link (points to another file)

6 = Reserved for block special file

7 = Socket file

NOTE: Required if <fileType> = 5, not
applicable otherwise.

<permissions> Required 1 Integer (3),
fixed

Unix access permissions for listed file. Coded
as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

 7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute” permissions
should be read as “open directory” or “view files
in directory”.

<realPath> Optional 0 - 1 string (1024),
variable

Real path name.

Exhibit 7-7. FILE FILES LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The XML service/scope/message names for a message to list only subdirectories in an HFS
directory are:

<service name=”file”>
<scope name=”dirs”>
<message name=”list”>

These tags appear in both requests and replies. Case is significant.

FILE DIRS LIST Requests

Data structure details for the <request> tag appear in Exhibit 7-8. All subtags shown are
required. Request tags <fileName>, <fileType>, and <returnHashToken> should not
be used.

FILE DIRS LIST Results

Data structure details for the <result> tag appear in Exhibit 7-9. One result data structure is
returned for each subdirectory listed. File-specific subtags such as <fileFormat>,
<hashToken>, <linkName>, and <linkType> are not returned.

A standard <response> data structure is returned after the final <result> tag to indicate
success or failure of the request and the completion of the listing if successful. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

Exhibit 7-8. FILE DIRS LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<caseSensitive> Required 1 String (1) Treat values in <fileName> and <pathName>
as case sensitive?

Y = Yes, respect case as typed in tags.

N = No, normalize values to upper case.

<expandDirectory> Required 1 String (1) Expand and list contents of subdirectories?

Y = Yes, expand & list subdirectories

N = No, don’t expand subdirectories

<pathName> Required 1 String (1024),
variable

Name of directory whose contents are to be
listed, prefixed by path from installation root.

Exhibit 7-9. FILE DIRS LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<createdDate> Required 1 Integer (8),
fixed

Creation date in yyyyMMdd format.

<createdTime> Required 1 Integer (6),
fixed

Creation time in HHmmss format.

<fileGroupOwner> Required 1 String (8),
variable

User ID of file group owner associated with this
subdirectory.
391

39

Chapter 7: Hierarchical File System Services
<fileName> Required 1 String (256),
variable

Name of listed subdirectory.

<fileOwner> Required 1 String (8),
variable

User ID of file owner associated with this
directory

<fileType> Required 1 Integer (1) Unix data object type of listed directory. Values:

1 = Directory

<lastAccessedDate> Required 1 Integer (8),
fixed

Date last accessed in yyyyMMdd format.

<lastAccessedTime> Required 1 Integer (6),
fixed

Time last accessed in HHmmss format.

<lastModifiedDate> Required 1 Integer (8),
fixed

Date last modified in yyyyMMdd format.

<lastModifiedTime> Required 1 Integer (6),
fixed

Time last modified in HHmmss format.

<linkCount> Optional 0 - 1 Integer (5),
variable

Count of subdirectories within the listed
directory. Allowed values 0 - 65536.

<permissions> Required 1 Integer (3),
fixed

Unix access permissions for listed subdirectory.
Coded as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

 7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute” permissions
should be read as “open directory” or “view files
in directory”.

<realPath> Optional 0 - 1 string (1024),
variable

Real path name.

Exhibit 7-9. FILE DIRS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
HFS FILE LIFECYCLE SERVICES

The XML Services API supports the following HFS file lifecycle functions for general use:

Create a File — FILE SERVICE CREATE

This function allocates an empty HFS file on the host. The resulting data object has a “file
type code” of 3. Access permissions for the resources requested must first be defined for you
in your mainframe security system.

The XML service/scope/message names for a message to create an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”create”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE CREATE Requests

Data structure details for the <request> tag appear in Exhibit 7-10. All subtags are required.

• Create a File — FILE
SERVICE CREATE

• Create a Link or Alias to a File
— FILE SERVICE LINK

• Delete a File — FILE
SERVICE DELETE

• Change File Attributes —
FILE SERVICE CHANGE

• Rename a File — FILE
SERVICE RENAME

• Check Access to a File —
FILE SERVICE ACCESS

• Copy a File — FILE
SERVICE COPY

• Scan Files for Strings — FILE
SERVICE SCAN

Exhibit 7-10. FILE SERVICE CREATE <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<createInterPath> Required 1 String (1) Include intermediate path in <pathName>?

Y = Yes, include full path from installation
 root in <pathName> value

N = No, omit path; include only the name of
 the new file in <pathName>

<pathName> Required 1 String (1024),
variable

Name of new file to be created, optionally
prefixed by path from installation root.

• If <createInterPath> = Y,
<pathName> includes full path from
installation root plus name of new file.

• If <createInterPath> = N,
<pathName> is new file name only.
393

39

Chapter 7: Hierarchical File System Services
FILE SERVICE CREATE Results

No <result> data structure is returned in response to an XML HFS file creation request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Delete a File — FILE SERVICE DELETE

This function deletes an HFS file on the host. Access permissions for the resources
requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to delete an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”delete”>

These tags appear in both requests and replies. Case is significant.

<permissions> Required 1 Integer (3),
fixed

Unix access permissions for new file, coded
as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

 7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute”
permissions should be read as “open
directory” or “view files in directory”.

Exhibit 7-10. FILE SERVICE CREATE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE DELETE Requests

Data structure details for the <request> tag appear in Exhibit 7-11. All subtags are required.

FILE SERVICE DELETE Results

No <result> data structure is returned in response to an XML HFS file deletion request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Rename a File — FILE SERVICE RENAME

This function renames an HFS file (or directory) on the host. Access permissions for the
resources requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to rename an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”rename”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE RENAME Requests

Data structure details for the <request> tag appear in Exhibit 7-12. All subtags are required.

Exhibit 7-11. FILE SERVICE DELETE <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<pathName> Required 1 String (1024),
variable

Name of file to be deleted, prefixed by path
from installation root.

Exhibit 7-12. FILE SERVICE RENAME <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<fromPathName> Required 1 String (1024),
variable

Old name of file to be renamed, prefixed by
path from installation root.

<replace> Required 1 String (1) If the new file name is already in use, should
the preexisting file be deleted so the rename
can proceed?

Y = Yes, replace any existing file of the
 same name with the renamed file.

N = No, don’t rename if another file with
 the same name already exists.

<toPathName> Required 1 String (1024),
variable

New name of file, prefixed by path from
installation root.
395

39

Chapter 7: Hierarchical File System Services
FILE SERVICE RENAME Results

No <result> data structure is returned in response to an XML HFS file rename request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Copy a File — FILE SERVICE COPY

This function makes an identical copy of an HFS file on the host. Access permissions for the
resources requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to copy an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”copy”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE COPY Requests

Data structure details for the <request> tag appear in Exhibit 7-13. All subtags are required.

Exhibit 7-13. FILE SERVICE COPY <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<compression> Required 1 String (1) Compress the target file during copy?

Y = Yes, compress the target file.

N = No, do not compress the target file.

E = Expand the target file if the source file
 is compressed.

<copyTimeStamp> Optional 0 - 1 String (1) Copy all source timestamps to target file?

Y = Yes, copy all timestamps from source
 file to target file

N = No, update modification and access
 dates/times in target file at copy time
 (default).

<fromPathName> Required 1 String (1024),
variable

Name of source file to be copied, prefixed by
path from installation root.

<replace> Required 1 String (1) If a file with the desired name already exists,
should the preexisting file be deleted so the
copy operation can proceed?

Y = Yes, replace any existing file of the
 same name with the copied file.

N = No, cancel copy if another file with
 the desired name already exists.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE COPY Results

No <result> data structure is returned in response to an XML HFS file copy request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Create a Link or Alias to a File — FILE SERVICE LINK

This function creates a symbolic link — also known as an alias or shortcut — to an HFS file.
The resulting data object has a “file type code” of 5. Appropriate access permissions for the
resources requested must first be defined for you in your mainframe security system.

The XML service/scope/message names for a message to create a link to an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”link”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE LINK Requests

Data structure details for the <request> tag appear in Exhibit 7-14. All subtags are required.

<toPathName> Required 1 String (1024),
variable

Name of the target copied file, prefixed by
path from installation root.

Exhibit 7-14. FILE SERVICE LINK <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<linkPathName> Required 1 String (1024),
variable

Name of target file, prefixed by path from
installation root.

NOTE: This file or data object must already
exist for link to be created.

<pathName> Required 1 String (1024),
variable

Name of symbolic link file that will point to
target, prefixed by path from installation root.

NOTE: This object will be created with file
type = 5.

Exhibit 7-13. FILE SERVICE COPY <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
397

39

Chapter 7: Hierarchical File System Services
FILE SERVICE LINK Results

No <result> data structure is returned in response to an XML HFS file link request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Change File Attributes — FILE SERVICE CHANGE

This function changes selected attributes, such as access permissions, for an HFS file (or
directory) on the host. Appropriate access permissions for the resources requested must first
be defined for you in your mainframe security system. You must be the file owner or an
administrator to change access permissions.

The XML service/scope/message names for a message to change attributes of an HFS file
are:

<service name=”file”>
<scope name=”service”>
<message name=”change”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE CHANGE Requests

Data structure details for the <request> tag appear in Exhibit 7-15. In addition to the
mandatory <pathName> tag, at least one of the optional subtags is required to identify an
attribute to be changed. Multiple attributes may be changed at once.

Exhibit 7-15. FILE SERVICE CHANGE <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<modTime> Optional 0 - 1 Integer (14),
fixed

New value for modification date and time.
Format is yyyyMMddHHmmss.

<pathName> Required 1 String (1024),
variable

Name of file (or directory) to change,
prefixed by path from installation root.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE CHANGE Results

No <result> data structure is returned in response to an XML HFS file parameter change
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Check Access to a File — FILE SERVICE ACCESS

This function checks for the existence of an HFS file (or directory) on the host, or for access
permissions available to you (or another current user) if the file exists. Access permissions for
the resources requested must first be defined for you (or the other user) in your mainframe
security system.

USE CASES

• To determine whether a particular file (or directory) exists on a particular path, submit this
request with <accessMode> set to 8. If the file exists, the return code will be 00. If it does
not exist, the return code will be 08.

• To determine whether the current user of the service has permission to execute the
named file, submit this request with <accessMode> set to an odd number from 1 to 7,
using Unix numeric permission conventions. In other words, set it to 1 (execute

<permissions> Optional 0 - 1 Integer (3),
fixed

New Unix access permissions for file, coded
as 3-digit integer, where:

1st digit = owner permissions

2nd digit = group permissions

3rd digit = permissions for all others

Each digit takes one of the following values:

 7 - Read, write/rename/delete, execute

 6 - Read, write/rename/delete

 5 - Read, execute

 4 - Read only

 3 - Write/rename/delete, execute

 2 - Write/rename/delete only

 1 - Execute only

 0 - No access permitted

NOTE: For directories, “execute”
permissions should be read as “open
directory” or “view files in directory”.

NOTE: You must be the file owner or an
administrator to change access permissions.

Exhibit 7-15. FILE SERVICE CHANGE <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
399

40

Chapter 7: Hierarchical File System Services
permissions only), 3 (write/rename/delete and execute permissions), 5 (read and execute
permissions), or 7 (read, write/rename/delete, and execute permissions). If the user has
the requested level of access to the file, the service will reply with a return code of 00. If
the user does not have the requested level of access, the return code will be 08.

SYNTAX

The XML service/scope/message names for a message to check access to an HFS file are:

<service name=”file”>
<scope name=”service”>
<message name=”access”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE ACCESS Requests

Data structure details for the <request> tag appear in Exhibit 7-16. All subtags are required.

FILE SERVICE ACCESS Results

No <result> data structure is returned in response to an XML HFS file access check
request. However, the reply message does return a standard <response> data structure to
indicate the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Exhibit 7-16. FILE SERVICE ACCESS <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<accessMode> Required 1 String (1) Type of file access to be tested. May test file
existence or access permissions for current
user. Values:

8 - File exists

7 - Read, write/rename/delete, execute

6 - Read, write/rename/delete

5 - Read, execute

4 - Read only

3 - Write/rename/delete, execute

2 - Write/rename/delete only

1 - Execute only

0 - No access permitted

NOTE: For directories, “execute”
permissions should be read as “open
directory” or “view/list files in directory”.

<pathName> Required 1 String (1024),
variable

Name of file (or directory) to be accessed,
prefixed by path from installation root.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Scan Files for Strings — FILE SERVICE SCAN

This function scans HFS files for requested strings.

The XML service/scope/message names for a message to scan files are:

<service name=”file”>
<scope name=”service”>
<message name=”scan”>

These tags appear in both requests and replies. Case is significant.

FILE SERVICE SCAN Requests

Data structure details for the <request> tag appear in Exhibit 7-17.

Exhibit 7-17. FILE SERVICE SCAN <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<and> Optional 0 - 1 String (1) To connect strings 1 and 2 (<scan1> and
<scan2>).

Y = connect strings

N = do not connect strings

<caseFile> Optional 0 - 1 String (1) Case-sensitivity of file name.

Y = file name is case-sensitive.

N = file name is not case-sensitive.

<caseSensitive> Optional 0 - 1 String (1) Case-sensitivity of search strings.

Y = search strings are case-sensitive.

N = search strings are not case-sensitive.

<endOffset> Optional 0 - 1 Integer Displacement end.

<fileName> Optional 0 - 1 String (256),
variable

Name of file to be scanned.

<listType> Optional 0 - 1 String (1) Short or long result list.

S = Short

L = Long

<maxHits> Optional 0 - 1 Integer Maximum hits. 0 = unlimited.

<pathName> Optional 0 - 1 String (1024),
variable

Name of path to be scanned.

<recurse> Optional 0 - 1 String (1) Search subdirectories.

 Y = Search through all subdirectories.

 N = Search only the directory specified in
 <pathName>.

<scan1> Optional 0 - 1 String (40),
variable

Scan string 1.

<scan2> Optional 0 - 1 String (40),
variable

Scan string 2.

<startOffset> Optional 0 - 1 Integer Displacement end.
401

40

Chapter 7: Hierarchical File System Services
FILE SERVICE SCAN Results

Data structure details for the <result> tag appear in Exhibit 7-18. One to many <data>
tags are returned.

A standard <response> data structure is returned after the final <result> tag to indicate
success or failure of the request and the completion of the listing if successful. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

FILE CONVERSION SERVICES

The XML Services API provides file conversion services to import/export between z/OS PDS
libraries and z/OS Unix HFS directories and files on the z/OS host. The following specific
HFS file conversion functions are supported for general use:

Import a PDS Member into HFS — FILE SERVICE IMPORT

This function imports a native z/OS PDS (Partitioned Data Set) or PDSE (PDS Extended)
library member into the z/OS Unix Hierarchical File System (HFS) as a standalone HFS file
on the host. Access permissions for the resources requested must first be defined for you in
your mainframe security system.

The XML service/scope/message names for a message to import a PDS member as an HFS
file are:

<service name=”file”>
<scope name=”service”>
<message name=”import”>

These tags appear in both requests and replies. Case is significant.

Exhibit 7-18. FILE SERVICE SCAN <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<data> Optional 1 -  String,
variable

Line of data. Includes file line, summary line,
and matching line.

• Import a PDS Member into HFS —
FILE SERVICE IMPORT

• Export an HFS File to a PDS Library —
FILE SERVICE EXPORT
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FILE SERVICE IMPORT Requests

Data structure details for the <request> tag appear in Exhibit 7-19. All subtags are required.

FILE SERVICE IMPORT Results

No <result> data structure is returned in response to an XML HFS file import request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Export an HFS File to a PDS Library — FILE SERVICE EXPORT

This function exports an HFS file from the z/OS Unix Hierarchical File System (HFS) to a
native z/OS PDS (Partitioned Data Set) or PDSE (PDS Extended) library member on the
host. Access permissions for the resources requested must first be defined for you in your
mainframe security system.

The XML service/scope/message names for a message to export an HFS file as a PDS
library member are:

<service name=”file”>
<scope name=”service”>
<message name=”export”>

These tags appear in both requests and replies. Case is significant.

Exhibit 7-19. FILE SERVICE IMPORT <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<compression> Required 1 String (1) Compress the target file during import?

Y = Yes, compress the target HFS file.

N = No, do not compress the target file.

E = Expand the target HFS file if the
 source PDS member is compressed.

<mvsDsnLib> Required 1 String (1024),
variable

Fully qualified dataset name of source z/OS
PDS/PDSE library. (Omit member name.)

<pathName> Required 1 String (1024),
variable

Name of the imported target HFS file,
prefixed by path from installation root.

<pdsMember> Required 1 String (8),
variable

Name of PDS/PDSE library member to be
imported.

<replace> Required 1 String (1) If an HFS file with the desired name already
exists in the target location, should it be
replaced with the imported file?

Y = Yes, replace an existing HFS file of the
 same name with the imported file.

N = No, cancel import if another HFS file
 with the desired name already exists.
403

40

Chapter 7: Hierarchical File System Services
FILE SERVICE EXPORT Requests

Data structure details for the <request> tag appear in Exhibit 7-20. All subtags are required.

FILE SERVICE EXPORT Results

No <result> data structure is returned in response to an XML HFS file export request.
However, the reply message does return a standard <response> data structure to indicate
the success or failure of the request.

Successful requests have a return code of 00. Unsuccessful requests have a return code
of 04 or higher.

Exhibit 7-20. FILE SERVICE EXPORT <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<compression> Required 1 String (1) Compress the target file during import?

Y = Yes, compress the target HFS file.

N = No, do not compress the target file.

E = Expand the target HFS file if the
 source PDS member is compressed.

<mvsDsnLib> Required 1 String (1024),
variable

Fully qualified dataset name of target z/OS
PDS/PDSE library. (Omit member name.)

<pathName> Required 1 String (1024),
variable

Name of the source HFS file to export,
prefixed by path from installation root.

<pdsMember> Required 1 String (8),
variable

Name of target PDS/PDSE library member
to receive exported HFS file.
4

DATABASE MANAGEMENT
8

Serena XML supports database development and administration with both the IMS Option
and the DB2 Option of ChangeMan ZMF. User tasks are grouped by database environment:

• IMS Development and Administration — Tasks that support IMS data binding or
retrieve IMS database override settings at the package, application, or global level.
The typical command for general use is list.

• DB2 Development and Administration — Tasks that support DB2 data binding or
retrieve DB2 database configuration settings at the application or global level. The
typical command for general use is list.

The syntax that identifies these functions generally appears in the name attribute of the
<service> tag, as follows:

<service name=”IMSOVRD”>
<service name=”DB2ADMIN”>

In addition, some package-level IMS functions are performed by the low-level package
service, not the IMS Override service. The <service> tag for these functions takes the
name attribute of “package”. The syntax that identifies these as IMS functions appears in
the name attribute of the <scope> tag. For example:

<scope name=”IMS_CRGN”>
<scope name=”IMS_ACB”>

IMS DEVELOPMENT AND ADMINISTRATION

Serena XML supports the following IMS database tasks for general use:

• IMS Control Region Package Records -
PACKAGE IMS_CRGN LIST

• IMS PSB Application Overrides -
IMSOVRD APL_PSB LIST

• Package IMS ACB List - PACKAGE
IMS_ACB LIST

• IMS DBD Global Overrides - IMSOVRD
GBL_DBD LIST

• IMS DBD Package Overrides - IMSOVRD
PKG_DBD LIST

• IMS PSB Global Overrides - IMSOVRD
GBL_PSB LIST
405

40

Chapter 8: Database Management
Much of the information presented in this chapter can also be obtained via the QP (Query
Package) function, as shown in the following panels:

• IMS PSB Package Overrides - IMSOVRD
PKG_PSB LIST

• IMS Control Region Application
Defaults - IMSCRGN APL LIST

• IMS DBD Application Overrides - IMSOVRD
APL_DBD LIST

• IMS Control Region Global Defaults -
IMSCRGN GBL LIST

CMNLIST0 Package List Parameters
Command ===>

Package ACTP* (Full name or pattern; blank for list,
 or '*' for all packages)
Package status (Dev, Frz, Dfz, Apr, Rej, Dis, Ins,
 Bas, Bak, Opn, Clo, Tcc or Del)
Creator
Work request
Department
Package level (1-Simple, 2-Complex,
 3-Super, 4-Participating)
Package type (Planned or Unplanned)
Package time span (Permanent or Temporary)
Install date: from (yyyymmdd)
 to (yyyymmdd)
Creation date: from (yyyymmdd)
 to (yyyymmdd)

Enter "/" to select option
 Other parameters

CMNLIST3 Change Package List Row 1 to 8 of 8
Command ===> Scroll ===> CSR

 Package Sta Install Lvl Type Work request Dept Promote Aud Creator
QP ACTP000060 DEV 20150418 SMP PLN/PRM IDD 00 USER016
 ACTP000061 BAS 20150324 SMP PLN/PRM 100001000106 IDD 00 00 USER015
 ACTP000062 DEV 20150630 SMP PLN/PRM 100001000106 IDD 00 12 USER015
 ACTP000063 BAS 20150324 SMP PLN/PRM 100001000106 IDD 00 00 USER015
 ACTP000064 DEV 20150630 SMP PLN/PRM 100001000106 IDD 00 USER015
 ACTP000065 DEV 20150405 SMP PLN/PRM IDD 00 USER016
 ACTP000066 DEV 20150405 SMP PLN/PRM IDD 00 USER016
 ACTP000067 DEV 20150428 SMP PLN/PRM IDD 00 USER016
******************************* Bottom of data ********************************
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMS Control Region Package Records - PACKAGE IMS_CRGN LIST

This function lists IMS control region information associated with a change package. The
desired package name is required in the request message. Each returned record includes the
control region ID, associated library names, the ZMF site name where the appropriate IMS
subsystem resides, and package-level IMS override settings for building install jobs at
staging and for generating IMS ACBs, DBDs, PSBs, and MFS source files at promotion. If no
package-level overrides have been defined, application defaults are returned.

CMNQRY03 Package Information Categories Row 1 to 20 of 20
Command ===> Scroll ===> CSR

 Package: ACTP000060 Status: DEV Install date: 20150418

 General
 Non-Source
 Source
 Source and Load Relationship
 Renames and Scratches
 Approval List
 Site/Install Date Information
 Site Activities Date and Time
 Online Forms
 Participating Package(s)
 Status Start Date and Time
 Revert Reasons
 Backout Reasons
 Promotion History
 Promotion Libraries
 Development Staging Libraries
 Production Staging Libraries
 Production Libraries
 Baseline Libraries
S IMS Information
******************************* Bottom of data *******************************

CMNQRY32 IMS Package Options
Option ===>

 Package: ACTP000060 Status: DEV Install date: 20150418

1 IMS Regions Display IMS Control Regions
2 ACB Statements Display ACB Build Statements
3 DBD Overrides Display DBD Override Statements
4 PSB Overrides Display PSB Override Statements
407

40

Chapter 8: Database Management
The Serena XML service/scope/message tags and attributes for messages to list IMS control
region records for a package are:

<service name=”PACKAGE”>
<scope name=”IMS_CRGN”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE IMS_CRGN LIST — Requests

Serena XML supports three types of IMS control region lists for a package:

• Comprehensive List — Enter the name of the desired package in the <package> tag
and omit all other tags to list all IMS control regions defined for the named package.

• Selected Site — Enter the name of the desired package in the <package> tag. Also
identify the desired IMS site in either <imsSiteName> (using the ZMF remote site name
where the IMS subsystem executes) or in <imsLogicalSite> (using the ZMF name of
the logical change library associated with the corresponding baseline or promotion site).
The function returns all IMS control regions for the named package and desired site.

• Selected Control Region — Enter the name of the desired package in the <package>
tag and the 4-byte ID of the IMS control region of interest in the <imsControlRegion>
tag to retrieve control region specifications for the named package and control region.

Example XML — PACKAGE IMS_CRGN LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="IMS_CRGN">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <request> data element appear in Exhibit 8-1.

PACKAGE IMS_CRGN LIST — Replies

The reply message for a package-level IMS control region list returns zero to many
<result> data elements. Each <result> tag contains information about one IMS control
region associated with the package named in the request message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Exhibit 8-1. PACKAGE IMS_CRGN LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as
first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

<imsControlRegion> Optional 0 -1 String (4),
variable

IMS control region ID desired.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS control
regions for named package.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF baseline or promotion library
name corresponding to IMS site
name in <imsSiteName>.

NOTE: Value may be BASELINE
(all caps) or the name of any
promotion library defined in ZMF.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS change
library site names for package.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of remote site where
IMS subsystem is running.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS
subsystem sites for package.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as
last 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
409

41

Chapter 8: Database Management
Example XML — PACKAGE IMS_CRGN LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="IMS_CRGN">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <isDbdAlwaysGenerated>N</isDbdAlwaysGenerated>
 <isPsbAlwaysGenerated>N</isPsbAlwaysGenerated>
 <isMfsAlwaysGenerated>Y</isMfsAlwaysGenerated>
 <isAcbAlwaysCreatedForPcbs>Y</isAcbAlwaysCreatedForPcbs>
 <isImsGlobalActivationEnabled>Y</isImsGlobalActivationEnabled>
 <imsControlRegion>C113</imsControlRegion>
 <imsSiteName>SERT8</imsSiteName>
 <imsLogicalSite>BASELINE</imsLogicalSite>
 <imsDevCharSuffix>0</imsDevCharSuffix>
 <imsResLib>SYS2.IMS910.SDFSRESL</imsResLib>
 <imsMacLib>SYS2.IMS910.SDFSMAC</imsMacLib>
 <imsModStatLib>CMNTP.SERT8.IMSC113.MODSTAT</imsModStatLib>
 <imsGenMacroStageLib>USER24.SETQUERY.WORKLOAD</imsGenMacroStageLib>
 <imsGenMacroComponent>STAGEII</imsGenMacroComponent>
 <imsPsbLib>CMNTP.SERT8.IMSC113.PSBLIB</imsPsbLib>
 <imsDbdLib>CMNTP.SERT8.IMSC113.DBDLIB</imsDbdLib>
 <imsAcbLib>CMNTP.SERT8.IMSC113.ACBLIB</imsAcbLib>
 <imsFmtLib>CMNTP.SERT8.IMSC113.FORMAT</imsFmtLib>
 <imsRefLib>CMNTP.SERT8.IMSC113.REFERAL</imsRefLib>
 <imsBackupModelLib>BACKUPMODEL</imsBackupModelLib>
 </result>
 <response>
 <statusMessage>CMN8600I - The package IMS control region list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

If option 1 from above PANEL CMNQRY32 is selected, information similar to that returned via
a PACKAGE IMSCRGN LIST request is shown in panel CMNQRY33:
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> tag appear in Exhibit 8-2.

CMNQRY33 IMS System Definitions Row 1 to 21 of 21
Command ===> Scroll ===> CSR

 Package: ACTP000060 Status: DEV Install date: 20150418

 IMS Site Logical Active Devchar MFSgen PSBgen DBDgen ACB
 id site y/n suffix y/n y/n y/n y/n
 C113 SERT8 BASELINE Y 0 Y N N Y

Exhibit 8-2. PACKAGE IMS_CRGN LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
fixed

ZMF application name. Same as
first 4 bytes of package name.

<imsAcbLib> Optional 0 - 1 String (44),
variable

Name of dataset containing all
prebuilt ACBs used by IMS control
region in <imsControlRegion>.

<imsBackupModelLib> Optional 0 - 1 String (25),
variable

High-level node pattern for backups
of IMS system libraries during ZMF
promotion and install.

<imsControlRegion> Optional 0 - 1 String (4),
variable

SSID of IMS control region.

<imsDbdLib> Optional 0 - 1 String (44),
variable

Name of dataset containing all
DBDs defined to IMS.

<imsDevCharSuffix> Optional 0 - 1 String (1) 1-byte suffix appended to name of
IMS module that generates MFS
source code. Sets 3270 or SLU2
device characteristics.

<imsFmtLib> Optional 0 - 1 String (44),
variable

Data set with all DIF/DOF and MID/
MOD control blocks used by control
region in <imsControlRegion>.

<imsGenMacroComponent> Optional 0 - 1 String (8),
variable

Name of member containing source
code that generated the IMS control
region, databases, programs, &
terminals. Member of
<imsGenMacroStageLib>.

<imsGenMacroStageLib> Optional 0 - 1 String (44),
variable

Name of IMS system generation
dataset containing the system
generation member name.

<imsLogicalSite> Optional 0 - 1 String (8),
variable

IMS logical site.
411

41

Chapter 8: Database Management
<imsMacLib> Optional 0 - 1 String (44),
variable

Name of dataset with all IMS
macros for system, PSB, DBD,
ACB, & MFS generation.

<imsModStatLib> Optional 0 - 1 String (44),
variable

Name of sequential dataset
containing active library information
for MODBLKS, IMSACB, and
FORMAT.

<imsPsbLib> Optional 0 - 1 String (44),
variable

Name of dataset containing all
PSBs defined to IMS.

<imsRefLib> Optional 0 - 1 String (44),
variable

Name of referral library for MFS
generation. Contains intermediate
text block stored between steps in
generation process.

<imsResLib> Optional 0 - 1 String (44),
variable

Name of APF-authorized IMS
system library.

<imsSiteName> Optional 0 - 1 String (8),
variable

ZMF ID for IMS site.

<isAcbAlwaysCreatedForPcbs> Optional 0 - 1 String (1) Y = Yes, ACB always generated
 for PSBs.
N = No, generate ACB for PSBs
 only if needed.

NOTE: ACB is always generated
for DBDs.

<isDbdAlwaysGenerated> Optional 0 -1 String (1) Y = Yes, DBD always generated.
N = No, generate DBD only if
 override specified.

<isImsGlobalActivationEnabled> Optional 0 -1 String (1) Y = Yes, global IMS package
 activation enabled
N = No, global IMS package
 activation disabled

<isMfsAlwaysGenerated> Optional 0 - 1 String (1) Y = Yes, MFS always generated
N = No, generate MFS only if
 <imsDevCharSuffix>
 value differs from IMS setup.

<isPsbAlwaysGenerated> Optional 0 -1 String (1) Y = Yes, PSB always generated.
N = No, generate PSB only if
 override specified.

<package> Optional 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
fixed

ZMF package ID number. Same as
last 6 bytes of package name.

Exhibit 8-2. PACKAGE IMS_CRGN LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Package IMS ACB List - PACKAGE IMS_ACB LIST

This function lists the IMS access method control block (ACB) build statements needed by a
particular change package. The desired package name is required in the request message.
Each returned record includes generation specifications for one ACB build statement
associated with a specific IMS-enabled promotion site and a specific ACB source
component. If no ACB build statements are defined for the package, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list IMS ACB
build statements for a package are:

<service name=”PACKAGE”>
<scope name=”IMS_ACB”>
<message name=”LIST”>

These tags appear in both requests and replies.

PACKAGE IMS_ACB LIST — Request

Serena XML supports four types of IMS ACB record lists for a package:

• Comprehensive List — Enter the name of the desired package in the <package> tag
and omit all other tags to list all IMS ACB records defined for the named package.

• Selected Site — Enter the name of the desired package in the <package> tag. Also
identify the desired IMS site in either the <imsSiteName> tag (using the ZMF remote
site name where the IMS subsystem executes) or in the <imsLogicalSite> tag (using
the ZMF name of the logical change library associated with the corresponding baseline or
promotion site). The function returns all IMS ACB records for the named package and
desired site.

• Selected Control Region — Enter the name of the desired package in the <package>
tag and the 4-byte ID of the IMS control region of interest in the <imsSiteId> tag to
retrieve IMS ACB records for the named package and control region.

• Selected Source Component — Enter the name of the desired package in the
<package> tag. Also enter the name of the desired ACB source component for the
package from the relevant DBD library or PSB library in the <component> tag. If known,
enter the source component library type in the <componentType> tag. The function
returns a list of ACB records, including package-specific ACB target component names,
associated with the identified ACB source component.

Example XML — PACKAGE IMS_ACB LIST Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="IMS_ACB">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
413

41

Chapter 8: Database Management
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 8-3.

Exhibit 8-3. PACKAGE IMS_ACB LIST <request>

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component> Optional 0 -1 String (256),
variable

Name of ACB source component in
DBD library or PSB library used when
generating a target ACB component.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for ACB source component
named in <component> tag.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library name
corresponding to ZMF site name in
<imsSiteName> tag.

NOTE: Value may be BASELINE or the
nickname of any promotion library
defined in ZMF.

<imsSiteId> Optional 0 -1 String (4),
variable

ZMF ID of IMS control region desired.

NOTE: Every IMS control region is
associated with a site.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

NOTE: May be masked using asterisk
(*) wildcard character.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
PACKAGE IMS_ACB LIST — Reply

The reply message for this function returns zero to many <result> data elements. Each
<result> contains generation specifications for the IMS ACB build statements needed by a
package. The standard <response> data element follows to indicate the success or failure
of the list request. Successful requests have a return code of 00. Unsuccessful requests have
a return code of 04 or higher. Because it follows the final <result> data structure in the
reply, the <response> tag also serves as and end-of-list marker.

Example XML — PACKAGE IMS_ACB LIST Reply

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="IMS_ACB">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <isAcbGenerated>N</isAcbGenerated>
 <acbGenStatementType>B</acbGenStatementType>
 <acbStatementType>P</acbStatementType>
 <imsSiteId>C113</imsSiteId>
 <imsSiteName>SERT8</imsSiteName>
 <imsLogicalSite>BASELINE</imsLogicalSite>
 <targetComponent>IM2Q101</targetComponent>
 <targetComponentType>PSL</targetComponentType>
 <component>IM2Q101</component>
 <componentType>PSB</componentType>
 </result>
 <response>
 <statusMessage>CMN8600I - The package ACB Statement list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </service>

If option 2 from above PANEL CMNQRY32 is selected, information similar to that returned via
a PACKAGE IMSACB LIST request is shown in panel CMNQRY34 below:

CMNQRY34 ACB Build Statements
Command ===> Scroll ===> CSR

 Package: ACTP000060 Status: DEV Install date: 20150418

 IMS Site Logical ACB Control PSB/DBD PSB/DBD Library
 id site type statement source target type
 C113 SERT8 BASELINE PSB BUILD IM2Q101 IM2Q101 PSB
415

41

Chapter 8: Database Management
Data structure details for the <result> tag appear in Exhibit 8-4.

Exhibit 8-4. PACKAGE IMS_ACB LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<acbGenStatementType> Optional 0 - 1 String (1) Code for type of ACB generation
statement. Values:

B = ACB Build Statement
D = ACB Delete Statement

<acbStatementType> Optional 0 - 1 String (1) Code for type of ACB statement.
Values:

P = ACB PSB Statement
D = ACB DBD Statement

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component> Optional 0 -1 String (256),
variable

Name of IMS source component for
package ACB generation. Component
located in IMS PSB library or DBD
library defined in control region
identified in <imsSiteId>.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library name
corresponding to site name in
<imsSiteName> tag.

NOTE: Value may be BASELINE or the
nickname of any promotion library
defined in ZMF.

<imsSiteId> Optional 0 -1 String (4),
variable

ZMF ID of IMS control region
associated with <imsSiteName>.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

<isAcbGenerated> Optional 0 - 1 String (1) Y = Yes, ACB always generated
 for both PSBs & DBDs
N = No, generate ACB for PSBs
 only if needed. (ACB for
 DBDs always generated.)

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMS DBD Package Overrides - IMSOVRD PKG_DBD LIST

This function lists package-level overrides to the IMS database description (DBD) records
associated with a specific component in the IMS DBD library. Values returned include the
DBD source component, IMS control statement type, the original DBD control statement
contents, and the override content for that DBD statement. If no DBD overrides are defined
for a package, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list IMS DBD
overrides for a package are:

<service name=”IMSOVRD”>
<scope name=”PKG_DBD”>
<message name=”LIST”>

These tags appear in both requests and replies.

IMSOVRD PKG_DBD LIST — Requests

Serena XML supports five types of DBD override lists for a package:

• Comprehensive List — Enter the name of the desired package in the <package> tag
and omit all other tags to list all IMS DBD overrides defined for the named package.

• Selected Site — Enter the name of the desired package in the <package> tag. Also
identify the desired IMS site in either the <imsSiteName> tag (using the ZMF remote
site name where the IMS subsystem executes) or in the <imsLogicalSite> tag (using
the ZMF nickname of the change library associated with the corresponding baseline or
promotion site). The function returns all IMS DBD override statements for the named
package and desired site.

• Selected Control Region — Enter the name of the desired package in the <package>
tag and the 4-byte ID of the IMS control region of interest in the <imsSiteId> tag to
retrieve IMS DBD overrides for the named package and control region.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<targetComponent> Optional 0 -1 String (256),
variable

Name of ACB target component
generated at package promotion.

NOTE: Typically 8 bytes max.

<targetComponentType> Optional 0 -1 String (3),
variable

Library type for ACB target component
named in <targetComponent> tag.

Exhibit 8-4. PACKAGE IMS_ACB LIST <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
417

41

Chapter 8: Database Management
• Selected Source Component — Enter the name of the desired package in the
<package> tag. Also enter the name of the desired DBD library source component to
override in the <component> tag. If known, enter the source component library type in
the <componentType> tag. The function returns a list of DBD control statement
overrides for the named package and source component.

• Selected Control Statement Type — Enter the name of the desired package in the
<package> tag and the IMS keyword for the desired control statement type in the
<controlStatement> tag. The function returns all DBD overrides of the desired type.

Example XML — IMSOVRD PKG_DBD LIST Request

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="PKG_DBD">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 8-5. Note that the
identical <request> syntax is used with both DBD and PSB override lists.

Exhibit 8-5. IMSOVRD PKG_DBD LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component> Optional 0 -1 String (256),
variable

Name of source component in IMS
DBD (or PSB) library.

NOTE: Use asterisk (*) wildcard or omit
tag include all IMS source components
referenced by a package.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMSOVRD PKG_DBD LIST — Replies

The reply message for a package-level IMS DBD override list returns zero to many
<result> data elements. Each <result> contains package-level override information for
one IMS database description (DBD) control statement associated with one IMS source
component in an associated DBD library. If no DBD overrides are defined for the package, no
<result> tags are returned in the reply.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS component library
types.

<controlStatement> Optional 0 -1 String (8),
variable

IMS keyword for type of IMS control
statement being overridden.

NOTE: Use asterisk (*) wildcard or omit
tag to include all statement types.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library nickname for site in
<imsSiteName> tag.

NOTE: Value may be BASELINE or the
name of any promotion library defined
in ZMF.

NOTE: Use asterisk (*) wildcard or omit
tag to include all change libraries for
named package.

<imsSiteId> Optional 0 -1 String (4),
variable

IMS control region ID associated with
site in <imsSiteName>.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS control regions for
package.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

NOTE: Use asterisk (*) wildcard or omit
tag to list all ZMF sites for package.

<package> Required 1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

Exhibit 8-5. IMSOVRD PKG_DBD LIST <request> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
419

42

Chapter 8: Database Management
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — IMSOVRD PKG_DBD LIST Reply

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="PKG_DBD">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <imsSiteId>C113</imsSiteId>
 <imsSiteName>SERT8</imsSiteName>
 <imsLogicalSite>BASELINE</imsLogicalSite>
 <component>CUSEDBD</component>
 <componentType>DBD</componentType>
 <controlStatement>DATASET</controlStatement>
 <overrideStatement>DATASET DD1=CUSEDD2,DEVICE=3390</overrideStatement>
 <originalStatement>DATASET DD1=CUSEDD1,DEVICE=3390</originalStatement>
 </result>
 <response>
 <statusMessage>CMN8600I - The package DBD overrides list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Some of the same information is presented in panel CMNQRY35:

CMNQRY35 DBD Override Control Statements
Command ===> Scroll ===> CSR

 Package: ACTP000060 Status: DEV Install date: 20150418

 IMS Site Logical Control DBD Library
 id site statement name type
 C113 SERT8 BASELINE DATASET CUSEDBD DBD
 ORG DATASET DD1=CUSEDD1,DEVICE=3390
 NEW DATASET DD1=CUSEDD2,DEVICE=3390
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> tag appear in Exhibit 8-6. Note that the identical
<result> syntax is used with both DBD and PSB override lists.

IMS PSB Package Overrides - IMSOVRD PKG_PSB LIST

This function lists package-level overrides to the IMS program specification block (PSB)
control statements associated with a specific source component in the IMS PDB library.
Values returned include the PSB source component, IMS control statement type, the original
PSB control statement contents, and the override content for that PSB statement. If no PSB
overrides are defined for a package, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list IMS PSB
overrides for a package are:

<service name=”IMSOVRD”>
<scope name=”PKG_PSB”>
<message name=”LIST”>

Exhibit 8-6. IMSOVRD PKG_DBD LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

<component> Optional 0 -1 String (256),
variable

Name of IMS source component to
override in IMS DBD (or PSB) library.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

<controlStatement> Optional 0 -1 String (8),
variable

IMS keyword for type of IMS control
statement being overridden.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library nickname for site in
<imsSiteName> tag.

NOTE: Value may be BASELINE or the
name of any promotion library defined
in ZMF.

<imsSiteId> Optional 0 -1 String (4),
variable

IMS control region associated with site
in <imsSiteName>.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

<originalStatement> Optional 0 -1 String (64),
variable

Contents of the original DBD (or PSB)
control statement.

<overrideStatement> Optional 0 -1 String (64),
variable

Contents of the DBD (or PSB) override
statement for package.

<package> Optional 0 -1 String (10),
variable

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.
421

42

Chapter 8: Database Management
These tags appear in both requests and replies.

IMSOVRD PKG_PSB LIST — Requests

Serena XML supports five types of PSB override lists for a package:

• Comprehensive List — Enter the name of the desired package in the <package> tag
and omit all other tags to list all IMS PSB overrides defined for the named package.

• Selected Site — Enter the name of the desired package in the <package> tag. Also
identify the desired IMS site in either the <imsSiteName> tag (using the ZMF remote
site name where the IMS subsystem executes) or in the <imsLogicalSite> tag (using
the ZMF nickname of the change library associated with the corresponding baseline or
promotion site). The function returns all IMS PSB override statements for the named
package and desired site.

• Selected Control Region — Enter the name of the desired package in the <package>
tag and the 4-byte ID of the IMS control region of interest in the <imsSiteId> tag to
retrieve IMS PSB overrides for the named package and control region.

• Selected Source Component — Enter the name of the desired package in the
<package> tag. Also enter the name of the desired PSB library source component to
override in the <component> tag. If known, enter the source component library type in
the <componentType> tag. The function returns a list of PSB control statement
overrides for the named package and source component.

• Selected Control Statement Type — Enter the name of the desired package in the
<package> tag and the IMS keyword for the desired control statement type in the
<controlStatement> tag. The function returns all PSB overrides of the desired type.

The Serena XML syntax to request a list of package-level IMS PSB overrides is identical to
that for DBD overrides. Data structure details for the <request> data element appear in
Exhibit 8-5 of the previous section.

Example XML — IMSOVRD PKG_PSB LIST Request

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="PKG_PSB">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>IMSQ000012</package>
 </request>
 </message>
 </scope>
</service>
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMSOVRD PKG_PSB LIST — Replies

The reply message for a package-level IMS PSB override list returns zero to many
<result> data elements. Each <result> contains package-level override information for
one IMS program specification block (PSB) control statement associated with one IMS
source component in an associated PSB library. If no PSB overrides are defined for the
package, no <result> tags are returned in the reply.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

The Serena XML reply syntax for a package-level IMS PSB override list is identical to that for
a package-level DBD override list. Details for the <result> tag appear in Exhibit 8-6 of the
previous section.

Example XML — IMSOVRD PKG_PSB LIST Reply

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="PKG_PSB">
 <message name="LIST">
 <result>
 <package>IMSQ000012</package>
 <applName>IMSQ</applName>
 <packageId>000012</packageId>
 <imsSiteId>C113</imsSiteId>
 <imsSiteName>SERT8</imsSiteName>
 <imsLogicalSite>BASELINE</imsLogicalSite>
 <component>IM2Q101</component>
 <componentType>PSB</componentType>
 <controlStatement>PSBGEN</controlStatement>
 <overrideStatement>PSBGEN PSBNAME=IM2Q101,LANG=COBOL,CMPAT=YES</
overrideStatement>
 <originalStatement>PSBGEN PSBNAME=IM2Q101,LANG=ASSEM,CMPAT=YES</
originalStatement>
 </result>
 <response>
 <statusMessage>CMN8600I - The package PSB overrides list is complete.</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
423

42

Chapter 8: Database Management
IMS DBD Application Overrides - IMSOVRD APL_DBD LIST

This function lists application-level overrides to the IMS database description (DBD) records
in a specific source component in the IMS DBD library. Values returned include the DBD
source component, IMS control statement type, the original DBD control statement contents,
and the override content for that DBD statement. If no DBD overrides are defined for the
application, no results are returned.

To retrieve APPLication level overrides and control region information via the ChangeMan
ZMF started task, you can go to the application administration panels. In order to access
these menus, you will need UPDATE authority to the APPLication’s security entity, as well as
local admin authority.

IMSOVRD APL_DBD LIST

The Serena XML service/scope/message tags and attributes for messages to list IMS DBD
overrides for an application are:

<service name=”IMSOVRD”>
<scope name=”APL_DBD”>
<message name=”LIST”>

These tags appear in both requests and replies.

IMSOVRD APL_DBD LIST — Requests

Serena XML supports five types of DBD override lists for an application:

• Comprehensive List — Enter the name of the desired application in the <applName>
tag and omit all other tags to list all IMS DBD overrides defined for that application.

• Selected Site — Enter the name of the desired application in the <applName> tag. Also
identify the desired IMS site in either the <imsSiteName> tag (using the ZMF remote
site name where the IMS subsystem executes) or in the <imsLogicalSite> tag (using
the ZMF nickname of the change library associated with the corresponding baseline or
promotion site). The function returns all IMS DBD override statements for the named
application and site.

• Selected Control Region — Enter the name of the desired application in the
<applName> tag and the 4-byte ID of the IMS control region of interest in the
<imsSiteId> tag. The function returns IMS DBD overrides for the named application
and control region.

• Selected Source Component — Enter the name of the desired application in the
<applName> tag. Also enter the name of the desired DBD library source component to
override in the <component> tag. If known, enter the source component library type in
the <componentType> tag. The function returns a list of DBD control statement
overrides for the named application and source component.

• Selected Control Statement Type — Enter the name of the desired application in the
<applName> tag and the IMS keyword for the desired control statement type in the
<controlStatement> tag. The function returns all DBD overrides of the desired type.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Example XML — IMSOVRD APL_DBD LIST Request

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="APL_DBD">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>IMSQ</applName>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 8-7. Note that the
identical <request> syntax is used with both DBD and PSB record lists.

Exhibit 8-7. IMSOVRD APL_DBD LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<component> Optional 0 -1 String (256),
variable

Name of source component to override
in IMS DBD (or PSB) library.

NOTE: Use asterisk (*) wildcard or omit
tag include all IMS source components
referenced by an application.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS component library
types.

<controlStatement> Optional 0 -1 String (8),
variable

IMS keyword for type of IMS control
statement being overridden.

NOTE: Use asterisk (*) wildcard or omit
tag to include all statement types.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library nickname for site in
<imsSiteName> tag.

NOTE: Value may be BASELINE or
the name of any promotion library
defined in ZMF.

NOTE: Use asterisk (*) wildcard or omit
tag to include all change libraries for
named application.
425

42

Chapter 8: Database Management
IMSOVRD APL_DBD LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains application-level override information for one IMS database description
(DBD) control statement in one IMS source component located in the IMS DBD library.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — IMSOVRD APL_DBD LIST Reply

<?xml version="1.0"?>
<service name="IMSOVRD">
 <scope name="APL_DBD">
 <message name="LIST">
 <result>
 <applName>IMSQ</applName>
 <imsSiteId>C113</imsSiteId>
 <imsSiteName>SERT8</imsSiteName>
 <imsLogicalSite>BASELINE</imsLogicalSite>
 <component>CUSEDBD</component>
 <componentType>DBD</componentType>
 <controlStatement>DATASET</controlStatement>
 <overrideStatement>DATASET DD1=CUSEDD2,DEVICE=3390</overrideStatement>
 <originalStatement>DATASET DD1=CUSEDD1,DEVICE=3390</originalStatement>
 </result>
 <response>
 <statusMessage>CMN8600I - The IMS DBD Override list is complete.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

<imsSiteId> Optional 0 -1 String (4),
variable

IMS control region ID associated with
site in <imsSiteName>.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS control regions for
application.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

NOTE: Use asterisk (*) wildcard or omit
tag to list all ZMF sites for application.

Exhibit 8-7. IMSOVRD APL_DBD LIST <request> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> tag appear in Exhibit 8-8. Note that the identical
<result> syntax is used with both DBD and PSB override lists.

IMS PSB Application Overrides - IMSOVRD APL_PSB LIST

This function lists application-level overrides to the IMS program specification block (PSB)
control statements associated with a specific source component in the IMS PSB library.
Values returned include the PSB source component, IMS control statement type, the original
PSB control statement contents, and the override content for that PSB statement. If no PSB
overrides are defined for the application, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list IMS PSB
overrides for an application are:

<service name=”IMSOVRD”>
<scope name=”APL_PSB”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 8-8. IMSOVRD APL_DBD LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name.

<component> Optional 0 -1 String (256),
variable

Name of IMS source component to
override in IMS DBD (or PSB) library.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

<controlStatement> Optional 0 -1 String (8),
variable

IMS keyword for type of IMS control
statement being overridden.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF change library nickname for site in
<imsSiteName> tag.

NOTE: Value may be BASELINE or the
name of any promotion library defined
in ZMF.

<imsSiteId> Optional 0 -1 String (4),
variable

IMS control region associated with site
in <imsSiteName>.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

<originalStatement> Optional 0 -1 String (64),
variable

Contents of the original DBD (or PSB)
control statement.

<overrideStatement> Optional 0 -1 String (64),
variable

Contents of the DBD (or PSB) override
statement for package.
427

42

Chapter 8: Database Management
IMSOVRD APL_PSB LIST — Requests

Serena XML supports five types of PSB override lists for an application:

• Comprehensive List — Enter the name of the desired application in the <applName>
tag and omit all other tags to list all IMS PSB overrides defined for the application.

• Selected Site — Enter the name of the desired application in the <applName> tag. Also
identify the desired IMS site in either the <imsSiteName> tag (using the ZMF remote
site name where the IMS subsystem executes) or in the <imsLogicalSite> tag (using
the ZMF nickname of the change library associated with the corresponding baseline or
promotion site). The function returns all IMS PSB override statements for the named
application and site.

• Selected Control Region — Enter the name of the desired application in the
<applName> tag and the 4-byte ID of the IMS control region of interest in the
<imsSiteId> tag. The function returns IMS PSB control statement overrides for the
named application and control region.

• Selected Source Component — Enter the name of the desired application in the
<applName> tag. Also enter the name of the desired PSB library source component to
override in the <component> tag. If known, enter the source component library type in
the <componentType> tag. The function returns a list of PSB control statement
overrides for the named application and source component.

• Selected Control Statement Type — Enter the name of the desired application in the
<applName> tag and the IMS keyword for the desired control statement type in the
<controlStatement> tag. The function returns all PSB overrides of the desired type.

The Serena XML syntax for a request to list application-level IMS PSB overrides is identical
to that for DBD overrides. Data structure details for the <request> data element appear in
Exhibit 8-7 of the previous section.

IMSOVRD APL_PSB LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains application-level overrides for one IMS program specification block
(PSB) control statement in a specific PSB library source component. If no PSB overrides are
defined for an application, no <result> tags are returned in the reply.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

The Serena XML reply syntax for an application-level IMS PSB override list is identical to that
for application-level DBD overrides. Details for the <result> tag appear in Exhibit 8-8 of the
previous section.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMS DBD Global Overrides - IMSOVRD GBL_DBD LIST

To retrieve GLOBAL overrides and control region information via the ChangeMan ZMF
started task, you can go to the GLOBAL administration panels. In order to access these
menus, you will need GLOBAL admin authority.

IMSOVRD GBL_DBD LIST

This function lists ChangeMan ZMF global overrides to the IMS database description (DBD)
records in a specific source component in the IMS DBD library. Values returned include the
DBD source component, IMS control statement type, the original DBD control statement
contents, and the override content for that DBD statement. If no DBD overrides are defined
for at the global level, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list global IMS
DBD overrides are:

<service name=”IMSOVRD”>
<scope name=”GBL_DBD”>
<message name=”LIST”>

These tags appear in both requests and replies.

IMSOVRD GBL_DBD LIST — Requests

Serena XML supports five types of DBD override lists at the global level:

• Comprehensive List — Submit an empty <request> data element (that is, one that
contains no subtags) in the XML request message. The <request> tag itself is required
in the message to distinguish a request from a reply. All globally defined DBD overrides
are returned in the reply message.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

• Selected Site — Identify the desired IMS site in either the <imsSiteName> tag (using
the ZMF remote site name where the IMS subsystem executes) or in the
<imsLogicalSite> tag (using the ZMF nickname of the change library associated with
the corresponding baseline or promotion site). The function returns all globally defined
IMS DBD override statements for the named site.
429

43

Chapter 8: Database Management
• Selected Control Region — Enter the 4-byte ID of the IMS control region of interest in
the <imsSiteId> tag. The function returns all global IMS DBD overrides for the named
control region.

• Selected Source Component — Enter the name of the desired DBD library source
component to override in the <component> tag. If known, enter the source component
library type in the <componentType> tag. The function returns a list of global DBD
control statement overrides for the named source component.

• Selected Control Statement Type — Enter the IMS keyword for the desired control
statement type in the <controlStatement> tag. The function returns all global DBD
overrides of the desired type.

Data structure details for the <request> data element appear in Exhibit 8-9. Note that the
identical <request> syntax is used with both DBD and PSB override lists.

Global IMS DBD Override List — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains global override information for one IMS database description (DBD)
control statement in one IMS source component located in the IMS DBD library.

Exhibit 8-9. IMSOVRD GBL_DBD, GBL_PSB LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<component> Optional 0 -1 String (256),
variable

Name of source component to override
in IMS DBD (or PSB) library.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS source
components with global ZMF overrides.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS component library
types.

<controlStatement> Optional 0 -1 String (8),
variable

IMS keyword for type of IMS control
statement being overridden.

NOTE: Use asterisk (*) wildcard or omit
tag to include all statement types.

<imsSiteId> Optional 0 -1 String (4),
variable

IMS control region ID associated with
site in <imsSiteName>.

NOTE: Use asterisk (*) wildcard or omit
tag to include all IMS control regions.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem executes.

NOTE: Use asterisk (*) wildcard or omit
tag to list all ZMF sites.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 8-10. Note that the identical
<result> syntax is used with both DBD and PSB override lists.

IMS PSB Global Overrides - IMSOVRD GBL_PSB LIST

This function lists ChangeMan ZMF global overrides to the IMS program specification block
(PSB) control statements associated with a specific source component in the IMS PSB
library. Values returned include the PSB source component, IMS control statement type, the
original PSB control statement contents, and the override content for that PSB statement. If
no global PSB overrides are defined, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list global IMS
PSB overrides are:

<service name=”IMSOVRD”>
<scope name=”GBL_PSB”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 8-10. Global IMS DBD and PSB Override List <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<component> Optional 0 -1 String (256),
variable

Name of IMS component in baseline
library.

NOTE: Typically 8 bytes max.

<componentType> Optional 0 -1 String (3),
variable

Library type for component named in
<component> tag.

<controlStatement> Optional 0 -1 String (8),
variable

The type of DBD (or PSB) control
statement that has the IMS override.

<imsSiteId> Optional 0 -1 String (4),
variable

Name of IMS control region as specified
by system programmer when IMS
system was generated.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of site where IMS
subsystem is running. May be D, P, or
DP site.

<originalStatement> Optional 0 -1 String (64),
variable

Contents of the original DBD (or PSB)
control statement.

<overrideStatement> Optional 0 -1 String (64),
variable

Contents of the DBD (or PSB) override
statement.
431

43

Chapter 8: Database Management
IMSOVRD GBL_PSB LIST — Requests

Serena XML supports five types of PSB override lists at the global level:

• Comprehensive List — Submit an empty <request> data element (that is, one that
contains no subtags) in the XML request message. The <request> tag itself is required
in the message to distinguish a request from a reply. All globally defined PSB overrides
are returned in the reply message.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

• Selected Site — Identify the desired IMS site in either the <imsSiteName> tag (using
the ZMF remote site name where the IMS subsystem executes) or in the
<imsLogicalSite> tag (using the ZMF nickname of the change library associated with
the corresponding baseline or promotion site). The function returns all globally defined
IMS PSB override statements for the named site.

• Selected Control Region — Enter the 4-byte ID of the IMS control region of interest in
the <imsSiteId> tag. The function returns all global IMS PSB overrides for the named
control region.

• Selected Source Component — Enter the name of the desired PSB library source
component to override in the <component> tag. If known, enter the source component
library type in the <componentType> tag. The function returns a list of global PSB
control statement overrides for the named source component.

• Selected Control Statement Type — Enter the IMS keyword for the desired control
statement type in the <controlStatement> tag. The function returns all global PSB
overrides of the desired type.

The Serena XML syntax for a request to list global IMS PSB records is identical to that for
DBD overrides. Data structure details for the <request> data element appear in Exhibit 8-9
of the previous section.

IMSOVRD GBL_PSB LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains global override information for one IMS program specification block
(PSB) control statement in one IMS source component located in the IMS PSB library.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

The Serena XML syntax for a message to list global IMS PSB records is identical to that for
DBD overrides. Details for the <result> tag appear in Exhibit 8-10 of the previous section.

IMS Control Region Application Defaults - IMSCRGN APL LIST

This function lists IMS control region information associated with an application. The desired
application name is required in the request message. Each returned record includes the
control region ID, associated library names, the ZMF site name where the appropriate IMS
subsystem resides, and application-level IMS override settings for building install jobs at
staging and for generating IMS ACBs, DBDs, PSBs, and MFS source files at promotion.

The Serena XML service/scope/message tags and attributes for messages to list IMS control
region records for an application are:

<service name=”IMSCRGN”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

IMSCRGN APL LIST — Requests

Serena XML supports three types of IMS control region lists for an application:

• Comprehensive List — Enter the name of the desired application in the <applName>
tag and omit all other tags to list all IMS control regions defined for the named application.

• Selected Site — Enter the name of the desired application in the <applName> tag. Also
identify the desired IMS site in either <imsSiteName> (using the ZMF remote site name
where the IMS subsystem executes) or in <imsLogicalSite> (using the ZMF name of
the logical change library associated with the corresponding baseline or promotion site).
The function returns all IMS control regions for the named application and desired site.

• Selected Control Region — Enter the name of the desired application in the
<applName> tag and the 4-byte ID of the IMS control region of interest in the
<imsControlRegion> tag to retrieve control region specifications for the named
application and control region.

Example XML — IMSCRGN APL LIST Request

<?xml version="1.0"?>
<service name="IMSCRGN">
 <scope name="APL">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
433

43

Chapter 8: Database Management
 <applName>IMSQ</applName>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 8-11.

IMSCRGN APL LIST — Replies

The reply message for an application-level IMS control region list returns zero to many
<result> data elements. The <result> subtags are similar to those of the PACKAGE
IMS_CRGN LIST reply; the only difference is that the <applName>, <package>, and
<packageId> tags are omitted in the IMSCRGN APL LIST reply. Refer to Exhibit 8-2 for
data structure details.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Exhibit 8-11. IMSCRGN APL LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 0 -1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<imsControlRegion> Optional 0 -1 String (4),
variable

IMS control region ID.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS control
regions for named application.

<imsLogicalSite> Optional 0 -1 String (8),
variable

ZMF baseline or promotion library
name corresponding to IMS site
name in <imsSiteName>.

NOTE: Value may be BASELINE
(all caps) or the name of any
promotion library defined in ZMF.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS change
library site names for application.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of remote site where
IMS subsystem is running.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS
subsystem sites for application.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
IMS Control Region Global Defaults - IMSCRGN GBL LIST

This function lists global IMS control region information. Each returned record includes the
control region ID, associated library names, the ZMF site name where the appropriate IMS
subsystem resides, and global-level IMS override settings for building install jobs at staging
and for generating IMS ACBs, DBDs, PSBs, and MFS source files at promotion.

The Serena XML service/scope/message tags and attributes for messages to list global IMS
control region records are:

<service name=”IMSCRGN”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

IMSCRGN GBL LIST — Requests

Serena XML supports three types of IMS control region lists at the global level:

• Comprehensive List — Submit an empty <request> data element (that is, one that
contains no subtags) in the XML request message. The <request> tag itself is required
in the message to distinguish a request from a reply. All globally-defined IMS control
regions are returned in the reply message.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

• Selected Site — Identify the desired IMS site in the <imsSiteName> tag (using the ZMF
remote site name where the IMS subsystem executes). The function returns all globally-
defined IMS control regions for the named site.

• Selected Control Region — Enter the 4-byte ID of the IMS control region of interest in
the <imsControlRegion> tag. The function returns all global control region
specifications for the named control region.
435

43

Chapter 8: Database Management
Data structure details for the <request> data element appear in Exhibit 8-12.

IMSCRGN GBL LIST — Replies

The reply message for a global-level IMS control region list returns zero to many <result>
data elements. The <result> subtags are similar to those of the PACKAGE IMS_CRGN
LIST reply; the only difference is that the <applName>, <imsLogicalSite>,
<package>, and <packageId> tags are omitted in the IMSCRGN GBL LIST reply. Refer to
Exhibit 8-2 for data structure details.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

DB2 DEVELOPMENT AND ADMINISTRATION

Serena XML supports the following DB2 database tasks for general use:

• DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST

• DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST

• DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST

• DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST

DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST

This function lists two kinds of DB2 “active” libraries for an application:

• Bind Active Libraries — Promotion and production libraries defined in the DB2 Option to
execute DB2 binds at promote, demote, install, and backout.

• Stored Procedure Active Libraries — Promotion and production libraries defined in the
DB2 Option to invoke special processing after changes to stored procedures, triggers,
and user-defined functions.

Exhibit 8-12. IMSCRGN GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<imsControlRegion> Optional 0 -1 String (4),
variable

IMS control region ID.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS control
regions.

<imsSiteName> Optional 0 -1 String (8),
variable

ZMF name of remote site where
IMS subsystem is running.

NOTE: Use asterisk (*) wildcard or
omit tag to request all IMS
subsystem sites.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Values returned for these libraries include the physical dataset name, the DB2 logical
subsystem ID, and the DB2 entity type. If no DB2 active libraries are defined for an
application, no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list active DB2
libraries for an application are:

<service name=”DB2ADMIN”>
<scope name=”APL_ACTV”>
<message name=”LIST”>

These tags appear in both requests and replies.

To display the same information using ChangeMan ZMF, if you have the required access, you
can go to the Selectable Options panel (CMNGBSOP).

DB2ADMIN APL_ACTV LIST — Requests

Serena XML supports two kinds of DB2 active library list requests for an application:

• Comprehensive List — Enter the name of the desired application in the <applName>
tag to list all DB2 active libraries for that application.

• Single Logical Subsystem — Name the desired application in the <applName> tag and
the DB2 logical subsystem ID of interest in the <db2LogicalName> tag. Information is
returned for the named DB2 subsystem only.

Example XML — DB2ADMIN APL_ACTV LIST Request

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="APL_ACTV">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>CISQ</applName>
 </request>
 </message>
 </scope>
</service>
437

43

Chapter 8: Database Management
Data structure details for the <request> tag appear in Exhibit 8-13.

DB2ADMIN APL_ACTV LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> describes one active DB2 library associated with the application named in the
request. If no active DB2 libraries are defined for the application using the DB2 Option of
ChangeMan ZMF, no <result> tags are returned in the reply message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — DB2ADMIN APL_ACTV LIST Reply

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="APL_ACTV">
 <message name="LIST">
 <result>
 <applName>CISQ</applName>
 <db2LogicalName>PROM810</db2LogicalName>
 <db2Lib>CMNTP.SERT8.PROM.CISQ.C001AUT.DBR</db2Lib>
 <db2LibType>B</db2LibType>
 </result>
 <result>
 <applName>CISQ</applName>
 <db2LogicalName>PROM810</db2LogicalName>
 <db2Lib>CMNTP.SERT8.PROM.CISQ.C001AUT.DBB</db2Lib>
 <db2LibType>B</db2LibType>
 </result>
 <result>
 <applName>CISQ</applName>
 <db2LogicalName>PROM810</db2LogicalName>
 <db2Lib>CMNTP.SERT8.PROM.CISQ.C001AQA.DBR</db2Lib>
 <db2LibType>B</db2LibType>
 </result>
 <result>
 <applName>CISQ</applName>
 <db2LogicalName>PROM810</db2LogicalName>

Exhibit 8-13. DB2ADMIN APL_ACTV LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<db2LogicalName> Optional 0 - 1 String (8),
variable

DB2 logical subsystem ID of interest.

NOTE: Use asterisk (*) wildcard or omit
tag to request all DB2 subsystems for
named application.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <db2Lib>CMNTP.SERT8.PROM.CISQ.C001AQA.DBB</db2Lib>
 <db2LibType>B</db2LibType>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 8-14.

DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST

This function lists specifications for the DB2 logical subsystems defined for an application. An
application name is required in the request. Returned values include DB2 logical and physical
subsystem IDs and description, the site where the DB2 subsystem runs, and application-level
configuration settings. DB2 subsystems must be properly configured in both DB2 and
ChangeMan ZMF prior to running this service, or unexpected results may occur.

The Serena XML service/scope/message tags and attributes for messages to list DB2 logical
subsystems for an application are:

<service name=”DB2ADMIN”>
<scope name=”APL_LOGL”>
<message name=”LIST”>

These tags appear in both requests and replies.

DB2ADMIN APL_LOGL LIST — Requests

Serena XML supports the following options for listing DB2 logical subsystem at the
application level:

Exhibit 8-14. DB2ADMIN APL_ACTV LIST <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF name of application.

<db2Lib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of DB2
active library.

<db2LibType> Optional 0 -1 String (1) Code for DB2 entity type. Values:

B = DBB bind control
S = Stored procedure load/REXX

<db2LogicalName> Optional 0 -1 String (8),
variable

DB2 logical subsystem ID (or partition)
defined for the active library.
439

44

Chapter 8: Database Management
• Comprehensive List — Name the desired application in the <applName> tag to list all
logical subsystems defined for the application.

• Selected Site List — Name the desired application in the <applName> tag and the DB2
site of interest in the <db2SiteName> tag to list all DB2 logical subsystems for the
named application at the selected site.

• Selected Physical Subsystem List — Name the desired application in the <applName>
tag. In the <db2SubSystemId> tag, identify the DB2 physical subsystem where the
parameters and templates of the logical subsystem(s) will be used. All logical subsystems
defined for that physical subsystem in the named application are returned in the reply.

• Single Logical Subsystem — Name the desired application in the <applName> tag.
Identify the DB2 logical subsystem of interest in the <db2LogicalName> tag.
Application-level specifications for the requested subsystem are returned in the reply.

Example XML — DB2ADMIN APL_LOGL LIST Request

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="APL_LOGL">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>CISQ</applName>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> tag appear in Exhibit 8-15.

Exhibit 8-15. DB2ADMIN APL_LOGL LIST <request>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<db2LogicalName> Optional 0 - 1 String (8),
variable

DB2 logical subsystem ID (or partition)
of interest.

NOTE: Use asterisk (*) wildcard or
omit tag to request all DB2 logical
subsystems for application.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
DB2ADMIN APL_LOGL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains application-level specifications for one DB2 logical subsystem. If no DB2
logical subsystems are defined for the application, no <result> tags are returned in the
reply message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — DB2ADMIN APL_LOGL LIST Reply

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="APL_LOGL">
 <message name="LIST">
 <result>
 <applName>CISQ</applName>
 <db2SubSystemId>C105</db2SubSystemId>
 <db2LogicalName>PROD</db2LogicalName>
 <db2SiteName>SERT8</db2SiteName>
 <bindOwnerInsert>PROD</bindOwnerInsert>
 <packageTargetPattern>???7</packageTargetPattern>
 <bindQualifierTargetPattern>?????T</bindQualifierTargetPattern>
 <logicalSubSysBindFailFlag>Y</logicalSubSysBindFailFlag>
 <recycleStoredProcs>Y</recycleStoredProcs>
 <keepTriggerSequence>Y</keepTriggerSequence>
 </result>
 <result>
 <applName>CISQ</applName>
 <db2SubSystemId>C105</db2SubSystemId>
 <db2LogicalName>PROM810</db2LogicalName>
 <db2SiteName>SERT8</db2SiteName>
 <logicalSubSysBindFailFlag>Y</logicalSubSysBindFailFlag>
 <recycleStoredProcs>Y</recycleStoredProcs>
 <keepTriggerSequence>Y</keepTriggerSequence>
 </result>
 <response>

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site where DB2
physical subsystem runs.

NOTE: Use asterisk (*) wildcard or
omit tag to request all sites.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID of interest.

NOTE: Use asterisk (*) wildcard or
omit tag to request all DB2 physical
subsystems for application.

Exhibit 8-15. DB2ADMIN APL_LOGL LIST <request> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
441

44

Chapter 8: Database Management
 <statusMessage>CMN8700I - LIST service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 8-16.

Exhibit 8-16. Application-Level DB2 Logical Subsystem List <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF name of application.

<bindOwnerInsert> Optional 0 - 1 String (128),
variable

TSO ID of default bind owner to be
inserted into DB2 templates.

<bindOwnerSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for DB2 source
bind owner.

<bindOwnerTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for DB2 target bind
owner.

<bindQualifierInsert> Optional 0 - 1 String (128),
variable

Default high-level qualifier for DB2
datasets in bind plan commands, bind
package commands, and create trigger
definitions.

<bindQualifierSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for high-level
qualifier name for DB2 source
subsystem bind commands.

<bindQualifierTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for high-level
qualifier name for DB2 target
subsystem bind commands.

<db2LogicalName> Optional 0 - 1 String (8),
variable

DB2 logical subsystem ID (or partition)
returned.

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site where DB2
physical subsystem runs.

<db2SubsystemID> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID where
logical subsystem templates run.

<keepTriggerSequence> Optional 0 - 1 String (1) Y = Yes, rebuild all triggers to preserve
 trigger sequence for table/event
 if a trigger changes.
N = No, don’t preserve trigger
 sequence if change occurs; instead
 move changed trigger to end.

<locationSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for location ID for
DB2 source subsystem.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST

This function lists the DB2 physical subsystems defined at the global level for a given
ChangeMan ZMF started task. The request message may contain an empty <request>

<locationTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for location ID for
DB2 target subsystem.

<logicalSubSysBindFailFlag> Optional 0 - 1 String (1) Y = Yes, bind failure is significant; stop
 promote/demote processing if
 DB2 bind fails.
N = No, bind failure not significant;
 continue promote/demote process.

<logicalSubSystemComment> Optional 0 - 1 String (30),
variable

Free-format text description of DB2
logical subsystem (or partition).

<packageSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for bind package
name for DB2 source subsystem.

<packageTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for bind package
name for DB2 target subsystem.

<planNameSourcePattern> Optional 0 - 1 String (24),
variable

Pattern or template for bind plan name
for DB2 source subsystem.

<planNameTargetPattern> Optional 0 - 1 String (24),
variable

Pattern or template for bind plan name
for DB2 target subsystem.

<recycleStoredProcs> Optional 0 - 1 String (1) Y = Yes, automatically refresh stored
 procedures & external user-defined
 functions in DB2 if change occurs.
N = No, don’t automatically refresh
 stored procedures & user-defined
 functions in DB2.

<schemaSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for explicit schema
in procedure-name, function-name, or
trigger-name in CREATE command for
DB2 source subsystem.

<schemaTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for explicit schema
in procedure-name, function-name, or
trigger-name in CREATE command for
DB2 target subsystem.

<wlmEnvMask> Optional 0 - 1 String (54),
variable

Default mask for WLM address space
containing stored procedures.

<wlmEnvSourcePattern> Optional 0 - 1 String (54),
variable

Pattern or template for name of WLM
address space containing stored
procedures for source DB2 subsystem.

<wlmEnvTargetPattern> Optional 0 - 1 String (54),
variable

Pattern or template for name of WLM
address space containing stored
procedures for target DB2 subsystem.

Exhibit 8-16. Application-Level DB2 Logical Subsystem List <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies
443

44

Chapter 8: Database Management
data element or a selection of optional subtags. Returned values include the physical
subsystem ID, the logical subsystem ID, the fully qualified dataset name of the associated
DB2 system load library, and predefined job cards for data binding in the DB2 production
environment. Physical DB2 subsystems must be defined both in DB2 and in the DB2 Option
for ChangeMan ZMF prior to running the DB2 physical subsystems list service.

The Serena XML service/scope/message tags and attributes for messages to list globally
defined DB2 physical subsystems are:

<service name=”DB2ADMIN”>
<scope name=”GBL_PHYS”>
<message name=”LIST”>

These tags appear in both requests and replies.

DB2ADMIN GBL_PHYS LIST — Requests

Serena XML supports three options for DB2 physical subsystem lists at the global level:

• Comprehensive List — Submit an empty <request> data element (that is, one that
contains no subtags) in the XML request message. The <request> tag itself is required
in the message to distinguish a request from a reply. All DB2 physical subsystems
defined at the global level for the ChangeMan ZMF started task are returned in the reply
message.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

• Selected Site List — Name a desired site in the <db2SiteName> tag to request a list of
all DB2 physical subsystems that reside at that site.

• Single Physical Subsystem — Name the DB2 physical subsystem of interest in the
<db2SubSystemId> tag to list global specifications for the named site.

Example XML — DB2ADMIN GBL_PHYS LIST Request

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="GBL_PHYS">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <request>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> tag appear in Exhibit 8-17.

DB2ADMIN GBL_PHYS LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> contains global specifications for one DB2 physical subsystem known to the
ChangeMan ZMF started task that received the XML request message. If no DB2
subsystems are defined using the DB2 Option of ChangeMan ZMF, no <result> tags
appear in the reply message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — DB2ADMIN GBL_PHYS LIST Reply

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="GBL_PHYS">
 <message name="LIST">
 <result>
 <db2SubSystemId>C101</db2SubSystemId>
 <db2SiteName>SERT8</db2SiteName>
 <db2SystemLoadLib>SYS2.DB2810.SDSNLOAD</db2SystemLoadLib>
 <db2ProdBindJobCards>//USER35A JOB ,ACCOUNT INFORMATION</db2ProdBindJobCards>
 <db2ProdBindJobCards>//*</db2ProdBindJobCards>
 <db2ProdBindJobCards>//*</db2ProdBindJobCards>
 <db2ProdBindJobCards>//*</db2ProdBindJobCards>
 <db2ProdBindJobCard01>//USER35A JOB ,ACCOUNT INFORMATION</db2ProdBindJobCard01>
 <db2ProdBindJobCard02>//*</db2ProdBindJobCard02>
 <db2ProdBindJobCard03>//*</db2ProdBindJobCard03>

Exhibit 8-17. DB2ADMIN GBL_PHYS LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF site name where DB2 subsystem
resides.

NOTE: Use asterisk (*) wildcard or
omit tag to list subsystems at all sites.

<db2SubsystemID> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID of interest.

NOTE: Use asterisk (*) wildcard or
omit tag to list all physical subsystems.
445

44

Chapter 8: Database Management
 <db2ProdBindJobCard04>//*</db2ProdBindJobCard04>
 </result>
 <result>
 <db2SubSystemId>C105</db2SubSystemId>
 <db2SiteName>SERT8</db2SiteName>
 <db2SystemLoadLib>SYS2.DB2810.SDSNLOAD</db2SystemLoadLib>
 <db2ProdBindJobCards>//SERT8 JOB (AMW,000),'C105',MSGCLASS=Y,</
db2ProdBindJobCards>
 <db2ProdBindJobCards>// TIME=(,10),USER=USER24,NOTIFY=USER24</
db2ProdBindJobCards>
 <db2ProdBindJobCards>//*</db2ProdBindJobCards>
 <db2ProdBindJobCards>//*</db2ProdBindJobCards>
 <db2ProdBindJobCard01>//SERT8 JOB (AMW,000),'C105',MSGCLASS=Y,</
db2ProdBindJobCard01>
 <db2ProdBindJobCard02>// TIME=(,10),USER=USER24,NOTIFY=USER24</
db2ProdBindJobCard02>
 <db2ProdBindJobCard03>//*</db2ProdBindJobCard03>
 <db2ProdBindJobCard04>//*</db2ProdBindJobCard04>
 </result>
 <response>
 <statusMessage>CMN8700I - DB2 Admin service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 8-18.

Exhibit 8-18. DB2ADMIN GBL_PHYS LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<db2ProdBindJobCard01> Optional 0 - 1 String (72),
variable

First of up to four default JCL job cards
used in DB2 production bind jobs for
this subsystem.

<db2ProdBindJobCard02> Optional 0 - 1 String (72),
variable

Second of up to four default JCL job
cards used in DB2 production bind jobs
for this subsystem.

<db2ProdBindJobCard03> Optional 0 - 1 String (72),
variable

Third of up to four default JCL job cards
used in DB2 production bind jobs for
this subsystem.

<db2ProdBindJobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to four default JCL job
cards used in DB2 production bind jobs
for this subsystem.

<db2ProdBindJobCards> Optional 0 - 1 String (72),
variable

Use tags db2ProdBindJobCards01 - 04
instead.

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF remote site nickname associated
with DB2 subsystem.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST

This function lists the global defaults for DB2 logical subsystem settings for a given
ChangeMan ZMF started task. The request message may contain an empty <request>
data element or a selection of optional subtags. Returned values include DB2 logical and
physical subsystem IDs and description, the site where the DB2 subsystem runs, and global
configuration settings. DB2 subsystems must be properly configured in both DB2 and
ChangeMan ZMF prior to running this service, or unexpected results may occur.

The Serena XML service/scope/message tags and attributes for messages to list globally
defined DB2 logical subsystems are:

<service name=”DB2ADMIN”>
<scope name=”GBL_LOGL”>
<message name=”LIST”>

These tags appear in both requests and replies.

DB2ADMIN GBL_LOGL LIST — Requests

Serena XML supports the following options for listing DB2 logical subsystems defined at the
global level:

• Comprehensive List — Submit an empty <request> data element (that is, one that
contains no subtags) in the XML request message. The <request> tag itself is required
in the message to distinguish a request from a reply. All DB2 physical subsystems
defined at the global level for the ChangeMan ZMF started task are returned in the reply
message.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

<db2SubsystemID> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID assigned
by ZMF administrator.

<db2SystemLoadLib> Optional 0 - 1 String (44),
variable

Physical data set name of DB2 load
library for this subsystem.

Exhibit 8-18. DB2ADMIN GBL_PHYS LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
447

44

Chapter 8: Database Management
• Selected Site List — Name the site of interest in the <db2SiteName> tag to list all DB2
logical subsystems for selected site.

• Selected Physical Subsystem List — In the <db2SubSystemId> tag, identify the DB2
physical subsystem where the parameters and templates of the logical subsystem(s) will
be used. All logical subsystems defined for that physical subsystem are returned.

• Single Logical Subsystem — Name the DB2 logical subsystem of interest in the
<db2LogicalName> tag. Global default specifications for the requested subsystem are
returned in the reply.

Example XML — DB2ADMIN GBL_LOGL LIST Request

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="GBL_LOGL">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> tag appear in Exhibit 8-19.

Exhibit 8-19. DB2ADMIN GBL_LOGL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<db2LogicalName> Optional 0 - 1 String (8),
variable

DB2 logical subsystem ID (or partition)
of interest.

NOTE: Use asterisk (*) wildcard or omit
tag to request all DB2 logical
subsystems for application.

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site where DB2
physical subsystem runs.

NOTE: Use asterisk (*) wildcard or omit
tag to request all sites.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID of interest.

NOTE: Use asterisk (*) wildcard or omit
tag to request all DB2 physical
subsystems for application.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
DB2ADMIN GBL_LOGL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains global specifications for one DB2 logical subsystem associated with
the ChangeMan ZMF started task that received the XML request message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — DB2ADMIN GBL_LOGL LIST Reply

<?xml version="1.0"?>
<service name="DB2ADMIN">
 <scope name="GBL_LOGL">
 <message name="LIST">
 <result>
 <db2SubSystemId>C105</db2SubSystemId>
 <db2LogicalName>PROD</db2LogicalName>
 <db2SiteName>SERT8</db2SiteName>
 <bindOwnerInsert>PROD</bindOwnerInsert>
 <packageTargetPattern>???7</packageTargetPattern>
 <bindQualifierTargetPattern>?????T</bindQualifierTargetPattern>
 <logicalSubSysBindFailFlag>Y</logicalSubSysBindFailFlag>
 <recycleStoredProcs>Y</recycleStoredProcs>
 <keepTriggerSequence>Y</keepTriggerSequence>
 </result>
 <result>
 <db2SubSystemId>C105</db2SubSystemId>
 <db2LogicalName>PROM810</db2LogicalName>
 <db2SiteName>SERT8</db2SiteName>
 <logicalSubSysBindFailFlag>Y</logicalSubSysBindFailFlag>
 <recycleStoredProcs>Y</recycleStoredProcs>
 <keepTriggerSequence>Y</keepTriggerSequence>
 </result>
 <response>
 <statusMessage>CMN8700I - DB2 Admin service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>
449

45

Chapter 8: Database Management
Data structure details for the <result> tag appear in Exhibit 8-20.

Exhibit 8-20. DB2ADMIN GBL_LOGL LIST<result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<bindOwnerInsert> Optional 0 - 1 String (128),
variable

TSO ID of default bind owner to be
inserted into DB2 templates.

<bindOwnerSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for DB2 source
bind owner.

<bindOwnerTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for DB2 target bind
owner.

<bindQualifierInsert> Optional 0 - 1 String (128),
variable

Default high-level qualifier for DB2
datasets in bind plan commands, bind
package commands, and create trigger
definitions.

<bindQualifierSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for high-level
qualifier name for DB2 source
subsystem bind commands.

<bindQualifierTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for high-level
qualifier name for DB2 target
subsystem bind commands.

<db2LogicalName> Optional 0 - 1 String (8),
variable

DB2 logical subsystem ID (or partition)
returned.

<db2SiteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site where DB2
physical subsystem runs.

<db2SubsystemID> Optional 0 - 1 String (4),
variable

DB2 physical subsystem ID where
logical subsystem templates run.

<keepTriggerSequence> Optional 0 - 1 String (1) Y = Yes, rebuild all triggers to preserve
 trigger sequence for table/event
 if a trigger changes.
N = No, don’t preserve trigger
 sequence if change occurs; instead
 move changed trigger to end.

<locationSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for location ID for
DB2 source subsystem.

<locationTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for location ID for
DB2 target subsystem.

<logicalSubSysBindFailFlag> Optional 0 - 1 String (1) Y = Yes, bind failure is significant; stop
 promote/demote processing if
 DB2 bind fails.
N = No, bind failure not significant;
 continue promote/demote process.

<logicalSubSystemComment> Optional 0 - 1 String (30),
variable

Free-format text description of DB2
logical subsystem (or partition).

<packageSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for bind package
name for DB2 source subsystem.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<packageTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for bind package
name for DB2 target subsystem.

<planNameSourcePattern> Optional 0 - 1 String (24),
variable

Pattern or template for bind plan name
for DB2 source subsystem.

<planNameTargetPattern> Optional 0 - 1 String (24),
variable

Pattern or template for bind plan name
for DB2 target subsystem.

<recycleStoredProcs> Optional 0 - 1 String (1) Y = Yes, automatically refresh stored
 procedures & external user-defined
 functions in DB2 if change occurs.
N = No, don’t automatically refresh
 stored procedures & user-defined
 functions in DB2.

<schemaSourcePattern> Optional 0 - 1 String (128),
variable

Pattern or template for explicit schema
in procedure-name, function-name, or
trigger-name in CREATE command for
DB2 source subsystem.

<schemaTargetPattern> Optional 0 - 1 String (128),
variable

Pattern or template for explicit schema
in procedure-name, function-name, or
trigger-name in CREATE command for
DB2 target subsystem.

<wlmEnvMask> Optional 0 - 1 String (54),
variable

Default mask for WLM address space
containing stored procedures.

<wlmEnvSourcePattern> Optional 0 - 1 String (54),
variable

Pattern or template for name of WLM
address space containing stored
procedures for source DB2 subsystem.

<wlmEnvTargetPattern> Optional 0 - 1 String (54),
variable

Pattern or template for name of WLM
address space containing stored
procedures for target DB2 subsystem.

Exhibit 8-20. DB2ADMIN GBL_LOGL LIST<result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
451

45

Chapter 8: Database Management
2

ONLINE FORMS MANAGEMENT
 9

Serena XML supports forms-based package workflow management for customers who have
installed the Online Forms Manager option of ChangeMan ZMF. Serena XML helps these
customers automate form processing tasks. It also facilitates data interchange between
ChangeMan ZMF online forms and external workflow management software.

Support is provided for two user task groups:

• Online Forms Lifecycle Tasks — Work with online forms associated with a package in
motion. Typical commands include submit, approve, reject, and comment.

• Forms Information Management — Retrieve online form definitions and contents. The
typical command is list.

The XML syntax that identifies online form functions appears in the name attribute of either
the <service> tag or the <scope> tag, as follows:

<service name=”FORMS”>
<scope name=”FORMS”>

ONLINE FORMS LIFECYCLE TASKS

Online forms participate in the package management lifecycle. The following lifecycle tasks
for forms are supported for general use:

Unfreeze Online Forms - PACKAGE FORMS UNFREEZE

Serena XML lets you unfreeze online forms in a frozen package for online completion,
approval, or other changes. Options exist to collectively unfreeze all online forms in a
package or to selectively unfreeze only those forms named in the request.

• Unfreeze Online Forms - PACKAGE
FORMS UNFREEZE

• Approve a Form - FORMS PKG
APPROVE

• Refreeze Online Forms - PACKAGE
FORMS REFREEZE

• Reject a Form - FORMS PKG REJECT

• Submit a Form for Approval - FORMS
PKG SUBMIT

• Add Comments to a Form - FORMS
PKG COMMENT
453

45

Chapter 9: Online Forms Management
The Serena XML service/scope/message tags for a package-level unfreeze message for
online forms are:

<service name=”PACKAGE”>
<scope name=”FORMS”>
<message name=”UNFREEZE”>

These tags appear in both requests and replies.

 Note

The forms unfreeze request takes the value “package” in the name attribute
of the <service> tag because it is executed by the low-level package service.
The forms-specific scope of the service is shown in the name attribute of the
<scope> tag, which takes the value “forms”.

PACKAGE FORMS UNFREEZE — Requests

The forms unfreeze function requires a package name in the <package> tag as input. It
assumes a full unfreeze is requested unless you specify otherwise by supplying one or more
form numbers. Select the desired unfreeze option as follows:

• Full Unfreeze — Omit the <formNumber> and <listcount> tags to unfreeze all online
forms in a package. This is the default.

• Selective Unfreeze — Supply one or more form numbers in the <formNumber> tag to
selectively unfreeze the identified forms.

The following example shows how you might code a selective forms unfreeze request. Data
structure details for the <request> tag appear in Exhibit 9-1.

Example XML — PACKAGE FORMS UNFREEZE Request

<?xml version="1.0"?>
<service name="PACKAGE">
 <scope name="FORMS">
 <message name="UNFREEZE">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <package>ACTP000009</package>
 <listCount>0001</listCount>
 <formNumber>010</formNumber>
 </request>
 </message>
 </scope>
</service>
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

PACKAGE FORMS UNFREEZE — Replies

The reply for a forms unfreeze message does not return a <result> data structure. It does,
however, return a standard <response> data structure to indicate the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

Refreeze Online Forms - PACKAGE FORMS REFREEZE

This function refreezes previously unfrozen online forms in package, preventing further
change. Options exist to collectively refreeze all online forms in a package or to selectively
refreeze only those forms named in the request.

Exhibit 9-1. PACKAGE FORMS UNFREEZE <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<formNumber> Optional 1 String (3),
variable

ZMF form ID of desired online form.

<listCount> Optional 0 - 1 Integer (3),
variable

Number of forms named in request.
Must match number of <forms> tags.
Value range: 1 - 800.

NOTE: Required for selective unfreeze
or refreeze.

NOTE: If used, <forms> tag is also
required.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
455

45

Chapter 9: Online Forms Management
The Serena XML service/scope/message tags for a package-level refreeze message for
online forms are:

<service name=”PACKAGE”>
<scope name=”FORMS”>
<message name=”REFREEZE”>

These tags appear in both requests and replies.

 Note

The forms refreeze request takes the value “package” in the name attribute
of the <service> tag because it is executed by the low-level package service.
The forms-specific scope of the service is shown in the name attribute of the
<scope> tag, which takes the value “forms”.

PACKAGE FORMS REFREEZE — Requests

As with unfreeze requests, Serena XML supports two types of package-level refreeze
requests for custom forms:

Select the desired unfreeze option as follows:

• Full Refreeze — Omit the <formNumber> and <listcount> tags to unfreeze all online
forms in a package. This is the default.

• Selective Refreeze — Supply one or more form numbers in the <formNumber> tag (s)
to selectively unfreeze the identified forms.

The <request> tag data structure for a forms refreeze request is identical to that for an
forms unfreeze request. See Exhibit 9-1 for details.

PACKAGE FORMS REFREEZE — Replies

The reply for a forms refreeze message does not return a <result> data structure. It does,
however, return a standard <response> data structure to indicate the success or failure of
the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher.

Submit a Form for Approval - FORMS PKG SUBMIT

Once an online form has been completed interactively in ISPF, Serena XML can automate its
submission for approval. This function assumes that approvers, notifications, and variables
associated with a specific form have previously been defined using online forms
maintenance.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The Serena XML service/scope/message tags for a message to submit an online form for
approve are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”SUBMIT”>

These tags appear in both requests and replies.

FORMS PKG SUBMIT — Requests

Only one form may be submitted for approval at a time using Serena XML. Both the form
number and the package where the desired instance of the form resides are required in the
request. Data structure details for the <request> tag appear in Exhibit 9-2.

FORMS PKG SUBMIT — Replies

The reply for a forms submit message does not return a <result> data structure. It does,
however, return a standard <response> data structure to indicate the success or failure of
the submit request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Exhibit 9-2. FORMS PKG SUBMIT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<formNumber> Required 1 String (3),
variable

ZMF form ID of desired online form.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name where
desired instance of form resides.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
457

45

Chapter 9: Online Forms Management
Approve a Form - FORMS PKG APPROVE

This function approves the action requested by a previously submitted online form. If
approval of the form in the interactive ChangeMan ZMF environment would normally submit a
job stream for execution, that same job stream is submitted for execution upon approval in
Serena XML.

The Serena XML service/scope/message tags for a message to approve an online form are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”APPROVE”>

These tags appear in both requests and replies.

FORMS PKG APPROVE — Requests

Only one form may be approved at a time using Serena XML. Both the form number and the
package where the desired instance of the form resides are required in the request. Data
structure details for the <request> tag appear in Exhibit 9-3.

FORMS PKG APPROVE — Replies

No <result> tags are returned in the Serena XML reply message for a form approval
request. However, the reply message does return a standard <response> data element to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Exhibit 9-3. Form Approval <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 -1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<formNumber> Required 1 String (3),
variable

ZMF form ID of desired online form.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name where
desired instance of form resides.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Reject a Form - FORMS PKG REJECT

This function rejects the action requested by a previously submitted online form. The form
may not be open for concurrent use at the time it is rejected. Reject reasons are required.

To add reject reasons separately as comments, without actually rejecting the form request,
use the online forms comment service. (See “Add Comments to a Form - FORMS PKG
COMMENT”.)

The Serena XML service/scope/message tags for an online form reject message are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”REJECT”>

These tags appear in both requests and replies.

FORMS PKG REJECT — Requests

Requests to reject a form require a package name, form number, and at least one reason for
the rejection. Only one form may be rejected at a time. Data structure details for the
<request> tag appear in Exhibit 9-4.

Exhibit 9-4. FORMS PKG REJECT <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<formNumber> Required 1 String (3),
variable

ZMF form ID of desired online form.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name where
desired instance of form resides.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<rejectReason01> Required 1 String (72),
variable

Text of reason for rejecting action
requested by form. First of up to ten lines
of text.

<rejectReason02> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Second of up to ten
lines of text.
459

46

Chapter 9: Online Forms Management
FORMS PKG REJECT — Replies

No <result> tags are returned in the Serena XML reply message for an online form
rejection. However, the reply message does return a standard <response> data element to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Add Comments to a Form - FORMS PKG COMMENT

This function allows you to add free-format text reasons for rejecting the action requested by
an online form without committing to a reject decision. The rejection action itself requires a
separate service. (See “Reject a Form - FORMS PKG REJECT”.)

The Serena XML service/scope/message tags for an online form comment message are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”COMMENT”>

These tags appear in both requests and replies.

<rejectReason03> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Third of up to ten
lines of text.

<rejectReason04> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Fourth of up to ten
lines of text.

<rejectReason05> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Fifth of up to ten lines
of text.

<rejectReason06> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Sixth of up to ten
lines of text.

<rejectReason07> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Seventh of up to ten
lines of text.

<rejectReason08> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Eighth of up to ten
lines of text.

<rejectReason09> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Ninth of up to ten
lines of text.

<rejectReason10> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Tenth of up to ten
lines of text.

Exhibit 9-4. FORMS PKG REJECT <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
FORMS PKG COMMENT — Requests

The request message for this function requires a package name, a form number, and at least
one comment, which is assumed to be a reason for rejecting the requested action but need
not be. Up to ten lines of comment text (reject reasons) are supported.

Data structure details for the <request> tag appear in Exhibit 9-5.

Exhibit 9-5. FORMS PKG COMMENT<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<formNumber> Required 1 String (3),
variable

ZMF form ID of desired online form.

<package> Required 1 String (10),
fixed

Fixed-format ZMF package name where
desired instance of form resides.

<packageId> Optional 0 - 1 Integer (6),
variable

ZMF package ID number. Same as last 6
bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

<rejectReason01> Required 1 String (72),
variable

Text of reason for rejecting action
requested by form. First of up to ten lines
of text.

<rejectReason02> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Second of up to ten
lines of text.

<rejectReason03> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Third of up to ten
lines of text.

<rejectReason04> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Fourth of up to ten
lines of text.

<rejectReason05> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Fifth of up to ten lines
of text.

<rejectReason06> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Sixth of up to ten
lines of text.
461

46

Chapter 9: Online Forms Management
FORMS PKG COMMENT — Replies

No <result> tags are returned in the Serena XML reply message for an online form
comment. However, the reply message does return a standard <response> data element to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

FORMS INFORMATION MANAGEMENT

Forms information management tasks retrieve online form definitions and contents. Serena
XML supports the following tasks for general use:

• List Global Online Forms - FORMS GBL LIST

• List Package Online Forms - FORMS PKG LIST

• List Package Online Form Details - FORMS PKG DETAIL

List Global Online Forms - FORMS GBL LIST

The global forms list function retrieves global form definitions previously created using online
forms maintenance. Included in the returned definition are a global description of the form,
approver and notification information, and a variable list defined by the customer during forms
maintenance.

<rejectReason07> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Seventh of up to ten
lines of text.

<rejectReason08> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Eighth of up to ten
lines of text.

<rejectReason09> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Ninth of up to ten
lines of text.

<rejectReason10> Optional 0 - 1 String (72),
variable

Text of reason for rejecting action
requested by form. Tenth of up to ten
lines of text.

Exhibit 9-5. FORMS PKG COMMENT<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The Serena XML service/scope/message tags for a message to list the global form
definitions are:

<service name=”FORMS”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

FORMS GBL LIST — Requests

The global online forms list supports two kinds of requests:

• Complete Forms List — Use the “match-all” (asterisk) wildcard in the <formNumber>
tag to request information about all globally defined online forms.

• Selective Forms List — Enter the form number in the <formNumber> tag to request the
global specification for the named online form.

Data structure details for the <request> tag appear in Exhibit 9-6.

FORMS GBL LIST — Replies

The reply message for a global online forms list returns zero to many <result> data
elements. Each <result> tag contains the global definition for one form identified by form
number. Note that it includes two complex subtags with subordinate tags of their own:
<notification> and <varList>.

The standard <response> data element follows the last <result> to indicate the success
or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag returned, the <response> tag
also serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 9-7.

Exhibit 9-6. FORMS GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<formNumber> Optional 1 String (3),
variable

ZMF form ID of desired online form.

NOTE: Asterisk (*) wildcard requests
all forms.

Exhibit 9-7. FORMS GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<allowAccess> Optional 0 - 1 String (1) Y = Yes, allow form users to edit form
 instances in package.
N = No user edits allowed.

<formDesc> Optional 0 - 1 String (255),
variable

Global description of form.
463

46

Chapter 9: Online Forms Management
<notification> Subtag

The <notification> data element lists users to notify and a notification method to use
when a form is submitted for action. This is a complex, repeatable. Data structure details for
the <notification> subtag appear in Exhibit 9-8.

<varList> Subtag

The <varList> data element defines the content of the form. Each instance of this complex
tag defines an online form variable presented in the form’s ISPF panel. This is a complex
subtag that is repeatable to accommodate multiple variables.

<formNumber> Optional 1 String (3),
variable

ZMF form ID of returned online form.

<leadTime> Optional 0 - 1 Integer (3),
variable

Lead time required to act on the form
request, in days.

<notification> Optional 1 - 10 Complex Approver notification list. Complex tag.
See Exhibit 9-8.

<submitOnApproval> Optional 0 - 1 String (1) Y = Yes, automatically submit job
 stream on form approval.
N = No, don’t automatically submit
 job stream on approval.

<varList> Optional 1 - 200 Complex User-defined variable list. Complex
tag. See Exhibit 9-9

Exhibit 9-8. <notification> Subtag

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<notifierTypeDesc> Optional 0 - 1 Integer (8),
variable

ZMF notification method used. Values:

•MVSSEND
•EMAIL
•SERNET
•BATCH

<userList> Optional 0 - 1 String (44),
variable

Delimited list of TSO user IDs or email
addresses to notify by the method
shown in <notifierType> when
form is submitted for approval.

Exhibit 9-7. FORMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <varList> subtag appear in Exhibit 9-9.

List Package Online Forms - FORMS PKG LIST

The package forms list function retrieves package forms associated with a package.

The Serena XML service/scope/message tags for a message to list package forms are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”LIST”>

These tags appear in both requests and replies.

FORMS PKG LIST — Requests

The package forms list request may be customized using the form status tags.

 Note

All yes/no status tags default to the value “Y” if no tag in the group has an
explicitly assigned value. But if any flag tag in the group is explicitly assigned a
value, all other tags in the group change their default values to “N.”

Exhibit 9-9. <varList> Subtag

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<varName> Optional 0 - 1 String (8),
variable

Name of user-defined form variable
returned. Corresponds to data field in
ISPF panel.

<varLen> Optional 0 - 1 Integer (4),
variable

Maximum length of variable data in
bytes. Value range: 1 to 44.

<varFormat> Optional 0 - 1 String (1) Code for type of data in variable.
Values:

F = Fixed-length string.
C = Variable-length character.

<isTableEntry> Optional 0 - 1 String (1) Y = Yes, data entry OK in field.
N = No data entry permitted.

<isKeyField> Optional 0 - 1 String (1) Y = Yes, variable is table key field.
N = No, not table key field.
465

46

Chapter 9: Online Forms Management
Data structure details for the <request> tag appear in Exhibit 9-10.

FORMS PKG LIST — Replies

The reply message for a package online form list returns zero to many <result> data
elements.

The standard <response> data element follows the last <result> to indicate the success
or failure of the request. Successful requests have a return code of 00. Unsuccessful

Exhibit 9-10. FORMS PKG LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<filterActiveStatus Optional 0 - 1 String (1) Y = Active status.
N = Not active status.

<filterApprovedStatus Optional 0 - 1 String (1) Y = Approved status.
N = Not approved status.

<filterFrozenStatus Optional 0 - 1 String (1) Y = Frozen status.
N = Not frozen status.

<filterInactiveStatus Optional 0 - 1 String (1) Y = Inactive status.
N = Not inactive status.

<filterRejectedStatus Optional 0 - 1 String (1) Y = Rejected status.
N = Not rejected status.

<filterSubmittedStatus Optional 0 - 1 String (1) Y = Submitted for approval status.
N = Not submitted for approval
 status.

<filterUnfrozenStatus Optional 0 - 1 String (1) Y = Unfrozen status.
N = Not unfrozen status.

<formNumber> Optional 0 - 1 String (3),
variable

ZMF form ID of desired online form.

<package> Required 1 String (10) Fixed-format ZMF package name
where desired instance of form resides.

<packageId> Optional 0 - 1 Integer (6) ZMF package ID number. Same as last
6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
requests have a return code of 04 or higher. As the last tag returned, the <response> tag
also serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 9-11.

Exhibit 9-11. FORMS PKG LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 0 - 1 String (4)),
variable

ZMF application name.

<approver> Optional 0 - 1 String (8)),
variable

TSO user ID of approver.

<formDesc> Optional 0 - 1 String (40),
variable

Form description.

<formName> Optional 0 - 1 String (8),
variable

Form name.

<formNumber> Optional 0 - 1 String (3),
variable

Form number.

<formStatus> Optional 0 - 1 String (1) Form status:

0 = Active
1 = Approved
4 = Frozen
5 = Inactive
9 = Rejected
B = Submitted for approval
C = Unfrozen

<isAccessAllowed> Required 1 String (1) Y = Yes, access allowed.
N = No, access not allowed.

<isApprovalSubmitted> Required 1 String (1) Y = Yes, approval was submitted.
N = No, approval was not submitted.

<lastUser> Optional 0 - 1 String (8)
variable

TSO user ID of last user to update
form.

<package> Optional 0 - 1 String (10) Fixed-format ZMF package name.

<packageId> Optional 0 - 1 Integer (6) ZMF package ID number. Same as
last 6 bytes of package name.

<rejectReasons>
 <rejectReason01>
 .
 .
 .
 <rejectReason10>

Optional 0 - 10 String (72),
variable

Reject reason text, zero to ten lines.

<user> Optional 0 - 1 String (8)
variable

TSO user ID of user who associated
the form with the package.
467

46

Chapter 9: Online Forms Management
List Package Online Form Details - FORMS PKG DETAIL

The package form detail list function retrieves a package form definition previously created
using online forms maintenance.

The Serena XML service/scope/message tags for a message to list a package form definition
are:

<service name=”FORMS”>
<scope name=”PKG”>
<message name=”DETAIL”>

These tags appear in both requests and replies.

FORMS PKG DETAIL— Requests

The package form detail list request is identical to the FORMS PKG LIST request. Refer to
Exhibit 9-10 for the <request> tag data structure details.

FORMS PKG DETAIL — Replies

The reply message for a package form detail list returns zero to many <result> data
elements.

The standard <response> data element follows the last <result> to indicate the success
or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag returned, the <response> tag
also serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 9-12.

Exhibit 9-12. FORMS PKG DETAIL <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<is KeyField> Optional 0 - 1 String (1) Y = Yes, key field.
N = No, not key field.

<is TableEntry> Optional 0 - 1 String (1) Y = Yes, table entry.
N = No, not table entry.

<varDataLen> Optional 0 - 1 Integer (4) Length of variable data.

<varFormat> Optional 0 - 1 String (1) Variable format:

C = Character
F = Fixed

<varName> Optional 0 - 1 String (8),
variable

Variable name.

<variablePortionLen> Optional 1 - 10 String (5),
variable

Length of this portion
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
469

47

Chapter 9: Online Forms Management
0

CHANGEMAN ZMF
ADMINISTRATION TASKS
 10
Serena XML provides a broad range of ChangeMan ZMF administration functions for general
use. These functions support administration tasks at both the global and application levels.

ChangeMan ZMF administration tasks include the following:

• Change Library Administration — Tasks that retrieve information about change
libraries, including the baseline library, promotion libraries, and production libraries.

• Site Administration — Tasks that retrieve information about ChangeMan ZMF
remote sites and the site installation calendar.

• Developer Environment Administration — Tasks that retrieve information about
languages, library types, build procedures, and general development environment
parameters at both the global and application levels.

• Approver and Notification Administration — Tasks that retrieve information about
approvers and approver notification lists, or that notify users of an event.

CHANGE LIBRARY ADMINISTRATION

Serena XML supports the following change library administration tasks for general use:

• List Baseline Library Datasets - BASELIB SERVICE LIST
• List Promotion Library Datasets - PROMLIB LIBRARY LIST
• List Promotion Site Configuration Records - PROMLIB SITE LIST
• List Production Library Datasets - PRODLIB SERVICE LIST

The syntax that identifies these functions appears in the name attribute of the <service>
tag, as follows:

<service name=”BASELIB”>
<service name=”PROMLIB>
<service name=”PRODLIB”>

List Baseline Library Datasets - BASELIB SERVICE LIST

The Serena XML function to list baseline library datasets returns the fully qualified dataset
names for the current baseline library and up to nine physical back-level libraries associated
with a named application. All baseline libraries at all defined sites are included in the scope of
this function. If no baseline libraries are defined, no results are returned in the reply message.
471

47

Chapter 10: ChangeMan ZMF Administration Tasks
The Serena XML service/scope/message tags and attributes for messages to list baseline
library datasets are:

<service name=”BASELIB”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

BASELIB SERVICE LIST — Requests

Serena XML can request all baseline library datasets for an application. Alternatively, you can
restrict the list of datasets returned to those for a particular library type or a particular site.

Example XML — BASELIB SERVICE LIST Request

<?xml version="1.0"?>
<service name="BASELIB">
 <scope name="SERVICE">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>IMSQ</applName>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 10-1.

Exhibit 10-1. BASELIB SERVICE LIST<request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name for which
baseline datasets are requested.

NOTE: OK to omit trailing blanks.

<libType> Optional 0 - 1 String (3),
variable

Library type for which baseline
datasets are requested.

NOTE: Use asterisk (*) wildcard or
omit tag to include all library types.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of site where baseline
libraries reside.

NOTE: Use asterisk (*) wildcard or
omit tag to include all sites.
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
BASELIB SERVICE LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag lists baseline library datasets for one library type at a single site. All results
apply to the application named in the request message.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — BASELIB SERVICE LIST Reply

<?xml version="1.0"?>
<service name="BASELIB">
 <scope name="SERVICE">
 <message name="LIST">
 <result>
 <applName>IMSQ</applName>
 <libType>SRC</libType>
 <installInProdOption>2</installInProdOption>
 <baseLibStorageMeans>7</baseLibStorageMeans>
 <baseLibLevel>010</baseLibLevel>
 <baseLibs>CMNTP.SERT8.BASE.IMSQ.SRC</baseLibs>
 <baseLibs>CMNTP.SERT8.BASE.IMSQ.SRC.DELTA</baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibs></baseLibs>
 <baseLibName00>CMNTP.SERT8.BASE.IMSQ.SRC</baseLibName00>
 <baseLibName01>CMNTP.SERT8.BASE.IMSQ.SRC.DELTA</baseLibName01>
 <baseLibName02></baseLibName02>
 <baseLibName03></baseLibName03>
 <baseLibName04></baseLibName04>
 <baseLibName05></baseLibName05>
 <baseLibName06></baseLibName06>
 <baseLibName07></baseLibName07>
 <baseLibName08></baseLibName08>
 <baseLibName09></baseLibName09>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - Baseline library service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
 </service>
473

47

Chapter 10: ChangeMan ZMF Administration Tasks
 Data structure details for the <result> tag appear in Exhibit 10-2.

Exhibit 10-2. BASELIB SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name.

<baseLibLevel> Optional 0 - 1 String (3),
variable

Number of baseline library levels
maintained.

<baseLibName00> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level 0.

<baseLibName01> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -1.

NOTE: This dataset also includes all
back-level baseline ripples if
<baseLibStorageMeans> is 3 or 7.

<baseLibName02> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -2.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName03> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -3.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName04> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -4.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName05> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -5.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName06> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -6.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName07> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -7.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName08> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -8.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.

<baseLibName09> Optional 0 - 1 String (44),
variable

Dataset name for baseline library level -9.

NOTE: Returned only if value in
<baseLibStorageMeans> is not 3 or 7.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Promotion Library Datasets - PROMLIB LIBRARY LIST

The Serena XML function to list promotion library datasets returns the fully qualified dataset
names for the up to three target promotion datasets and the promotion shadow library
associated with a named application. All promotion libraries at all defined sites and promotion
levels are included in the scope of this function. If no promotion libraries are defined, no
results are returned in the reply message.

<baseLibs> Optional 0 - 10 String (44),
variable

Local baseline library dsname 0 - 9.

NOTE: The <baseLibs> tags were
replaced by the <baseLibNamenn> tags
but have been temporarily retained to
provide backward compatibility for
customers’ existing applications (they will
be removed in a future release of
ChangeMan ZMF).
The <baseLibNamenn> tags should be
used unless you have an existing custom
application that uses the <baseLibs>
tags.

<baseLibStorageMeans> Optional 0 -1 String (1) Code for baseline library storage method
& format. Values:

2 = Delta deck (Obsolete)
3 = Librarian Archie
4 = Librarian
5 = Panvalet
6 = PDS
7 = Stacked reverse delta
H = HFS (Hierarchical File System)

<installInProdOption> Optional 0 - 1 String (1) Code for production install option. Values:

1 = Install if production library exists
2 = Don’t install in production library
3 = Install in production library

<libType> Optional 1 String (3),
variable

Library type included in baseline library.

<siteName> Optional 1 String (8),
variable

ZMF name of site where baseline library
resides.

Exhibit 10-2. BASELIB SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
475

47

Chapter 10: ChangeMan ZMF Administration Tasks
The Serena XML service/scope/message tags and attributes for messages to list promotion
library records are:

<service name=”PROMLIB”>
<scope name=”LIBRARY”>
<message name=”LIST”>

These tags appear in both requests and replies.

PROMLIB LIBRARY LIST — Requests

Serena XML can request an application’s promotion library records for one or all library types
in the application and one or all promotion levels and sites where the application resides.
Site-specific setup information is omitted.

Example XML — PROMLIB LIBRARY LIST Request

<?xml version="1.0"?>
<service name="PROMLIB">
 <scope name="LIBRARY">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <applName>IMSQ</applName>
 </request>
 </message>
 </scope>
</service>

 Data structure details for the <request> data element appear in Exhibit 10-3.

Exhibit 10-3. PROMLIB LIBRARY LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<excludeSysLib> Optional 0 - 1 String (1) Y = Include only datasets for libraries
 that exclude syslib processing
N = Include only datasets for libraries
 that allow syslib processing

NOTE: Use asterisk (*) wildcard or omit
tag to include all syslib options.

<libType> Optional 0 - 1 String (3),
variable

Library type for which promotion library
datasets are requested.

NOTE: Use asterisk (*) wildcard or omit
tag to include all library types.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
PROMLIB LIBRARY LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag lists all the promotion library datasets defined at a particular promotion level
for a particular application, site, and library type. The dataset name for the corresponding
shadow library also is returned.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Example XML — PROMLIB LIBRARY LIST Reply

<?xml version="1.0"?>
<service name="PROMLIB">
 <scope name="LIBRARY">
 <message name="LIST">
 <result>
 <applName>IMSQ</applName>
 <siteName>SERT8</siteName>
 <promotionName>C001AQA</promotionName>
 <promotionLevel>20</promotionLevel>
 <libType>CPY</libType>
 <shadowLib>CMNTP.SERT8.PROM.IMSQ.C001AQA.CPY</shadowLib>
 <promoLib01>CMNTP.SERT8.PROM.IMSQ.C001AQA.CPY</promoLib01>
 <excludeSysLib>Y</excludeSysLib>
 </result>

<promotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric relative promotion level for
which promotion library datasets are
requested.

NOTE: Corresponds to nickname in
<promotionName>.

NOTE: Leading zeroes required.

NOTE: Use asterisk (*) wildcard or omit
tag to include all promotion levels.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname for promotion library
function & level desired.

NOTE: Corresponds to code in
<promotionLevel>.

NOTE: Use asterisk (*) wildcard or omit
tag to include all promotion levels.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of site where promotion
library resides.

NOTE: Use asterisk (*) wildcard or omit
tag to include all sites for application.

Exhibit 10-3. PROMLIB LIBRARY LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
477

47

Chapter 10: ChangeMan ZMF Administration Tasks
 <result>
 <applName>IMSQ</applName>
 <siteName>SERT8</siteName>
 <promotionName>C001AQA</promotionName>
 <promotionLevel>20</promotionLevel>
 <libType>DBB</libType>
 <shadowLib>CMNTP.SERT8.PROM.IMSQ.C001AQA.DBB</shadowLib>
 <promoLib01>CMNTP.SERT8.PROM.IMSQ.C001AQA.DBB</promoLib01>
 <excludeSysLib>Y</excludeSysLib>
 </result>
.
.
.
 <response>
 <statusMessage>CMN8700I - Promo Library service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

Data structure details for the <result> tag appear in Exhibit 10-4.

Exhibit 10-4. PROMLIB LIBRARY LIST<result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name.

<excludeSysLib> Optional 0 - 1 String (1) Y = Exclude promotion library
 from system processing for
 JCL file tailoring & audit
N = Don’t exclude library from
 system processing for JCL
 file tailoring & audit

<hfsLib> Optional 0 - 1 String (1) Does promotion library reside in the
z/OS Unix Hierarchical File System?

Y = Yes, HFS promotion library

N = No, not HFS library

<libType> Optional 1 String (3),
variable

Library type included in promotion
library.

<promoLib01> Optional 0 -1 String (44),
variable

Fully qualified dataset name of first
target promotion library.

<promoLib02> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of
second target promotion library.

<promoLib03> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of third
target promotion library.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Promotion Site Configuration Records - PROMLIB SITE LIST

This function lists promotion site configuration records for a named application. All defined
promotion sites and promotion levels are included in the scope of this function. If no
promotion sites are defined, no results are returned in the reply message.

The Serena XML service/scope/message tags and attributes for messages to list promotion
site configuration records are:

<service name=”PROMLIB”>
<scope name=”SITE”>
<message name=”LIST”>

These tags appear in both requests and replies.

PROMLIB SITE LIST — Requests

Serena XML can request an application’s promotion site configuration records for one or all
promotion levels defined for an application. Records can be requested for an individual
named site or for all sites.

Data structure details for the <request> data element appear in Exhibit 10-5.

<promotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric relative promotion level of
promotion library. Corresponds to
nickname in <promotionName>.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname corresponding to
code in <promotionLevel>.

<shadowLib> Optional 0 -1 String (44),
variable

Fully qualified dataset name of local
promotion shadow library.

NOTE: Returned only for remote
promotion libraries.

<siteName> Required 1 String (8),
variable

ZMF name of site where promotion
library resides.

Exhibit 10-4. PROMLIB LIBRARY LIST<result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
479

48

Chapter 10: ChangeMan ZMF Administration Tasks
PROMLIB SITE LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains site configuration information for one promotion library at one site
and level associated with the application named in the request.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-6.

Exhibit 10-5. PROMLIB SITE LIST<request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name for which
promotion site records are requested.

NOTE: OK to omit trailing blanks.

<promotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric relative promotion level for
which site records are requested.

NOTE: Corresponds to value in
<promotionName>.

NOTE: Leading zeroes required.

NOTE: Use asterisk (*) wildcard or omit
tag to include all promotion levels.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname for promotion level for
which site records are requested.

NOTE: Corresponds to value in
<promotionLevel>.

NOTE: Use asterisk (*) wildcard or omit
to include all promotion levels.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of promotion site desired.

NOTE: Use asterisk (*) wildcard or omit
tag to include all sites for application.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

List Production Library Datasets - PRODLIB SERVICE LIST

This function returns a list of fully qualified dataset names for all production libraries used with
a named application. All defined production sites and library types are included in the scope
of this function. If no production libraries or sites are defined, no results are returned in the
reply message.

The Serena XML service/scope/message tags and attributes for messages to list production
library records are:

<service name=”PRODLIB”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 10-6. PROMLIB SITE LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name.

<forcePriorSiteDemotion> Optional 0 - 1 String (1) Y = Force demotion from prior
 promotion level before
 promoting to this library.
N = Don’t force demotion from
 prior promotion level before
 promoting to this library.

<localInternalReaderClass> Optional 0 - 1 String (1) Output class for JCL promote &
demote jobs submitted to internal
reader on the local LPAR where ZMF
runs.

<promoBuildProc> Optional 0 -1 String (8),
variable

Name of promotion build procedure
defined for this application, site, and
promotion level.

<promoEntity> Optional 0 -1 String (8),
variable

TSO ID of security entity that promotes
application packages to this site and
promotion level.

<promotionLevel> Optional 0 - 1 Integer (2),
fixed

Numeric relative promotion level listed
promotion library.

<promotionName> Optional 0 - 1 String (8),
variable

ZMF nickname for promotion level in
<promotionLevel>.

<siteInternalReaderClass> Optional 0 - 1 String (1) Output class for JCL promote &
demote jobs submitted to internal
reader at this remote site.

<siteName> Optional 1 String (8),
variable

ZMF name of promotion site listed.
481

48

Chapter 10: ChangeMan ZMF Administration Tasks
PRODLIB SERVICE LIST — Requests

Serena XML can request production library dataset names for one or all production sites and
for one or all library types associated with a named application. Data structure details for the
<request> data element appear in Exhibit 10-7.

PRODLIB SERVICE LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains the fully qualified dataset name of a production library which allows a
specific library type at a specific production site. Also returned are the dataset names for
associated temporary and backup libraries.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-8.

Exhibit 10-7. Production Library Dataset List <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name for which
production datasets are requested.

NOTE: OK to omit trailing blanks.

<libType> Optional 0 - 1 String (3),
variable

Library type for which production
datasets are requested.

NOTE: Use asterisk (*) wildcard or omit
tag to include all library types.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of site where production
library resides.

NOTE: Use asterisk (*) wildcard or omit
tag to include all production sites.

Exhibit 10-8. PRODLIB SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name supported by
the production library.

<backupLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of the
backup library for this production
library.

<hfsLib> Optional 0 - 1 String (1) Does promotion library reside in the
z/OS Unix Hierarchical File System?

Y = Yes, HFS promotion library

N = No, not HFS library
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
SITE ADMINISTRATION

Serena XML supports the following remote site administration tasks for general use:

• List Globally Defined Remote Sites - SITE GBL LIST
• List Remote Sites for Application - SITE APPL LIST
• List Install Calendar for Site - CALENDAR SERVICE LIST

The syntax that identifies these functions appears in the name attribute of the <service>
tag, as follows:

<service name=”SITE”>
<service name=”CALENDAR”>

The site-oriented scope of the installation calendar service is implicit rather than explicit.

List Globally Defined Remote Sites - SITE GBL LIST

This function lists all globally defined remote sites known to the current instance of
ChangeMan ZMF. Also returned are global specifications for the z/OS logical unit and
ChangeMan ZMF subsystem ID associated with that site, the staging library model for the
site, the delay library, and site settings for peg dates, file transfer methods, and job cards. If
no sites have been defined, no <result> tags are returned in the reply message.

The Serena XML service/scope/message tags and attributes for messages to list globally
defined remote sites are:

<service name=”SITE”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

SITE GBL LIST — Requests

This Serena XML function accepts a single, optional tag in the <request> date element of
the request message. That tag, <siteName>, is used when global site specifications are

<libType> Optional 0 - 1 String (3),
variable

Library type supported by this
production library.

<prodLib> Optional 0 - 1 String (44),
variable

Full qualified dataset name for this
production library.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of site where this
production library resides.

<tempLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of the
temporary library used with this
production library.

Exhibit 10-8. PRODLIB SERVICE LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
483

48

Chapter 10: ChangeMan ZMF Administration Tasks
requested for a single site. To request a list of specifications for all sites, enter a “match-all”
wildcard character in this tag or omit it altogether.

If you omit the <siteName> tag from the request message, you must still include an empty
<request> tag in your request message. The <request> tag is required to identify the
message as a request rather than a reply.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

Data structure details for the <request> data element appear in Exhibit 10-9.

SITE GBL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains global specifications for one remote site known to the queried
instance of ChangeMan ZMF.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-10.

Exhibit 10-9. SITE GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site.

NOTE: Use asterisk (*) wildcard
or omit tag to request all sites.

Exhibit 10-10. SITE GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<cmnSubSystemId> Optional 0 - 1 String (1) Subsystem ID of ZMF started task on
remote site.

<defaultUnitName> Optional 0 - 1 String (8),
variable

Default DASD unit name assigned to site
partition on remote site.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<defaultVolume> Optional 0 - 1 String (6),
variable

Default DASD volume assigned to site
partition on remote site.

<delayLib> Optional 0 - 1 String
(255),
variable

Fully qualified dataset name of temporary
library that receives ZMF data transfers to
site.

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric value
dictates the default order in which a list of
items is displayed.

<gregorianPegDate> Optional 0 - 1 Date (8),
yyyymmdd

Peg date expressed as Gregorian date.

NOTE: Must be equivalent to value in
<julianPegDate> tag.

<jesNodeName> Optional 0 - 1 String (8),
variable

Site JES node name.

<jobCard01> Optional 0 - 1 String (72),
variable

First of up to 4 default job cards for
application installation at this site.

<jobCard02> Optional 0 - 1 String (72),
variable

Second of up to 4 default job cards for
application installation at this site.

<jobCard03> Optional 0 - 1 String (72),
variable

Third of up to 4 default job cards for
application installation at this site.

<jobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to 4 default job cards for
application installation at this site.

<julianPegDate> Optional 0 - 1 String (7),
yyyyddd

Peg date expressed in Julian day format.

NOTE: Must be equivalent to value in
<gregorianPegDate> tag.

<logicalUnitName> Optional 0 - 1 String (8),
variable

z/OS logical unit name associated with
ZMF remote site.

<serparmDsn> Optional 0 - 1 String (44) SERPARM dataset name.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of remote site.

<siteServerIpAddress> Optional 0 - 1 String (32),
variable

Site server IP Address.

<siteServerPortID> Optional 0 - 1 String (5),
variable

Site server port id.

<siteStageLibModel> Optional 0 - 1 String (32),
variable

Name of staging library on local ZMF
server to use as model for creation &
setup of staging library at this remote site.

<siteTimeDifference> Optional 0 - 1 String (5),
±hhss

Signed integer representing site time
zone offset from Universal Time (UT) in
hours & seconds.

Exhibit 10-10. SITE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
485

48

Chapter 10: ChangeMan ZMF Administration Tasks
List Remote Sites for Application - SITE APPL LIST

This function lists one or all remote sites defined for a named application in the current
instance of ChangeMan ZMF. Also returned are the default job cards for installing application-
specific packages at the listed site. If no sites have been defined for the named application,
no <result> tags are returned in the reply message.

The Serena XML service/scope/message tags and attributes for messages to list remote
sites for an application are:

<service name=”SITE”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

SITE APPL LIST — Requests

Serena XML lets you list one or all sites defined for an application. Only the application name
is required as input to the request. Specify a site name to restrict results to application-
specific information about a single site.

Data structure details for the <request> data element appear in Exhibit 10-11.

SITE APPL LIST — Replies

The reply message listing an application’s remote sites returns zero to many <result> data
elements. Each <result> tag contains the name of one site defined for that application.

<xferVehicle> Optional 0 - 1 String (1) Code for mainframe-to-mainframe file
transfer tool. Values:

1 = IEBCOPY
2 = Other (such as XCOM, BDT, or
 CONNECT:Direct)

NOTE: Value of 1 (IEBCOPY) is valid
only if DASD shared between
development site & remote site.

Exhibit 10-11. SITE APPL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF name of desired application.

NOTE: OK to omit trailing blanks.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of desired site.

Exhibit 10-10. SITE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-12.

List Install Calendar for Site - CALENDAR SERVICE LIST

This function lists the package installation schedule for one or all sites defined to
ChangeMan ZMF. If no installs are scheduled for the next 364 days, no results are returned.

 Note

Systemwide calendar and scheduler settings are managed via global
parameter settings. See List Global Parameters - PARMS GBL LIST for more
information about global calendar & scheduler settings.

The Serena XML service/scope/message tags and attributes for messages to list the
installation calendar for one or more sites are:

<service name=”CALENDAR”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

Exhibit 10-12. SITE APPL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name.

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric value
dictates the default order in which a list of
items is displayed.

<jobCard01> Optional 0 - 1 String (72),
variable

First of up to 4 default job cards for
application installation at this site.

<jobCard02> Optional 0 - 1 String (72),
variable

Second of up to 4 default job cards for
application installation at this site.

<jobCard03> Optional 0 - 1 String (72),
variable

Third of up to 4 default job cards for
application installation at this site.

<jobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to 4 default job cards for
application installation at this site.

<jobCards> Optional 0 - 4 String (72),
variable

Use tags jobCard01 - joCard04 instead.

<siteName> Required 1 String (8),
variable

ZMF name of one site associated with
named application.
487

48

Chapter 10: ChangeMan ZMF Administration Tasks
CALENDAR SERVICE LIST — Requests

Serena XML supports two types of installation calender list requests:

• Site Calendar — Request the install calendar for one site by entering the site name in
the <siteName> tag of the <request> data element. The number of package
installs for that site are returned by date for the next 364 days.

• Composite Calendar — Request a composite install calendar for all sites by entering
a match-all (asterisk) wildcard in the <siteName> tag or omitting the tag altogether.
The total number of package installs for the organization are returned by date for the
next 364 days. No site breakout is included.

Data structure details for the <request> data element appear in Exhibit 10-13.

CALENDAR SERVICE LIST — Replies

The reply message for this function returns one <result> data element, which contains up
to 364 scheduling calendar records. Each record totals the planned number of package install
jobs for the site named in the request message, or for the entire organization if no site was
named.

The standard <response> data element follows the <result> tag in the reply and indicates
the success or failure of the list request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Data structure details for the <result> tag appear in Exhibit 10-14.

Exhibit 10-13. CALENDAR SERVICE LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<siteName> Optional 0 - 1 String (8),
variable

ZMF site name.

NOTE: Use asterisk (*) wildcard character
or omit tag to request schedule for all
sites, with no site breakdown.

Exhibit 10-14. CALENDAR SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<calendarEntry> Optional 0 - 364 Complex See Exhibit 10-15.
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The <result> data element contains a complex subtag, <calendarEntry>, which itself
contains several subtags. Data structure details appear in Exhibit 10-15.

DEVELOPER ENVIRONMENT ADMINISTRATION

For administrators of the ChangeMan ZMF developer environment, Serena XML supports the
following tasks for general use:

The syntax that identifies these functions appears primarily in the name attribute of the
<service> tag, as follows:

<service name=”LIBTYPE”>
<service name=”LANGUAGE”>
<service name=”PROCS”>
<service name=”PARMS”>
<service name=”REASONS”>

Exhibit 10-15. <calendarEntry> Subtag Data Structure

Seq Subtag Use Occurs
Data Type &
Length Values & Dependencies

1 <calendarDate> Required 1 Date,
yyyymmdd

Date for install jobs to run.

2 <numberOfDays> Required 1 Integer (4),
variable

Number of days

3 <scheduledInstallCount> Required 1 Integer (3),
variable

Number of package install jobs
scheduled for date.

4 <maximumInstallCount> Required 1 String (3),
variable

Maximum number of install jobs
set for date by ZMF administrator.

NOTE: An unlimited number of
packages may be installed if this
value = ‘UNL’.

• List Global Library Types - LIBTYPE
GBL LIST

• List Application Build Procedures - PROCS
APL LIST

• List Application Library Types - LIB-
TYPE APL LIST

• List Global Parameters - PARMS GBL LIST

• List Global Language Parsers - LAN-
GUAGE GBL LIST

• Parameters Application List - PARMS APL
LIST

• List Application Language Parsers -
LANGUAGE APL LIST

• List Global Reason Codes - REASONS
SERVICE LIST

• List Global Build Procedures - PROCS
GBL LIST
489

49

Chapter 10: ChangeMan ZMF Administration Tasks
In addition, the name attribute of the <scope> tag is one of the following:

<service name=”GBL”>
<service name=”APL”>

List Global Library Types - LIBTYPE GBL LIST

LIBTYPE GBL LIST

This Serena XML function requests a list of all globally defined library types known to this
instance of ChangeMan ZMF. Also returned with the library type is its “like-library” type,
library type description, library-level options for staging versions and DBMS support, and
dataset configuration settings.

The Serena XML service/scope/message tags and attributes for messages to list the globally
library types are:

<service name=”LIBTYPE”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

LIBTYPE GBL LIST — Request

This function supports four kinds of library type list requests:

• All Library Types — Enter a “match-all” (asterisk) wild card in <libType> or omit this
tag altogether to retrieve all globally defined library types and their specifications.

• All “Like-Library” Library Types — Lists all physical library types assigned to the “like-
library” category identified by code in the <likeType> tag of your request.

• All DB2 Library Types — To list all DB2 library types, enter “Y” in the <isDb2LibType>
tag of your request.

• ChangeMan ZMF Settings for a Named Library Type — Lists the “like-library” type,
library type description, library-level support options, and dataset configuration for the
library type named in the <libType> tag of your request.

If you omit the <libType> tag from your request, you must still submit an empty <request>
data element to identify the message as a request rather than a reply.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

Data structure details for the <request> data element appear in Exhibit 10-16.

Exhibit 10-16. LIBTYPE GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<isDb2LibType> Optional 0 - 1 String (1) Y = Include only DB2 libraries.
N = Omit all DB2 libraries.

NOTE: Omit tag or use asterisk (*)
wildcard to request both DB2 and non-
DB2 library types.

<libType> Optional 0 - 1 String (3),
variable

Name of physical library type.

NOTE: Use asterisk (*) wildcard or omit
tag to request all library types.

<likeType> Optional 0 - 1 String (1) Code for “like-library” type assigned to
library type name. Values:

1 = Like Copy Library
2 = Like Load Library
3 = Like Other Library
4 = Like PDS Library
5 = Like Source Library
6 = Like Ncal Library
7 = Like Object Library
491

49

Chapter 10: ChangeMan ZMF Administration Tasks
LIBTYPE GBL LIST — Reply

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains the name and specifications for one globally defined library type.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-17.

<userFunction> Optional 0 - 1 String (1),
variable

User function related to the service
request. This modifies the behavior of
the service. Values:

1 - Browse
2 - Checkout
3 - Create
4 - Delete
5 - Edit
6 - Edit and stage
7 - Recompile
8 - Relink
9 - Stage
A - Update
B - Checkin
C - Build
D - Browse listing
E - Compare
F - Scan
G - Scratch/rename

Exhibit 10-17. LIBTYPE GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<apsDevLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of APS
development library associated with
library type named in <libType>.

NOTE: Required if <isApsLibType>
value is Y.

<apsEntity> Optional 0 - 1 String (8),
variable

Name of APS security entity used to
access APS development library.

NOTE: Required if <isApsLibType>
value is Y.

<bindControlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 bind ctrl plan subtype
N = Not DB2 bind ctrl plan subtype

NOTE: Required if <isDb2LibType>
value is Y.

Exhibit 10-16. LIBTYPE GBL LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<blockSize> Optional 0 - 1 String (6),
variable

Size of DASD block in bytes to use with
staging library allocations for library type
named in <libType>.

<chkOutActivityFile> Optional 0 - 1 String (1) Y = Yes, copy component to
 activity file at checkout.
N = Don’t make activity file copy.

<chkOutComponentGenDesc> Optional 0 - 1 String (1) Y = Yes, copy component general
 description to staging change
 description at check-out.
N = No, leave component
 change description blank
 in staging at check-out.

<db2SqlTerminationChar> Optional 0 - 1 String (1) DB2 SQL sentence termination
character.

<dbrmSubType> Optional 0 - 1 String (1) Y = Yes, DBRM subtype
N = Not DBRM subtype

<ddlSqlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 DDL/SQL subtype
N = Not DB2 DDL/SQL subtype

NOTE: Required if <isDb2LibType>
value is Y.

<deferStageLibCreation> Optional 0 - 1 String (1) Y = Yes, defer allocation of
 library type in staging library
 until first component check-out
 to library type in <libType>.
N = No, don’t defer library type
 creation, even if empty.

<dirBlocks> Optional 0 - 1 String (6),
variable

Blocks allocated in staging library to
directory for this library type.

NOTE: Size of block defined in
<blockSize> tag.

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric
value dictates the default order in which
a list of items is displayed.

<eAttr> Optional 0 - 1 String (1) Extended attribute option. Values:

N = Dataset cannot have extended
 attributes or reside in EAS.

O = Dataset can have extended
 attributes and reside in EAS.

blank = Default based on data type.

Exhibit 10-17. LIBTYPE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
493

49

Chapter 10: ChangeMan ZMF Administration Tasks
<imsEntity> Optional 0 - 1 String (1) IMS entity class for library type, if
applicable. Values:

1 = PSB source
2 = DBD source
3 = MFS source
4 = PSB target
5 = DBD target
6 = FMT target
7 = REF target

NOTE: Required if <isImsLibType>
value is Y.

<includeUtilityInfo> Optional 0 - 1 String (1) Y = Yes, track scratch/rename
 utility activity for library type
 in <libType>.
N = No, omit scratch/rename activity.

<isApsLibType> Optional 0 - 1 String (1) Y = Yes, library type is APS
N = Not APS

<isDb2LibType> Optional 0 - 1 String (1) Y = Yes, library type is DB2
N = Not DB2

<isHfsLibType> Optional 0 - 1 String (1) Y = Yes, this is HFS library type
N = No, not HFS library type

<isImsLibType> Optional 0 - 1 String (1) Y = Yes, library type is IMS
N = Not IMS

<isPdsLibType> Optional 0 - 1 String (1) Y = Yes, library type is PDS
N = Not PDSE

<isPdseLibType> Optional 0 - 1 String (1) Y = Yes, library type is PDSE
N = Not PDSE

<isPdseObject> Optional 0 - 1 String (1) Y = Yes, library type is PDSE Object
N = Not PDSE Object

<isSsvAllowed> Optional 0 - 1 String (1) Y = Yes, SSV allowed
N = No, SSV is not allowed

<isSsvEnforced/> Optional 0 - 1 String (1) Y = Yes, SSV enforced
N = No, SSV is not enforced

<isSysManaged/> Optional 0 - 1 String (1) Y = Yes, System Managed
N = No, not System Managed

<libType> Optional 0 - 1 String (3),
variable

Name of physical library type.

<libTypeDesc> Optional 0 - 1 String (44),
variable

Global description of library type.

<librarySequenceNo> Optional 0 - 1 Integer (1),
fixed

Syslib Concatenation Seq. No.

Exhibit 10-17. LIBTYPE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<likeType> Optional 0 - 1 String (1) Code for “like-library” type assigned to
library type name. Values:

1 = Like Copy Library
2 = Like Load Library
3 = Like Other Library
4 = Like PDS Library
5 = Like Source Library
6 = Like Ncal Library
7 = Like Object Library

<packagBindControlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 pkg bind control subtype
N = Not DB2 pkg bind control subtype

NOTE: Required if <isDb2LibType>
value is Y.

<primarySpace> Optional 0 - 1 String (8),
variable

Minimum DASD space allocation in
staging library for this library type.

NOTE: Given in units defined by
<spaceType> tag.

<recordFormat> Required 1 String(3),
variable

Code for logical record format. Values:

F = Fixed
FA = Fixed ASA
FM = Fixed Machine
FB = Fixed Block
FBA = Fixed Block ASA
FBM = Fixed Block Machine
FBS = Fixed Block Standard
FS = Fixed Standard
FSA = Fixed Standard ASA
FSM = Fixed Standard Machine
V = Variable
VA = Variable ASA
VM = Variable Machine
VB = Variable Block
VBA = Variable Block ASA
VBM = Variable Block Machine
VS = Variable Spanned
VSA = Variable Spanned ASA
VSM =Variable Spanned Machine
U = Undefined
UA = Undefined ASA
UM = Undefined Machine
UB = Undefined Block
UBA = Undefined Block ASA
UBM = Undefined Block Machine
US = Undefined Spanned
USA = Undefined Spanned ASA
USM =Undefined Spanned
 Machine

<recordLength> Optional 0 - 1 String (6),
variable

Length of data set record in bytes.

Exhibit 10-17. LIBTYPE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
495

49

Chapter 10: ChangeMan ZMF Administration Tasks
<secondarySpace> Optional 0 - 1 String (8),
variable

DASD allocation for extents in staging
library for this library type.

NOTE: Given in units defined by
<spaceType> tag.

<spaceType> Optional 0 - 1 String (3),
variable

DASD space allocation unit in staging
library for this library type. Values:

Blk = Blocks
Cyl = Cylinders
Trk = Tracks

<sqlStoredProcDefinition> Optional 0 - 1 String (1) Y = Yes, DB2 SQL stored procedure
 definition subtype
N = Not DB2 SQL stored procedure

NOTE: Required if <isDb2LibType>
value is Y.

<ssvOption> Optional 0 - 1 String (8),
variable

Global option to save staging versions
for library type named in <libType>.

YES = Save staging versions.
NO = Don’t save staging versions.
OPT = Optional; save staging versions
 enabled by application.

<storedProcSubtype> Optional 0 - 1 String (1) Y = Yes, DB2 stored procedure
 subtype
N = Not DB2 stored procedure subtype

NOTE: Required if <isDb2LibType>
value is Y.

<targetActivityFile> Optional 0 - 1 String (3),
variable

Library type for check-out activity file
associated with the library type named
in <libType>.

<targetLoadLibtype> Optional 0 - 1 String (3),
variable

The “like-load” target library type
associated with source library type in
<libType>.

NOTE: Required if library type is like-
source, i.e. <likeType> value = 5.

<triggerSubType> Optional 0 - 1 String (1) Y = Yes, DB2 trigger subtype
N = Not DB2 trigger subtype

NOTE: Required if <isDb2LibType>
value is Y.

<unitName> Optional 0 - 1 String (8),
variable

Logical unit name for DASD volume
assigned to library type.

<volume> Optional 0 - 1 String (6),
variable

DASD reference volume serial ID.

Exhibit 10-17. LIBTYPE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Application Library Types - LIBTYPE APL LIST

This function requests a list of all library types defined for a named application. Also returned
with the library type is its “like-library” type, library type description, library-level options for
staging versions and DBMS support, and dataset configuration settings. Values not
overridden at the application level are not returned in the results of this function. The global
defaults used in place of such overrides are outside the scope of this function.

The Serena XML service/scope/message tags and attributes for messages to list the library
type records for an application are:

<service name=”LIBTYPE”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

LIBTYPE APL LIST — Requests

This Serena XML function requests a list of library types defined for use with a named
application. The application name is required in the request. The function supports four kinds
of requests:

• All Library Types — Name the application for which library types and their specifications
are desired in the <applName> tag. Enter a “match-all” (asterisk) wild card in
<libType> or omit this tag altogether. This retrieves a list of all library types defined for
the application.

• All “Like-Library” Library Types — Name the application for which library types and
their specifications are desired in the <applName> tag. Enter a code corresponding to
the “like-library” type of interest in the <likeType> tag. This requests a list of all physical
library types assigned to the “like-library” category identified in the <likeType> tag and
defined for the named application.

• All DB2 Library Types — Name the application for which library types and their
specifications are desired in the <applName> tag. Enter “Y” in the <isDb2LibType>
tag. This requests all DB2 library types and specifications defined for the named
application.

• ChangeMan ZMF Settings for a Named Library Type — Name the application for
which library type specifications are desired in the <applName> tag. Name the particular
library type of interest in <libType>. The function lists the “like-library” type, library type
description, library-level support options, and dataset configuration for the named library
type as they are defined for the named application.

Data structure details for the <request> data element appear in Exhibit 10-18.

Exhibit 10-18. LIBTYPE APL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.
497

49

Chapter 10: ChangeMan ZMF Administration Tasks
LIBTYPE APL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains information about one library type defined for the named application.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

<isDb2LibType> Optional 0 - 1 String (1) Y = Include only DB2 libraries.
N = Omit all DB2 libraries.

NOTE: Omit tag or use asterisk (*)
wildcard to request both DB2 and non-
DB2 library types.

<libType> Optional 0 - 1 String (3),
variable

Name of desired library type.

NOTE: Use asterisk (*) wildcard or omit
tag to request all library types.

<likeLibType> Optional 0 - 1 String (1) Code for “like-library” type assigned to
library type name. Values:

1 = Like Copy Library
2 = Like Load Library
3 = Like Other Library
4 = Like PDS Library
5 = Like Source Library
6 = Like Ncal Library
7 = Like Object Library

<userFunction> Optional 0 - 1 String (1),
variable

User function related to the service
request. This modifies the behavior of
the service. Values:

1 - Browse
2 - Checkout
3 - Create
4 - Delete
5 - Edit
6 - Edit and stage
7 - Recompile
8 - Relink
9 - Stage
A - Update
B - Checkin
C - Build
D - Browse listing
E - Compare
F - Scan
G - Scratch/rename

Exhibit 10-18. LIBTYPE APL LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> tag appear in Exhibit 10-19.

Exhibit 10-19. LIBTYPE APL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<apsDevLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of APS
development library associated with
library type named in <libType>.

NOTE: Required if <isApsLibType>
value is Y.

<apsEntity> Optional 0 - 1 String (8),
variable

Name of APS security entity used to
access APS development library.

NOTE: Required if <isApsLibType>
value is Y.

<blockSize> Optional 0 - 1 String (6),
variable

Size of DASD block in bytes to use with
staging library allocations for library type
named in <libType>.

<chkOutActivityFile> Optional 0 - 1 String (1) Y = Yes, copy component to
 activity file at checkout.
N = Don’t make activity file copy.

<chkOutComponentGenDesc> Optional 0 - 1 String (1) Y = Yes, copy component general
 description to staging change
 description at check-out.
N = No, leave component
 change description blank
 in staging at check-out.

<db2SqlTerminationChar> Optional 0 - 1 String (1) DB2 SQL sentence termination
character.

<dbrmSubType> Optional 0 - 1 String (1) Y = Yes, DBRM subtype
N = Not DBRM subtype

<ddlSqlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 DDL/SQL subtype
N = Not DB2 DDL/SQL subtype

NOTE: Required if <isDb2LibType>
value is Y.

<deferStageLibCreation> Optional 0 - 1 String (1) Y = Yes, defer allocation of
 library type in staging library
 until first component check-out
 to library type in <libType>.
N = No, don’t defer library type
 creation, even if empty.

<dirBlocks> Optional 0 - 1 String (6),
variable

Blocks allocated in staging library to
directory for this library type.

NOTE: Size of block defined in
<blockSize> tag.
499

50

Chapter 10: ChangeMan ZMF Administration Tasks
<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric
value dictates the default order in which
a list of items is displayed.

<eAttr> Optional 0 - 1 String (1) Extended attribute option. Values:

N = Dataset cannot have extended
 attributes or reside in EAS.

O = Dataset can have extended
 attributes and reside in EAS.

blank = Default based on data type.

<imsEntity> Optional 0 - 1 String (1) IMS entity class for library type, if
applicable. Values:

1 = PSB source
2 = DBD source
3 = MFS source
4 = PSB target
5 = DBD target
6 = FMT target
7 = REF target

NOTE: Required if <isImsLibType>
value is Y.

<includeUtilityInfo> Optional 0 - 1 String (1) Y = Yes, track scratch/rename
 utility activity for library type
 in <libType>.
N = No, omit scratch/rename activity.

<includeUtilityInfo> Optional 0 - 1 String (1) Y = Include utility comp info.
N = Do not include utility comp info.

<isApsLibType> Optional 0 - 1 String (1) Y = Yes, library type is APS
N = Not APS

<isDb2LibType> Optional 0 - 1 String (1) Y = Yes, library type is DB2
N = Not DB2

<isHfsLibType> Optional 0 - 1 String (1) Y = Yes, this is HFS library type
N = No, not HFS library type

<isImsLibType> Optional 0 - 1 String (1) Y = Yes, library type is IMS
N = Not IMS

<isPdsLibType> Optional 0 - 1 String (1) Y = Yes, library type is PDS
N = Not PDS

<isPdseLibType> Optional 0 - 1 String (1) Y = Yes, library type is PDSE
N = Not PDSE

<isPdseObject> Optional 0 - 1 String (1) Y = PDSE Object lib
N = Not PDSE Object lib

<isSsvAllowed> Optional 0 - 1 String (1) Y = SSV allowed
N = SSV not allowed

Exhibit 10-19. LIBTYPE APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<isSsvEnforced> Optional 0 - 1 String (1) Y = SSV enforced
N = SSV not enforced

<isSysManaged> Optional 0 - 1 String (1) Y = System Managed
N = Not System Managed

<libType> Optional 0 - 1 String (3),
variable

Name of physical library type.

<libTypeDesc> Optional 0 - 1 String (44),
variable

Global description of library type.

<librarySequenceNo> Optional 0 - 1 String (3) SYSLIB concatenation sequence
number.

<likeType> Optional 0 - 1 String (1) Code for “like-library” type assigned to
library type name. Values:

1 = Like Copy Library
2 = Like Load Library
3 = Like Other Library
4 = Like PDS Library
5 = Like Source Library
6 = Like Ncal Library
7 = Like Object Library

<packagBindControlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 pkg bind control subtype
N = Not DB2 pkg bind control subtype

NOTE: Required if <isDb2LibType>
value is Y.

<planBindControlSubType> Optional 0 - 1 String (1) Y = Yes, DB2 bind ctrl plan subtype
N = Not DB2 bind ctrl plan subtype

NOTE: Required if <isDb2LibType>
value is Y.

<primarySpace> Optional 0 - 1 String (8),
variable

Minimum DASD space allocation in
staging library for this library type.

NOTE: Given in units defined by
<spaceType> tag.

Exhibit 10-19. LIBTYPE APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
501

50

Chapter 10: ChangeMan ZMF Administration Tasks
<recordFormat> Optional 0 - 2 String(3),
variable

Code for logical record format. Values:

F = Fixed
FA = Fixed ASA
FM = Fixed Machine
FB = Fixed Block
FBA = Fixed Block ASA
FBM = Fixed Block Machine
FBS = Fixed Block Standard
FS = Fixed Standard
FSA = Fixed Standard ASA
FSM = Fixed Standard Machine
V = Variable
VA = Variable ASA
VM = Variable Machine
VB = Variable Block
VBA = Variable Block ASA
VBM = Variable Block Machine
VS = Variable Spanned
VSA = Variable Spanned ASA
VSM =Variable Spanned Machine
U = Undefined
UA = Undefined ASA
UM = Undefined Machine
UB = Undefined Block
UBA = Undefined Block ASA
UBM = Undefined Block Machine
US = Undefined Spanned
USA = Undefined Spanned ASA
USM =Undefined Spanned
 Machine

<recordLength> Optional 0 - 1 String (6),
variable

Length of data set record in bytes.

<secondarySpace> Optional 0 - 1 String (8),
variable

DASD allocation for extents in staging
library for this library type.

NOTE: Given in units defined by
<spaceType> tag.

<spaceType> Optional 0 - 1 String (3),
variable

DASD space allocation unit in staging
library for this library type. Values:

Blk = Blocks
Cyl = Cylinders
Trk = Tracks

<sqlStoredProcDefinition> Optional 0 - 1 String (1) Y = Yes, DB2 SQL stored procedure
 definition subtype
N = Not DB2 SQL stored procedure

NOTE: Required if <isDb2LibType>
value is Y.

Exhibit 10-19. LIBTYPE APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Global Language Parsers - LANGUAGE GBL LIST

This function lists the parsers assigned to each globally defined programming language in
ChangeMan ZMF. If no languages have been defined at the global level, no results are
returned by this function.

The Serena XML service/scope/message tags and attributes for messages to list globally
defined programming language parsers are:

<service name=”LANGUAGE”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

<ssvOption> Optional 0 - 1 String (8),
variable

Application-level option to save staging
versions for library type in <libType>.

Always = Always save staging version
Prompt = Prompt to save staging
 version
None = No staging version option
 set; take global default

<storedProcSubtype> Optional 0 - 1 String (1) Y = Yes, DB2 stored procedure
 subtype
N = Not DB2 stored procedure subtype

NOTE: Required if <isDb2LibType>
value is Y.

<targetActivityFile> Optional 0 - 1 String (3),
variable

Library type for check-out activity file
associated with the library type named
in <libType>.

<targetLoadLibtype> Optional 0 - 1 String (3),
variable

The “like-load” target library type
associated with source library type in
<libType>.

NOTE: Required if library type is like-
source, i.e. <likeType> value = 5.

<triggerSubType> Optional 0 - 1 String (1) Y = Yes, DB2 trigger subtype
N = Not DB2 trigger subtype

NOTE: Required if <isDb2LibType>
value is Y.

<unitName> Optional 0 - 1 String (8),
variable

Logical unit name for DASD volume
assigned to library type.

<volume> Optional 0 - 1 String (6),
variable

DASD reference volume serial ID.

Exhibit 10-19. LIBTYPE APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
503

50

Chapter 10: ChangeMan ZMF Administration Tasks
LANGUAGE GBL LIST — Requests

The request message for this function identifies one or all globally defined programming
languages whose parsers are of interest. To list all globally defined languages and their
parsers, use a “match-all” (asterisk) wildcard character in the <language> tag, or omit this
tag altogether and submit an empty <request>. Enter a specific language name to retrieve
the parser for that language.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

Data structure details for the <request> data element appear in Exhibit 10-20.

LANGUAGE GBL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains one globally defined language and parser combination.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-21.

Exhibit 10-20. LANGUAGE GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<language> Optional 1 String (8),
variable

Programming language desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request parsers for all languages.

Exhibit 10-21. LANGUAGE GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric value
dictates the default order in which a list of
items is displayed.

<language> Optional 0 - 1 String (8),
variable

Name of programming language.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
List Application Language Parsers - LANGUAGE APL LIST

This function lists application-level parser overrides for the programming languages used in a
named application. If no language parser is defined at the application level, no results are
returned. Global parser defaults for languages without an application-level override are
outside the scope of this function.

The Serena XML service/scope/message tags and attributes for messages to list the
programming language parsers for an application are:

<service name=”LANGUAGE”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

LANGUAGE APL LIST — Requests

The request message for this function requires the name of the desired application in the
<applName> tag. It additionally identifies one or all programming languages whose parsers
are of interest. To list all languages with application overrides for their parsers, use a “match-
all” (asterisk) wildcard character in the <language> tag, or omit this tag altogether. Enter a
specific language name to retrieve the parser override for that language.

Data structure details for the <request> data element appear in Exhibit 10-22.

LANGUAGE APL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains information about one language and parser combination defined to
override global defaults for the named application.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code

<parser> Optional 0 - 1 String (8),
variable

Name of globally defined default
language parsing routine.

Exhibit 10-22. LANGUAGE APL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name desired.

NOTE: OK to omit trailing blanks.

<language> Optional 0 - 1 String (8),
variable

Programming language desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request all languages.

Exhibit 10-21. LANGUAGE GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
505

50

Chapter 10: ChangeMan ZMF Administration Tasks
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-23.

List Global Build Procedures - PROCS GBL LIST

This function lists globally defined build procedures, their descriptions, and their associated
programming languages and parsers. If no build procedures are defined at the global level,
no results are returned.

The Serena XML service/scope/message tags and attributes for messages to list globally
defined build procedures are:

<service name=”PROCS”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

PROCS GBL LIST — Requests

Request messages for the global build procedure list take one of three forms:

• All Build Procedures — To request all globally defined build procedures, enter a “match-
all” (asterisk) wildcard character in both the <procName> and <language> tags.
Alternatively, omit both tags and submit and empty <request> data structure.

• Build Procedures Defined for Named Language — Name the language of interest in
the <language> tag to request all build procedures that support that language.

• Language Defined for Named Build Procedure — Name the build procedure of interest
in the <procName> tag to request its description, language, and parser definition.

Exhibit 10-23. LANGUAGE APL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

ZMF application name.

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric value
dictates the default order in which a list of
items is displayed.

<language> Optional 0 - 1 String (8),
variable

Name of programming language with
application-level parser override.

<parser> Optional 0 - 1 String (8),
variable

Name of language parsing routine
defined for application.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

Data structure details for the <request> data element appear in Exhibit 10-24.

PROCS GBL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains information about one globally defined build procedure.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-25.

Exhibit 10-24. PROCS GBL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<language> Optional 0 - 1 String (8),
variable

Programming language desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request all languages.

<procName> Optional 0 - 1 String (8),
variable

Name of build procedure desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request all build procedures.

Exhibit 10-25. PROCS GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<displayOrderNo> Optional 0 - 1 String (1) This numeric value dictates the default
order in which a list of items is displayed.

<language> Optional 0 - 1 String (8),
variable

Name of programming language supported
by build procedure in <procName>.

<parser> Optional 0 - 1 String (8),
variable

Name of language parsing routine defined
for build procedure in <procName>.

<procDesc> Optional 0 - 1 String (44),
variable

Global description of build procedure
named in <procName>.
507

50

Chapter 10: ChangeMan ZMF Administration Tasks
List Application Build Procedures - PROCS APL LIST

This function lists application build procedures, their descriptions, and their associated
programming languages and parsers. If no build procedures are defined at the application
level, no results are returned. Global build procedure defaults are outside the scope of this
function.

The Serena XML service/scope/message tags and attributes for messages to list application
build procedures are:

<service name=”PROCS”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

PROCS APL LIST — Requests

Request messages for the application build procedure list take one of three forms:

• All Build Procedures — To request all build procedures defined for an application, name
the desired application in the <applName> tag and omit all other tags from the request.

• Build Procedures Defined for Named Language — Name the application of interest in
the <applName> tag and the language of interest in the <language> tag to request all
application build procedures that support that language.

• Language Defined for Named Build Procedure — Name the application of interest in
the <applName> tag and the build procedure of interest in the <procName> tag to
request the description, language, and parser definition for that build procedure.

Data structure details for the <request> data element appear in Exhibit 10-26.

<procName> Optional 0 - 1 String (8),
variable

Name of globally defined build procedure.

Exhibit 10-26. PROCS APL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name desired.

NOTE: OK to omit trailing blanks.

<language> Optional 0 - 1 String (8),
variable

Programming language desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request all languages.

<procName> Optional 0 - 1 String (8),
variable

Name of build procedure desired.

NOTE: Use asterisk (*) wildcard or omit
tag to request all build procedures.

Exhibit 10-25. PROCS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
PROCS APL LIST — Replies

The reply message for this function returns zero to many <result> data elements. Each
<result> tag contains information about one application build procedure.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-27.

List Global Parameters - PARMS GBL LIST

The global parameter list reports global settings in ChangeMan ZMF that enforce the
business rules for software change management at your installation. If you have not
customized your global parameters, the default values are reported.

The Serena XML service/scope/message tags and attributes for messages to list global
parameters are:

<service name=”PARMS”>
<scope name=”GBL”>
<message name=”LIST”>

These tags appear in both requests and replies.

PARMS GBL LIST — Request

Global parameter list requests take no parameters and contain an empty <request> data
element. The <request> tag is required to identify the message as a request rather than a
reply.

Exhibit 10-27. PROCS APL LIST<result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 0 - 1 String (4),
variable

Name of ZMF application listed.

<displayOrderNo> Optional 0 - 1 String (1) This numeric value dictates the default
order in which a list of items is displayed.

<language> Optional 0 - 1 String (8),
variable

Name of programming language supported
by build procedure in <procName>.

<parser> Optional 0 - 1 String (8),
variable

Name of language parsing routine defined
for build procedure in <procName>.

<procDesc> Optional 0 - 1 String (44),
variable

Application-level description of build
procedure named in <procName>.

<procName> Optional 0 - 1 String (8),
variable

Name of application-level build procedure.
509

51

Chapter 10: ChangeMan ZMF Administration Tasks

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

PARMS GBL LIST — Reply

The reply message for this function exactly one <result> data element containing the
global parameter settings for this instance of ChangeMan ZMF.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-28.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<addUsrVarsToPkgLst> Optional 0 - 1 String (1) Y = Yes, add user variables to pkg list.

N = No, Don’t add user variables to pkg
list.

<allocRetryCount> Optional 0 - 1 String (6),
variable

The number of times to retry failed
allocation attempts. Failed allocation
attempts are retried when generating
package installation JCL. Value range:
0 to 65535.

<allocRetryWait> Optional 0 - 1 String (6),
variable

The time in seconds to wait between
allocation retry attempts. Value range: 0
to 65535.

<allowAssignedProcOverride> Optional 0 - 1 String (1) Y = Yes, allow designated PROC
 override.
N = Don’t allow designated PROC
 override.

<allowChkOutToDevLib> Optional 0 - 1 String (1) Y = Yes, allow checkout to personal
 development library outside ZMF.
N = Don’t allow checkout to personal
 development library outside ZMF.
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

.

.

.

,
.

<allowCompMultAppl> Optional 0 - 1 String (1) Y = Yes, allow component in multiple
applications.
N = Don’t allow component in multiple
applications.

<allowGnfLocalUpdate> Optional 0 - 1 String (1) Y = Yes, allow application admin to
 update global notification file.
N = No, don’t allow application admin
 to update global notification file.

<allowLinkPackages> Optional 0 - 1 String (1) Y = Yes, allow external package linking
N = No, don’t allow package linking.

<allowOnlyOneApproval> Optional 0 - 1 String (1) Y = Yes, allow install after only one
 approval.
N = No, don’t allow install if only one
 approval received.

<allowStageOverlay> Optional 0 - 1 String (1) Y = Yes, allow staged component to be
 overlaid by later check-in.
N = No, don’t allow staging overlays.

<allowTempChange> Optional 0 - 1 String (1) Y = Yes, allow temp change packages.
N = No temp change packages allowed

<apsConfigLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of APS
configuration library.

<apsHighLevelNode> Optional 0 - 1 String (32),
variable

Global default high-level node for APS
datasets.

<apsRule> Optional 0 - 1 String (1) Code for APS processing rule. Values:

0 = No APS processing; standard ZMF
1 = Explicit Mode. APS operates on
 physical dataset or component.
2 = Implicit Mode, Level 2. APS
 operates t level of application (AP),
 scenario (CN), data structure (DS),
 program (PG), online express (OX)
 report mockup (RP), & screen (SC)
3 = Implicit Mode, Level 1. APS list
 disabled for application (AP)
 or program (PG) operations; ZMF
 automatically checks out & stages
 related components.

NOTE: Default value is 1.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
511

51

Chapter 10: ChangeMan ZMF Administration Tasks

-

-

<auditLevel> Optional 0 - 1 String (1) Code for package audit level required
prior to freeze. Values:

0 = Audit optional before freeze.
1 = Audit required before freeze, but
 any return code for audit accepted
 except ABEND.
2 = Audit required before freeze. Return
 code for audit is 12 or less; out-of-
 synch conditions accepted in
 staging libraries.
3 = Audit required before freeze. Return
 code for audit is 8 or less. No out-of
 synch conditions accepted in stage
 libraries, but are accepted with
 respect to baseline libraries.
4 = Audit required before freeze. Return
 code for audit is 4 or less. No out-of
 synch conditions accepted relative
 to staging or baseline libraries; but
 staged module may duplicate its
 baseline counterpart.
5 = Audit required before freeze. Return
 code for audit is zero. No out-of-
 synch conditions or baseline module
 duplicates accepted.

<auditLockPackage> Optional 0 - 1 String (1) Lock package during audit. Values:

A = Always.
N = Never.
O = Optional

<autoScratchLoadMbr> Optional 0 - 1 String (1) Y = Yes, auto scratch load with source.
N = No, do not auto scratch load with
source.

<buildInstallJclAtApprove> Optional 0 - 1 String (1) Y = Yes, build JCL install job at
 approval.
N = No, don’t build JCL install job at
 approval.

<businessFromTime> Optional 0 - 1 Time (4),
hhmm

Global start time for hours of business
operation, 24-hour format, no seconds.

<businessToTime> Optional 0 - 1 Time (4),
hhmm

Global end time for hours of business
operation, 24-hour format, no seconds.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

:

)

<chkOutRule> Optional 0 - 1 String (1) Code for checkout enforcement rule
applied to staging of components that
already exist in baseline. Values:

1 = Allow any user to stage components
 without preserving baseline
 checkout integrity.
2 = Allow authorized users to stage
 components without preserving
 baseline checkout integrity.
3 = Enforce baseline checkout integrity
 for all users.

<cmnEnvironment> Optional 0 - 1 String (1) Code for ZMF environment type. Values

1 = All (development & production on
 same LPAR, no remote production
2 = Development only
3 = Both development & production on
 same LPAR; remote production
 sites also supported)
4 = Production only

<cmnSchedulerInterval> Optional 0 - 1 String (4),
variable

ZMF internal scheduler polling interval in
minutes.

<cmnVersion> Optional 0 - 1 String (4),
vrmm

Version, release, and modification level
of this ZMF instance.

<compBuildStartedProcName> Optional 0 - 1 String (8),
variable

Started procedure name for building
component compile, recompile and
relink JCL.

<componentAgingPeriod> Optional 0 - 1 String (6),
variable

Component aging period for deletion in
days. Value range: 1 to 32,000.

<componentMasterLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of library
where component master resides.

NOTE: Component master must be PDS
library, not HFS directory.

<createCmpWorkRecs> Optional 0 - 1 String (1) Y = Yes, create component worklist
 records for a package.
N = No, omit component worklist
 records from package.

<db2SubSystemId> Optional,
DB2 only

0 - 1 String (4),
fixed

Global default for DB2 subsystem name.

NOTE: Default value is ‘dsn ‘.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
513

51

Chapter 10: ChangeMan ZMF Administration Tasks

t

.

<defaultScheduler> Optional 0 - 1 String (1) Type of scheduler used.

1 = ChangeMan ZMF. The installation
jobs are submitted by the
ChangeMan ZMF started task at the
scheduled install date and time.

2 = Manual. The installation jobs are
submitted as soon as the package
approvals are complete.

3 = Other. The installation jobs are
inserted into a third party scheduler via a
batch job.

<defaultStartedProcName> Optional 0 - 1 String (8),
variable

Default started procedure name for
building JCL.

<defaultUnitName> Optional 0 - 1 String (8),
variable

Global default for storage unit name.

<defaultVolume> Optional 0 - 1 String (6),
variable

Global default for storage volume ID.

<delayLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of delay
library for current ZMF instance.

<disableCalendar> Optional 0 - 1 String (1) Y = Yes, disable install calendar.
N = No, don’t disable install calendar.

<disallowParallelChkOut> Optional 0 - 1 String (1) Y = Yes, prohibit checkout of active
 components.
N = No, don’t prohibit checkout of active
 components.

<eliminatePersonalLib> Optional 0 - 1 String (1) Y = Yes, prohibit personal developmen
 library outside ZMF control.
N = No, don’t prohibit personal
 development library outside ZMF.

<emailServerName> Optional 0 - 1 String (32),
variable

Email server name.

<emailServerPortid/> Optional 0 - 1 String (5),
variable

Email server port number.

<enableApprovalOrderProcess> Optional 0 - 1 String (1) Y = Yes, turn on hierarchical approvals
N = No, don’t turn on hierarchical
 approvals.

<enableCompUserVars> Optional 0 - 1 String (1) Y = Yes, enable component user
variables.
N = No, don’t enable component user
variables.

<enableDisplayOrder3dSkel> Optional 0 - 1 String (1) Y = Yes, enable display order for 3D
skeletons.
N = No, don’t enable display order for
3D skeletons.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

<enableDisplayOrderApplication> Optional 0 - 1 String (1) Y = Yes, enable display order for
applications.
N = No, don’t enable display order for
applications.

<enableDisplayOrderDb2Logical> Optional 0 - 1 String (1) Y = Yes, enable display order for DB2
logical.
N = No, don’t enable display order for
DB2 logical.

<enableDisplayOrderDb2Physical
>

Optional 0 - 1 String (1) Y = Yes, enable display order for DB2
physical.
N = No, don’t enable display order for
DB2 physical.

<enableDisplayOrderDbdOverrid
e>

Optional 0 - 1 String (1) Y = Yes, enable display order for DBD
overrides.
N = No, don’t enable display order for
DBD overrides.

<enableDisplayOrderImsControlR
eg>

Optional 0 - 1 String (1) Y = Yes, enable display order for IMS
control regions.
N = No, don’t enable display order for
IMS control regions.

<enableDisplayOrderLanguage> Optional 0 - 1 String (1) Y = Yes, enable display order for
language.
N = No, don’t enable display order for
language.

<enableDisplayOrderLibtype> Optional 0 - 1 String (1) Y = Yes, enable display order for library
types.
N = No, don’t enable display order for
library types.

<enableDisplayOrderOnlineForm
>

Optional 0 - 1 String (1) Y = Yes, enable display order for online
forms.
N = No, don’t enable display order for
online forms.

<enableDisplayOrderProcedure> Optional 0 - 1 String (1) Y = Yes, enable display order for
procedures .
N = No, don’t enable display order for
procedures.

<enableDisplayOrderPsbOverride
>

Optional 0 - 1 String (1) Y = Yes, enable display order for PSB
overrides.
N = No, don’t enable display order for
PSB overrides.

<enableDisplayOrderReason> Optional 0 - 1 String (1) Y = Yes, enable display order for
reason codes.
N = No, don’t enable display order for
reason codes.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
515

51

Chapter 10: ChangeMan ZMF Administration Tasks

.

l

<enableDisplayOrderSite> Optional 0 - 1 String (1) Y = Yes, enable display order for sites.
N = No, don’t enable display order for
sites.

<enableDisplayOrderXmlReport> Optional 0 - 1 String (1) Y = Yes, enable display order for XML
reports.
N = No, don’t enable display order for
XML reports.

<enableJes2Spool> Optional 0 - 1 String (1) Y = Yes, enable JES2 job entry system
N = No, don’t use JES2 job entry.

<enableLLamBaseLib> Optional 0 - 1 String (1) Y = Yes, generate Librarian LAM
N = No, don’t enable CA Librarian LAM

<enableLibrBaseLib> Optional 0 - 1 String (1) Y = Yes, generate Librarian baseline lib
N = Don’t enable CA Librarian baseline

<enableOtherBaseLib> Optional 0 - 1 String (1) Y = Yes, generate other (Roscoe)
 baseline library
N = No, don’t enable other baseline
 library

<enablePanBaseLib> Optional 0 - 1 String (1) Y = Yes, generate Panvalet baseline lib
N = No, don’t enable CA Panvalet

<enableStackedRevDelta> Optional 0 - 1 String (1) Y = Yes, stacked reverse delta baseline
N = Don’t enable stacked reverse delta

<enableStageEditRecovery> Optional 0 - 1 String (1) Y = Yes, enable recovery of staging
 library edits.
N = No, don’t recover staging edits.

<enableVsamRlsOption> Optional 0 - 1 String (1) Y = Yes, enable VSAM record-level
 security.
N = No, don’t enableVSAM record-leve
 security.

<eventNotifyCheckpoint> Optional 0 - 1 String (18),
FIXED

Event Notify Checkpoint number.

<forceChkOutToPackage> Optional 0 - 1 String (1) Y = Yes, force checkout to one package
 at a time.
N = No, don’t restrict checkout to one
 package at a time.

<forceDept> Optional 0 - 1 String (1) Y = Yes, require department number
 at package create.
N = No, department number optional.

<forcePackageAudit> Optional 0 - 1 String (1) Y = Yes, require audit of all packages
 prior to approval.
N = No, don’t force package audit prior
 to approval.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

<forceWorkChangeRequest> Optional 0 - 1 String (1) Y = Yes, required work order/change
 request at package create.
N = No, work order/change request
 optional.

<globalNoticeModDate> Optional 0 - 1 Date,
yyyymmdd

Modification date for global notification
dataset.

<globalNoticeModTime> Optional 0 - 1 Time,
hhmm

Modification time for global notification
dataset, 24-hour format, no seconds.

<globalNoticeModTimeSeconds> Optional 0 - 1 Integer (2) Modification time seconds for global
notification dataset.

<globalNotificationLib> Optional 0 - 1 String (44),
variable

Global notification dataset.

<hfsTempDirectory> Optional 0-1 String (64),
variable

Name of temporary HFS directory,
prefixed by path from installation root,
used for temporary changes to HFS
components.

<inactiveTimeLimit> Optional 0 - 1 String (6),
variable

Time-out limit for inactive terminals in
minutes. Value range: 1 to 999,999.

<includeIspllib> Optional 0 - 1 String (1) Y = Yes, include ISPLLIB libraries in
 validation & audit.
N = No, omit ISPLLIB.

<includeIspmlib> Optional 0 - 1 String (1) Y = Yes, include ISPMLIB libraries in
 validation & audit.
N = No, omit ISPMLIB.

<includeIspplib> Optional 0 - 1 String (1) Y = Yes, include ISPPLIB libraries in
 validation & audit.
N = No, omit ISPPLIB.

<includeIspslib> Optional 0 - 1 String (1) Y = Yes, include ISPSLIB libraries in
 validation & audit.
N = No, omit ISPSLIB.

<infoApproveRecord> Optional 0 - 1 String (1) Y = Yes, approve package
 automatically.
N = No, do not approve package

 automatically.

<infoBypassAging> Optional 0 - 1 String (1) Y = Yes, INFO update bypassed during
 aging.
N = No, INFO update not bypassed
 during aging.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
517

51

Chapter 10: ChangeMan ZMF Administration Tasks

.

<infoRule> Optional 0 - 1 String (1) Code for IBM INFO notification &
approval rules. Values:

0 = No ZMF-to-INFO communication.
1 = INFO notified of package create.
2 = INFO notified of pkg create/update
3 = Rule 2, plus: INFO subtask must be
 attached; enable INFO approval of
 packages.
4 = Rule 3, plus: planned packages
 must create INFO change record
 in advance & use its ID in ZMF
 work order/change request field.
5 = Rule 4, plus: unplanned packages
 also have INFO change record.

<infoSoapMember> Optional 0 - 1 String (8) INFO System Bus Soap member name.

<infoUsingBus> Optional 0 - 1 String (1) Y = Yes, INFO using system Bus.
N = No, INFO not using system Bus.

<infoUsingVsam> Optional 0 - 1 String (1) Y = Yes, use VSAM file for INFO data
 mapping.
N = No, don’t use VSAM file for INFO.

<infoVsamCreateTempPkg> Optional 0 - 1 String (1) Y = Yes, override ZMF temp package
 duration with setting in INFO VSAM
 file, or 1 day if INFO sets no value.
N = No, don’t override ZMF temp pkg
 duration with INFO VSAM setting.

<infoVsamRejectPkg> Optional 0 - 1 String (1) Y = Yes, turn on selective INFO
 approval processing; ignore reject
 & other messages short of full
 approval.
N = No, don’t turn on selective INF
 approval processing.

<infoVsamReuseRecord> Optional 0 - 1 String (1) Y = Yes, reuse VSAM file INFO record#
 from deleted packages for new
 packages.
N = No, don’t reuse INFO record#.

NOTE: If Y, deleted packages cannot be
undeleted.

<installStartedProcName> Optional 0 - 1 String (8),
variable

Started procedure name for building
package install JCL.

<isFullAssistanceCompleted> Optional 0 - 1 String (1) Y = Yes, impact analysis full assist
 tasks completed.
N = No, full assist not completed.

<jobCard01> Optional 0 - 1 String (72),
variable

First of up to four global default JCL job
cards.

<jobCard02> Optional 0 - 1 String (72),
variable

Second of up to four global default JCL
job cards.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

<jobCard03> Optional 0 - 1 String (72),
variable

Third of up to four global default JCL job
cards.

<jobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to four global default JCL
job cards.

<keepBaselineBySite> Optional 0 - 1 String (1) Y = Yes, keep independent baseline
 libraries for each site.
N = No, consolidate all sites under one
 baseline library.

<licensedLine1> Optional 0 - 1 String (56),
variable

Free-format text identification of ZMF
licensee. First of up to two lines.

<licensedLine2> Optional 0 - 1 String (56),
variable

Free-format text identification of ZMF
licensee. Second of up to two lines.

<logicalUnitName> Optional 0 - 1 String (8),
variable

Name of logical unit (LU) where this ZMF
instance resides.

<maximumSiteCount> Optional 0 - 1 Integer (3),
variable

Deprecated; obsolete.

<modLevel> Optional 0 - 1 String (2),
fixed

ZMF modification level. Same as last
two bytes of <cmnVersion>.

<nonVioUnitName> Optional 0 - 1 String (8),
variable

Default non-VIO UNIT name.

<notInfoChangeSystem> Optional 0 - 1 String (1) Y = Yes, INFO/MAN change
 management system.
N = No, not an INFO/MAN change
 management system.

<numberOfDaysInCal> Optional 0 - 1 String () Calendar number of days.

<onlineFormsIsppLib> Optional,
OFM only

0 - 1 String (44),
variable

Fully qualified dataset name of ISPF
panel library (ISPPLIB) for online forms.

<onlyMemoDelEmptyPackages> Optional 0 - 1 String (1) Y = Yes, enforce memo-delete rules
 for empty packages.
N = No, don’t enforce memo-delete
 for empty packages; allow physical
 deletion.

<packageAgingPeriod> Optional 0 - 1 String (6),
variable

Package aging period for deletion in
days. Value range: 1 to 32,000.

<packageMasterLib> Optional 0 - 1 String (44),
variable

Fully qualified dataset name of library
where package master resides.

<packageNumInPcver> Optional 0 - 1 String (1) Y = Yes, copy package number to
 PCVER variable.
N = No, don’t copy package number.

<pcverOutputOnly> Optional 0 - 1 String (1) Y = Yes, set PCVER to output only.
N = No, PCVER not output only.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
519

52

Chapter 10: ChangeMan ZMF Administration Tasks

<processPartPackageByInsDate> Optional 0 - 1 String (1) Y = Yes, process participating
 packages by install date.
N = No, don’t process by install date.

<prohibitApprovalByCreator> Optional 0 - 1 String (1) Y = Yes, exclude package creator
 from package approval list.
N = No, don’t exclude package creator
 from package approval list.

<prohibitApprovalByWorker> Optional 0 - 1 String (1) Y = Yes, exclude developers who
 worked on package from package
 approval list.
N = No, don’t exclude package workers
 from package approval list.

<prohibitJobNameIncrement> Optional 0 - 1 String (1) Y = Yes, prohibit job name increment.
N = No, don’t prohibit job name
 increment.

<promotionRule> Optional 0 - 1 String (1) Code for package promotion rule.
Values:

0 = Allow promote & demote even if
 package not frozen.
1 = Require freeze before promote.
 Require selective component
 demote, unfreeze, edit, refreeze, &
 re-promote directly to promotion
 level of package as a whole.
2 = Require freeze before promote.
 Require selective component
 demote, unfreeze, edit, refreeze, &
 re-promote through all intermediate
 promotion levels to level of package
 as a whole.
3 = Require freeze before promote.
 Require full package demote, then
 selective component unfreeze, edit,
 refreeze, & full package promotion
 through all intermediate promotion
 levels.
4 = Require freeze before promote.
 Require full package demote,
 followed by revert to development
 status, before editing components.

<promotionStartedProcName> Optional 0 - 1 String (8),
variable

Started procedure name for building
package promote and demote JCL.

<release> Optional 0 - 1 String (1) ZMF release. Same as second byte of
<cmnVersion>.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

<releaseManAuditLevel/> Optional 0 - 1 String (1) Audit level. This numeric value dictates
the Audit level that must be passed
before a developing change package
can be Frozen. 0 - Audit is
recommended but entirely optional. 1 -
Audit is required but any return code
(except abend) is acceptable. 2 - Audit is
required and the return code must not
exceed 12, which implies that there are
"out-of-synch" situations within the
staging libraries. 3 - Audit is required and
the return code must not exceed 8,
which implies that there are no "out-of-
synch" situations within the staging
libraries, but are "out-of-synch"
situations with respect to the Baseline
libraries. 4 - Audit is required and the
return code must not exceed 4, which
implies that there are no "out-of-synch"
situations within the staging or Baseline
libraries, but at least one module of a
staging library is a "duplicate" of its
Baseline counterpart. 5 - Audit is
required and the return code must not
exceed 0, which implies that there are no
"out-of-synch" situations with either
implies that there are no "out-of-synch"
situations with either the staging or
Baseline libraries, and no "duplicates"
exist.

<releaseManDsPattern> Optional,
ERO only

0 - 1 String (5),
variable

Pattern for release area dataset name.
May be any combination of the following
dataset qualifier symbols, with L as the
final qualifier and P optional:

H = High-level qualifier as defined in
 <rloHighLevelNode>.
R = Release name defined to ERO.
A = Release area name defined for R
 in ERO.
P = Application or project defined for R
 in ERO.
L = Library type defined for R in ERO.

NOTE: If used, <rloHighLevelNode>
also returned.

<resourceClassLength> Optional 0 - 1 String (4),
variable

Length of <resourceClassName> in
bytes.

NOTE: Returned only if
<resourceClassName> used.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
521

52

Chapter 10: ChangeMan ZMF Administration Tasks

:

-
t

<resourceClassName> Optional 0 - 1 String (8),
variable

Resource class name for RACF or other
security package.

NOTE: If used, its length appears in
<resourceClassLength>.

<resourceClassOwner> Optional 0 - 1 String (8),
variable

Owner of security resource in
<resourceClassName> as defined in
RACF or other security package.

NOTE: Returned optionally if
<resourceClassName> used.

<rloHighLevelNode> Optional,
ERO only

0 - 1 String (8),
variable

Global default high-level node for ERO
release area datasets.

<rloHighLevelPath> Optional,
ERO only

0 - 1 String
(1024),
variable

Global default high-level HFS path for
ERO release area files.

<showUserPanels> Optional 0 - 1 String (1) Y = Yes, display package user panels.
N = No, don’t show pkg user panels.

<siteName> Optional 0 - 1 String (8),
variable

ZMF name of site where this ZMF
instance resides.

<stageDevHfsModel> Optional 0 - 1 String (64),
variable

HFS file name of model staging
development library.

<stageDevLibModel> Optional 0 - 1 String (32),
variable

Dataset name of model staging
development library.

<stageLibAgingPeriod> Optional 0 - 1 String (6),
variable

Staging library aging period for deletion
in days. Value range: 1 to 32,000.

<stageLimitLevel> Optional 0 - 1 String (1) Code for staging restriction level. Values

1 = Allow all users to stage or check-in
 to a package from a development
 library.
2 = Allow users that pass entity check
 to stage or check-in to a package
 from a development library.
3 = No users allowed to stage or check
 in to a package from a developmen
 library.

<stageProdHfsModel> Optional 0 - 1 String (64),
variable

HFS file name of model staging
production library.

<stageProdLibModel> Optional 0 - 1 String (32),
variable

Dataset name of model staging
production library.

<suppressMsgsForINSJobs> Optional 0 - 1 String (1) Y = Yes, suppress INS job messages.
N = No, display INS job messages.

<useBatchNotifier> Optional 0 - 1 String (1) Y = Yes, use batch notification vehicle.
N = No, don’t use batch notifier.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

.

Parameters Application List - PARMS APL LIST

The application parameter list reports application-level overrides to global settings in
ChangeMan ZMF that enforce the business rules for software change management at your

<useCmnScheduler> Optional 0 - 1 String (1) Y = Yes, use ZMF install scheduler.
N = No, don’t use ZMF scheduler.

<useEmailNotifier> Optional 0 - 1 String (1) Y = Yes, use email notification vehicle.
N = No, don’t use email notifier.

<useGlobalNotifier> Optional 0 - 1 String (1) Y = Yes, use global notification file.
N = No, don’t use global notification file

<useIebcopyDelivery> Optional 0 - 1 String (1) Y = Yes, use IEBCOPY file transfers.
N = No, don’t use IEBCOPY file xfer.

<useLikeLODinSyslib> Optional 0 - 1 String (1) Y = Yes, use LIKE-LOD in syslib.
N = No, don’t use LIKE-LOD in syslib

<useManualScheduler> Optional 0 - 1 String (1) Y = Yes, use manual install scheduler.
N = No, don’t use manual scheduler.

<useMvsSendNotifier> Optional 0 - 1 String (1) Y = Yes, use MVS Send notification.
N = No, don’t use MVS Send notifier.

<useOpcEcaScheduler> Optional 0 - 1 String (1) Y = Yes, use OPS/ECA scheduler.
N = No, don’t use OPS/ECA scheduler.

<useOtherScheduler> Optional 0 - 1 String (1) Y = Yes, use other install scheduler.
N = No, don’t use other scheduler.

<useSerCompress> Optional 0 - 1 String (1) Y = Yes, use SERNET compression on
 file transfers.
N = No, don’t use SERNET data
 compression.

<useSernetNotifier> Optional 0 - 1 String (1) Y = Yes, use SERNET notification
 vehicle.
N = No, don’t use SERNET notification
 vehicle.

<useZprefixForBatchJobs> Optional 0 - 1 String (1) Y = Yes, use ZPREFIX instead of
 ZUSER for batch job user ID.
N = No, use ZUSER default for batch
 job user ID.

<validateStageVersion> Optional 0 - 1 String (1) Y = Yes, validate component staging
 version at check-in.
N = No, don’t validate staging version.

<version> Optional 0 - 1 String (1) ZMF version. Same as first byte of
<cmnVersion>.

Exhibit 10-28. PARMS GBL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
523

52

Chapter 10: ChangeMan ZMF Administration Tasks
installation. If you have not customized your application parameters, the default values are
reported.

The Serena XML service/scope/message tags and attributes for messages to list application
parameters are:

<service name=”PARMS”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both requests and replies.

PARMS APL LIST — Request

The application parameter list service requires an application name in the request message.
You can request two types of application parameter list:

• Default Parameters Application List — Name the desired application in the
<applName> tag and omit the <parms> tag in the request message or leave it blank.
This option requests all application parameters for the named application. User must
have access permissions for the application to retrieve a result.

• Short Application Parameter List — Name the desired application in the <applName>
tag and enter “S” (upper case) in the <parms> tag of the request message. This option
requests only the application description. A result is returned if the application exists,
even if the user does not have application access permissions.

Data structure details for the <request> data element appear in Exhibit 10-29.

PARMS APL LIST — Reply

The reply message for this function exactly one <result> data element containing the
requested parameter settings for the named application. If no parameter settings have been
customized for this application, default (global) values are returned.

The standard <response> data element follows any <result> tags in the reply and
indicates the success or failure of the list request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher. Because it is the final data
element in the XML reply message, the <response> tag serves as an end-of-list marker.

Exhibit 10-29. PARMS APL LIST <request> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<applName> Optional 1 String (4),
variable

ZMF application name desired.

NOTE: OK to omit trailing blanks.

<parms> Optional 0 - 1 String (1) Code for type of list requested. Values:

S = Short list (description only),
 all users.
Blank = Complete list, authorized
 application users only.

NOTE: If used, upper case required.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

.

g.

e

s.
ed.

:

F.

),
),

X),
C).

s

Data structure details for the <result> tag appear in Exhibit 10-30.

Exhibit 10-30. PARMS APL LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<allowChkOutToDevLib> Optional 0 - 1 String (1) Y = Yes, allow checkout to personal
 development library outside ZMF
N = Don’t allow checkout to personal
 development library outside ZMF

<allowLinkPackages> Optional 0 - 1 String (1) Y = Yes, allow external package linkin
N = No, don’t allow package linking.

<allowOnlyOneApproval> Optional 0 - 1 String (1) Y = Yes, allow install after only one
 approval.
N = No, don’t allow install if only one
 approval received.

<allowStageOverlay> Optional 0 - 1 String (1) Y = Yes, allow staged component to b
 overlaid by later check-in.
N = No, don’t allow staging overlays.

<allowTempChange> Optional 0 - 1 String (1) Y = Yes, allow temp change package
N = No temp change packages allow

<applDesc> Optional 0 - 1 String (44),
variable

Application description.

<applName> Optional 0 - 1 String (4),
variable

ZMF application name.

<apsRule> Optional 0 - 1 String (1) Code for APS processing rule. Values

0 = No APS processing; standard ZM
1 = Explicit Mode. APS operates on
 physical dataset or component.
2 = Implicit Mode, Level 2. APS
 operates t level of application (AP
 scenario (CN), data structure (DS
 program (PG), online express (O
 report mockup (RP), & screen (S
3 = Implicit Mode, Level 1. APS list
 disabled for application (AP)
 or program (PG) operations; ZMF
 automatically checks out & stage
 related components.

NOTE: Default value is 1.
525

52

Chapter 10: ChangeMan ZMF Administration Tasks

d

rn
-

rn
-of-
e

rn
-of-
e
t

rn

ule

ity
 to
<auditLevel> Optional 0 - 1 String (1) Code for package audit level required
prior to freeze. Values:

0 = Audit optional before freeze.
1 = Audit required before freeze, but
 any return code for audit accepte
 except ABEND.
2 = Audit required before freeze. Retu
 code for audit is 12 or less; out-of
 synch conditions accepted in
 staging libraries.
3 = Audit required before freeze. Retu
 code for audit is 8 or less. No out
 synch conditions accepted in stag
 libraries, but are accepted with
 respect to baseline libraries.
4 = Audit required before freeze. Retu
 code for audit is 4 or less. No out
 synch conditions accepted relativ
 to staging or baseline libraries; bu
 staged module may duplicate its
 baseline counterpart.
5 = Audit required before freeze. Retu
 code for audit is zero. No out-of-
 synch conditions or baseline mod
 duplicates accepted.

<auditLockPackage> Optional 0 - 1 String (1) Lock package during audit. Values:

A = Always.
N = Never.
O = Optional

<buildInstallJclAtApprove> Optional 0 - 1 String (1) Y = Yes, build JCL install job at
 approval.
N = No, don’t build JCL install job at
 approval.

<businessFromTime> Optional 0 - 1 Time (4),
hhmm

Start time for business operations &
package install for this application,
24-hour format, no seconds.

<businessToTime> Optional 0 - 1 Time (4),
hhmm

End time for business operations &
package install for this application,
24-hour format, no seconds.

<chkOutEntity> Optional 0 - 1 String (8),
variable

Security entity in RACF or other secur
package to which user ID must belong
pass security entity check on staging.

NOTE: Returned if value is 2 in
<chkOutRule>.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

nts

ty

n

an
d
t
-

e
d

e.

 ID.

ive

nt

ls.

<chkOutRule> Optional 0 - 1 String (1) Code for checkout enforcement rule
applied to staging of components that
already exist in baseline. Values:

1 = Allow any user to stage compone
 without preserving baseline
 checkout integrity.
2 = Allow authorized users to stage
 components without preserving
 baseline checkout integrity.
3 = Enforce baseline checkout integri
 for all users.

<cmnaudrcEntity> Optional 0 - 1 String (8),
variable

Entity for authority to run CMNAUDRC
outside of ChangeMan

<componentAgingPeriod> Optional 0 - 1 String (6),
variable

Component aging period for deletion i
days. Value range: 1 to 32,000.

<createCmpWorkRecs> Optional 0 - 1 String (1) Y = Yes, create component worklist
 records for a package.
N = No, omit component worklist
 records from package.

<defaultScheduler> Optional 0 - 1 String (8),
variable

Type of scheduler used. 1 - ChangeM
ZMF. The installation jobs are submitte
by the ChangeMan ZMF started task a
the scheduled install date and time. 2
Manual. The installation jobs are
submitted as soon as the package
approvals. are complete. 3 - Other. Th
installation jobs are inserted into a thir
party scheduler via a batch job.

<defaultUnitName> Optional 0 - 1 String (8),
variable

Application default for storage unit nam

<defaultVolume> Optional 0 - 1 String (6),
variable

Application default for storage volume

<disallowParallelChkOut> Optional 0 - 1 String (1) Y = Yes, prohibit checkout of active
 components.
N = No, don’t prohibit checkout of act
 components.

<eliminatePersonalLib> Optional 0 - 1 String (1) Y = Yes, prohibit personal developme
 library outside ZMF control.
N = No, don’t prohibit personal
 development library outside ZMF.

<enableApprovalOrderProcess> Optional 0 - 1 String (1) Y = Yes, turn on hierarchical approva
N = No, don’t turn on hierarchical
 approvals.

<enableDisplayOrderDb2Logical> Optional 0 - 1 String (1) Y = Yes, enable display order for DB2
logical
N = No, don’t enable.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
527

52

Chapter 10: ChangeMan ZMF Administration Tasks

ry

s.

ge

or
<enableDisplayOrderDbdOverride> Optional 0 - 1 String (1) Y = Yes, enable display order for DBD
overrides.
N = No, don’t enable.

<enableDisplayOrderImsControlReg> Optional 0 - 1 String (1) Y = Yes, enable display order for IMS
control regions.
N = No, don’t enable.

<enableDisplayOrderLanguage> Optional 0 - 1 String (1) Y = Yes, enable display order for
languages.
N = No, don’t enable.

<enableDisplayOrderLibtype> Optional 0 - 1 String (1) Y = Yes, enable display order for libra
type.
N = No, don’t enable.

<enableDisplayOrderProcedure> Optional 0 - 1 String (1) Y = Yes, enable display order for
procedures.
N = No, don’t enable.

<enableDisplayOrderPsbOverride> Optional 0 - 1 String (1) Y = Yes, enable display order for PSB
overrides.
N = No, don’t enable.

<enableDisplayOrderSite> Optional 0 - 1 String (1) Y = Yes, enable display order for site
N = No, don’t enable.

<enableDisplayXmlReport> Optional 0 - 1 String (1) Y = Yes, enable display order for XML
reports.
N = No, don’t enable.

<enableStageEditRecovery> Optional 0 - 1 String (1) Y = Yes, enable recovery of staging
 library edits.
N = No, don’t recover staging edits.

<forceChkOutToPackage> Optional 0 - 1 String (1) Y = Yes, force checkout to one packa
 at a time.
N = No, don’t restrict checkout to one
 package at a time.

<forceDept> Optional 0 - 1 String (1) Y = Yes, require department number
 at package create.
N = No, department number optional.

<forcePackageAudit> Optional 0 - 1 String (1) Y = Yes, require audit of all packages
 prior to approval.
N = No, don’t force package audit pri
 to approval.

<forceWorkChangeRequest> Optional 0 - 1 String (1) Y = Yes, required work order/change
 request at package create.
N = No, work order/change request
 optional.

<inUseOwner> Optional 0 - 1 String (6),
variable

TSO user ID of current application
(project) user.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

.

te.
 be
of

s

.

M
e.

.

t

d#

be

e.

d.

b

L

ob

job
<infoRule> Optional 0 - 1 String (1) Code for IBM INFO notification &
approval rules. Values:

0 = No ZMF-to-INFO communication
1 = INFO notified of package create.
2 = INFO notified of pkg create/upda
3 = Rule 2, plus: INFO subtask must
 attached; enable INFO approval
 packages.
4 = Rule 3, plus: planned packages
 must create INFO change record
 in advance & use its ID in ZMF
 work order/change request field.
5 = Rule 4, plus: unplanned package
 also have INFO change record.

<infoUsingVsam> Optional 0 - 1 String (1) Y = Yes, use VSAM file for INFO data
 mapping.
N = No, don’t use VSAM file for INFO

<infoVsamCreateTempPkg> Optional 0 - 1 String (1) Y = Yes, override ZMF temp package
 duration with setting in INFO VSA
 file, or 1 day if INFO sets no valu
N = No, don’t override ZMF temp pkg
 duration with INFO VSAM setting

<infoVsamRejectPkg> Optional 0 - 1 String (1) Y = Yes, turn on selective INFO
 approval processing; ignore rejec
 & other messages short of full
 approval.
N = No, don’t turn on selective INF
 approval processing.

<infoVsamReuseRecord> Optional 0 - 1 String (1) Y = Yes, reuse VSAM file INFO recor
 from deleted packages for new
 packages.
N = No, don’t reuse INFO record#.

NOTE: If Y, deleted packages cannot
undeleted.

<isApplBusy> Optional 0 - 1 String (1) Y = Yes, application (project) in use.
N = No, application (project) not in us

<isApplLocked> Optional 0 - 1 String (1) Y = Yes, application (project) locked.
N = No, application (project) not locke

<jobCard01> Optional 0 - 1 String (72),
variable

First of up to four global default JCL jo
cards.

<jobCard02> Optional 0 - 1 String (72),
variable

Second of up to four global default JC
job cards.

<jobCard03> Optional 0 - 1 String (72),
variable

Third of up to four global default JCL j
cards.

<jobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to four global default JCL
cards.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
529

53

Chapter 10: ChangeMan ZMF Administration Tasks

e

t

al

r

e

rs
<keepBaselineBySite> Optional 0 - 1 String (1) Y = Yes, keep independent baseline
 libraries for each site.
N = No, consolidate all sites under on
 baseline library.

<nextPackageNumber> Optional 0 - 1 String (6),
variable

Unique serial number to assign to nex
package created for this application.

<onlyMemoDelEmptyPackages> Optional 0 - 1 String (1) Y = Yes, enforce memo-delete rules
 for empty packages.
N = No, don’t enforce memo-delete
 for empty packages; allow physic
 deletion.

<packageAgingPeriod> Optional 0 - 1 String (6),
variable

Package aging period for deletion in
days. Value range: 1 to 32,000.

<packageBindLibType> Optional 0 - 1 String (3),
variable

Library type for package bind.

<packageNumInPcver> Optional 0 - 1 String (1) Y = Yes, copy package number to
 PCVER variable.
N = No, don’t copy package number.

<pcverOutputOnly> Optional 0 - 1 String (1) Y = Yes, set PCVER to output only.
N = No, PCVER not output only.

<processPartPackageByInsDate> Optional 0 - 1 String (1) Y = Yes, process participating
 packages by install date.
N = No, don’t process by install date.

<prohibitApprovalByCreator> Optional 0 - 1 String (1) Y = Yes, exclude package creator
 from package approval list.
N = No, don’t exclude package creato
 from package approval list.

<prohibitApprovalByWorker> Optional 0 - 1 String (1) Y = Yes, exclude developers who
 worked on package from packag
 approval list.
N = No, don’t exclude package worke
 from package approval list.

<prohibitJobNameIncrement> Optional 0 - 1 String (1) Y = Yes, prohibit job nameincrement.
N = No, don’t prohibit job name
 increment.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

es:

&

&
te
ge

n
it,

n
n

t
.

ity
 to
t.

 in

es:

in

ck-
ent
<promotionRule> Optional 0 - 1 String (1) Code for package promotion rule. Valu

0 = Allow promote & demote even if
 package not frozen.
1 = Require freeze before promote.
 Require selective component
 demote, unfreeze, edit, refreeze,
 re-promote directly to promotion
 level of package as a whole.
2 = Require freeze before promote.
 Require selective component
 demote, unfreeze, edit, refreeze,
 re-promote through all intermedia
 promotion levels to level of packa
 as a whole.
3 = Require freeze before promote.
 Require full package demote, the
 selective component unfreeze, ed
 refreeze, & full package promotio
 through all intermediate promotio
 levels.
4 = Require freeze before promote.
 Require full package demote,
 followed by revert to developmen
 status, before editing components

<skelsReleaseId> Optional 0 - 1 String (4),
variable

3-D skeletons release ID.

<stageEntity> Optional 0 - 1 String (8),
variable

Security entity in RACF or other secur
package to which user ID must belong
pass security entity check on checkou

NOTE: Returned if value is 2 in
<stageLimitLevel>.

<stageLibAgingPeriod> Optional 0 - 1 String (6),
variable

Staging library aging period for deletion
days. Value range: 1 to 32,000.

<stageLimitLevel> Optional 0 - 1 String (1) Code for staging restriction level. Valu

1 = Allow all users to stage or check-
 to a package from a development
 library.
2 = Allow users that pass entity check
 to stage or check-in to a package
 from a development library.
3 = No users allowed to stage or che
 in to a package from a developm
 library.

<suppressMsgsForINSJobs> Optional 0 - 1 String (1) Y = Yes, suppress messages for
 install jobs.
N = No, do not suppress messages
 for install jobs.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
531

53

Chapter 10: ChangeMan ZMF Administration Tasks

ess
ry
 List Global Reason Codes - REASONS SERVICE LIST

This function lists all globally defined reason codes and their definitions for the creation of
temporary change packages. If temporary change packages are not permitted at your
installation, no results are returned by this function.

The Serena XML service/scope/message names for messages to list global reason codes for
temporary packages are:

<service name=”REASONS”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

REASONS SERVICE LIST — Requests

Global reason code list requests take no parameters and contain an empty <request> data
element. The <request> tag is required to identify the message as a request rather than a
reply.

<useApplInCurrentHist> Optional 0 - 1 String (1) Y = Use APPL in current history proc
N = Do not use APPL in current histo
process

<useCmnScheduler> Optional 0 - 1 String (1) Y = Use CMN scheduler

N = Do not use CMN scheduler

<useLikeLODinSyslib> Optional 0 - 1 String (1) Y = Use Like LOD in SYSLIB

N = Do not use Like LOD in SYSLIB

<useManualScheduler> Optional 0 - 1 String (1) Y = Use Manual scheduler

N = Do not use Manual scheduler

<useOtherScheduler> Optional 0 - 1 String (1) Y = Use Other scheduler

N = Do not use Other scheduler

<useZPrefixForBatchJobs> Optional 0 - 1 String (1) Y = Yes, use ZPREFIX not ZUSE
 for batch.
N = No, use ZUSE not ZPREFIX
 for batch.

<validateStageVersion> Optional 0 - 1 String (1) Y = Yes, validate version during
 staging.
N = No, do not validate version
 during staging.

Exhibit 10-30. PARMS APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

REASONS SERVICE LIST — Replies

Zero to many <result> data elements are returned in response to a Serena XML request to
list global reason codes. Each <result> tag defines a single reason code.

A standard <response> data structure follows the last <result> tag to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag in the reply message, the
<response> tag also serves as an end-of-list marker.

Data structure details for the <result> tag appear in Exhibit 10-31.

APPROVER AND NOTIFICATION ADMINISTRATION

Serena XML supports the following approver and notification administration tasks for general
use:

• List Application Approvers - APPROVER APL LIST
• Download Global Notification File - NOTYFILE SERVICE DOWNLOAD
• Notify User - USER SERVICE NOTIFY

Exhibit 10-31. REASONS SERVICE LIST<result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<displayOrderNo> Optional 0 - 1 Integer
(undefined)

Display order number. This numeric
value dictates the default order in which
a list of items is displayed.

<reasonCode> Required 1 String (3),
variable

Code identifying a reason for creating a
temporary package.

<reasonDesc> Required 1 String (255),
variable

Text description corresponding to code in
<reasonCode> tag.
533

53

Chapter 10: ChangeMan ZMF Administration Tasks
The syntax that identifies these functions appears in the name attribute of the <service>
tag, as follows:

<service name=”APPROVER”>
<service name=”NOTYFILE”>
<message name=”NOTIFY”>

List Application Approvers - APPROVER APL LIST

This function lists authorized approvers for a named application. Both regular and emergency
approvers are included in the scope of this function. Approvers assigned to review an
application by a customized ChangeMan ZMF exit are omitted. If no approvers are defined
for the application, no results are returned.

The Serena XML service/scope/message tags for a message to list application approvers
are:

<service name=”APPROVER”>
<scope name=”APL”>
<message name=”LIST”>

These tags appear in both request and reply messages.

APPROVER APL LIST — Requests

All application approver list requests require the application name in the <applName> tag
and the approver list type in <approverListType>. Serena XML supports four types of
application approver lists:

• Planned Approvers — Enter “0” (zero) in the <approverListType> tag to request
all regular approvers for planned packages in the named application.

• Unplanned Approvers — Enter “1” in the <approverListType> tag to request all
emergency approvers for unplanned packages in the named application.

• All Approvers — Enter “2” in the <approverListType> tag to request both
approver types for the named application.

• Description of Named Approver — Name the approver entity of interest in the
<approverEntity> tag. Enter “2” in the <approverListType> tag to request
both approver types. The function returns the named approver’s description and
notification information, as defined for the named application.

Data structure details for the <request> tag appear in Exhibit 10-32.

Exhibit 10-32. APPROVER APL LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Required 1 String (4),
variable

ZMF application name.

NOTE: OK to omit trailing blanks.

<approverEntity> Optional 0 - 1 String (8),
variable

Security system entity ID for desired
package approver or group.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
APPROVER APL LIST — Replies

The Serena XML reply to a package approver list request returns zero to many <result>
tags. Each <result> tag contains a description and notification information for one
application approver entity defined to the security package for your system. Individual
approver TSO user IDs are not included in the results.

A standard <response> data element follows the last <result> tag, if any, to indicate the
success or failure of the request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher. As the last tag returned in the reply message, the
<response> tag serves as an end-of-list marker.

Data structure details for the <result> tag follow in Exhibit 10-33.

<approverListType> Required 1 String (1) Code for type of approver to include in
results. Values:

0 = Planned package approvers only.
1 = Unplanned package approvers only.
2 = Both planned & unplanned package
 approvers.

Exhibit 10-33. APPROVER APL LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<applName> Optional 1 String (4),
fixed

ZMF application name. Same as first 4
bytes of package name.

<approvalOrder> Optional 0 - 1 Integer (2),
variable

Approval level or sequence assigned to
this approver entity for hierarchical
approvals.

<approverDesc> Optional 0 - 1 String (44),
variable

Text description of approver level or
function (e.g., project leader, QA
manager) for <approverEntity>.

<approverEntity> Optional 1 String (8),
variable

Security system entity ID of authorized
application approver.

<approverListType> Optional 1 String (1) Code for type of approver to include in
results. Values:

0 = Planned package approvers only.
1 = Unplanned package approvers only.
2 = Both planned & unplanned package
 approvers.

<isInterfacingApprover> Optional 0 - 1 String (1),
variable

Is this an interfacing approver?

Y = Yes
N = No

Exhibit 10-32. APPROVER APL LIST <request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
535

53

Chapter 10: ChangeMan ZMF Administration Tasks
The <result> data structure contains zero to many instances of the complex subtag,
<notification>, which contains tags of its own. Each <notification> structure
identifies a notification agent type and a list of user IDs or email addresses to be used by that
agent when sending notifications to the approver entity.

Data structure details follow in Exhibit 10-34.

Download Global Notification File - NOTYFILE SERVICE DOWNLOAD

Serena XML can request a download of the global notification file to your local client system.
The request message takes no parameter values. The reply message contains global
notification file records.

The Serena XML service/scope/message tags for a message to download the global
notification file are:

<service name=”NOTYFILE”>
<scope name=”SERVICE”>
<message name=”DOWNLOAD”>

These tags appear in both request and reply messages.

<notification> Optional 0 - 35 Complex Describes notifications sent when this
approver entity takes an approval action.
See Exhibit 10-34.

Exhibit 10-34. <notification> Subtag Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<notifierType> Optional 0 - 1 Integer (1) ZMF code for notification method to use
with notifications sent to users in
<userList>. Values:

1 = MVSSEND message
4 = Email
5 = SERNET agent email
6 = Batch messaging job

<userList> Optional 0 - 1 String (44),
variable

List of individual approvers to notify
when the named approver entity takes
an approval action. List consists of user
TSO IDs or E-mail addresses separated
by commas.

NOTE: TSO user ID required if
<notifierType> = 1.

NOTE: E-mail addresses required if
<notifierType> = 5.

Exhibit 10-33. APPROVER APL LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
NOTYFILE SERVICE DOWNLOAD — Requests

The request message for this function contains an empty <request> data element. The
<request> tag is required to identify the message as a request rather than a reply.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

NOTYFILE SERVICE DOWNLOAD — Replies

The reply message for this function returns one <result> data element containing zero to
many <line> tags. Following the <result> tag, the function returns a standard
<response> data element to indicate the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

Data structure details for the <result> data element appear in Exhibit 10-35.

Upload Global Notification File - NOTYFILE SERVICE UPLOAD

Serena XML can request an upload of the global notification file. The request message takes
no parameter values. The reply message does not return any result data.

The Serena XML service/scope/message tags for a message to upload the global notification
file are:

<service name=”NOTYFILE”>
<scope name=”SERVICE”>
<message name=”UPLOAD”>

These tags appear in both request and reply messages.

NOTYFILE SERVICE UPLOAD — Requests

The request message for this function contains an empty <request> data element. The
<request> tag is required to identify the message as a request rather than a reply.

Exhibit 10-35. NOTYFILE SERVICE DOWNLOAD <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<line> Optional 0 -  String,
variable

A bytewise image of one record in the
ZMF global notification file.
537

53

Chapter 10: ChangeMan ZMF Administration Tasks
 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

NOTYFILE SERVICE UPLOAD — Replies

The reply message for this function does not return any <result> data. It does, however,
return a standard <response> data element to indicate the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

Notify User - USER SERVICE NOTIFY

This function sends either a predefined or free-format notification message to one or more
users of ChangeMan ZMF. Values for predefined message variables may be substituted
either from the request message or from system data maintained by ChangeMan ZMF.
Notifications may be sent by any one of the following means:

• MVS/TSO Send — MVSSEND message to users on the same mainframe LPAR as the
XML client that issues the request.

• Email — E-mail using SMTP

• SERNET Email — E-mail using SERNET.

• Batch — Creates a batch messaging job using ISPF file tailoring, where the appropriate
request values and package information are supplied to the file tailoring skeleton in ISPF
variables. (Refer to example file tailoring skeleton CMN$$NTF in ChangeMan ZMF.)

The Serena XML service/scope/message tags for a message to notify users are:

<service name=”USER”>
<scope name=”SERVICE”>
<message name=”NOTIFY”>

These tags appear in both request and reply messages.

USER SERVICE NOTIFY — Requests

The user notification request message requires a sender, a recipient, a notification method,
and either a <messageType> entry or the actual message content in <textMessage>.
Serena XML supports two types of user notifications:
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
• Generic Text Message — To send a generic text message, enter a blank character
(not a null or empty tag) in <messageType> and supply the free-format text message
contents in <textMessage>.

• Predefined Message — To send a predefined text message, enter the desired
message type code in <messageType>. Required variables for the message type
may be populated in the Serena XML request, or the <loadPackageInfo> tag can
request that ChangeMan ZMF populate their values from the package master.

Data structure details for the <request> tag appear in Exhibit 10-36.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<actionDate> Optional 0 - 1 Date,
yyyymmdd

Date of action taken. Substitute for (Date)
variable in predefined message.

<actionTime> Optional 0 - 1 Time,
hhmmss

Time of action taken. Substitute for (Time)
variable in predefined message.

<actionType> Optional 0 - 1 String (1) Code for action required of recipient.
Values:

0 = Information only, no action required.
1 = Action required.

NOTE: Tag is required with value = 1 if
value in <messageType> is 5.

<applName> Optional 0 - 1 String (4),
variable

ZMF application name. Same as first four
bytes of <package>.

NOTE: Not recommended as replacement
for <package> tag. Use <package>
instead of <applName> & <packageId>.

NOTE: OK to omit trailing blanks.

<cmnSubSystemId> Optional 0 - 1 String (1) ZMF subsystem ID of started task to
process batch messaging job.

NOTE: If <notifierType> value = 6, this
tag is required.

NOTE: Default value is blank.

<creator> Optional 0 - 1 String (8),
variable

TSO user ID of package creator.
Substituted for (Creator) variable in
predefined message.

<formNumber> Optional 0 - 1 String (3),
variable

Online form number to be substituted for
(Form) variable in predefined message.

<ipAddress> Optional 0 - 1 String (8),
variable

TCP/IP address of SERNET email server
to override default.

<isApprovalOrderEnabled> Optional 0 - 1 String (1) Substituted for variable in predefined
message. Values:

Y = Yes, use hierarchical approval order.
N = No, don’t use hierarchical approval.
539

54

Chapter 10: ChangeMan ZMF Administration Tasks
<jobCard01> Optional 0 - 1 String (72),
variable

First of up to four JCL job cards used with
batch messaging job.

NOTE: If <notifierType> value = 6, this
tag is required.

<jobCard02> Optional 0 - 1 String (72),
variable

Second of up to four JCL job cards used
with batch messaging job.

<jobCard03> Optional 0 - 1 String (72),
variable

Third of up to four JCL job cards used with
batch messaging job.

<jobCard04> Optional 0 - 1 String (72),
variable

Fourth of up to four JCL job cards used
with batch messaging job.

<loadPackageInfo> Optional 0 - 1 String (1) Y = Yes, retrieve info from package
 master rather than XML request.
N = No, don’t retrieve info from package
 master; use values in XML request.

NOTE: Tag is required with value = Y if
value in <messageType> is R.

NOTE: If Y, <package> also required.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<messageType> Required 1 String (1) Code for predefined message format.
Values:

Blank = Generic message.
0 = ‘CMN4600I - ChangeMan package
 (Package) awaits your approval.’
1 = ‘CMN400I - Package (Package)
 approved by (User) on (Date) at
 (Time).’
2 = ‘CMN400I - Package (Package)
 backed out by (User) on (Date) at
 (Time).’
3 = ‘CMN400I - Package (Package)
 baselined by (User) on (Date) at
 (Time).’
5 = ‘CMN400I - Package (Package)
 deleted by (User) on (Date) at
 (Time).’
7 = ‘CMN400I - Package (Package)
 distributed by (User) on (Date) at
 (Time).’
8 = ‘CMN400I - Package (Package)
 frozen by (User) on (Date) at
 (Time).’
9 = ‘CMN400I - Package (Package)
 installed by (User) on (Date) at
 (Time).’
B = ‘CMN400I - Package (Package)
 rejected by (User) on (Date) at
 (Time).’
C = ‘CMN400I - Package (Package)
 cycled by (User) on (Date) at
 (Time).’
R = ‘CMN4600I - ChangeMan release
 (Release) awaits your approval.’

NOTE: If blank, tags <textMessage> &
<textLength> are also required.

NOTE: If value is 0, the <package> tag is
also required.

NOTE: If value is 1, 2, 3, 7, 8, 9, B, or C,
tags <package>, <actionDate>, &
<actionTime> are also required.

NOTE: If value is 5, tags <package>,
<actionDate>, <actionTime>, &
<actionType> are also required. Value in
<actionType> must be 1.

NOTE: If value is R, a release ID must be
retrieved via <loadPackageInfo> tag
value = Y.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
541

54

Chapter 10: ChangeMan ZMF Administration Tasks
<notifierType> Required 1 String (1) Code for notification method to use with
recipients. Values:

1 = MVSSEND message
4 = Email using SMTP
5 = SERNET agent email
6 = Batch messaging job

NOTE: If value = 6, tags <skelsName>,
<jobCard01>, and <cmnSubSytemID>
are also required.

<package> Optional 0 - 1 String (10),
variable

ZMF name of package. Value substituted
for (Package) variable in predefined
messages.

NOTE: Required if <loadPackageInfo>
value is Y.

<packageId> Optional 0 - 1 String (6),
variable

ZMF package number. Same as last six
bytes of <package>.

NOTE: Not recommended as replacement
for <package> tag. Use <package>
instead of <applName> & <packageId>.

NOTE: OK to omit leading zeroes.

<packageLevel> Optional 0 - 1 String (1) Code for package complexity or level in
hierarchy. Substituted for variable in
predefined message. Values:

1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package

<packageStatus> Optional 0 - 1 String (1) Code for status of package in lifecycle.
Substituted for variable in predefined
message. Values:

1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle completed

<packageTitle> Optional 0 - 1 String (72),
variable

Working title of package. Substituted for
variable in predefined message.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<packageType> Optional 0 - 1 String (1) Package install type code. Substituted for
variable in predefined message. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

<portId> Optional 0 - 1 String (16),
variable

Port ID of SERNET email server to
override default.

<recipient> Required 1 String (44),
variable

One or more recipient user IDs or e-mail
addresses separated by delimiters, as
appropriate for the notification method.

NOTE: If <notifierType> value = 1,
this tag contains comma-delimited list of
TSO user IDs.

NOTE: If <notifierType> value = 4 or
5, this tag contains semicolon-delimited list
of email addresses.

NOTE: If <notifierType> value = 6, tag
format depends on batch notification file
tailoring skeleton in <skelsName>.

<requestorDept> Optional 0 - 1 String (4),
variable

Department code of requestor. Substituted
for variable in predefined message.

<requestorName> Optional 0 - 1 String (25),
variable

Name of requestor. Substituted for variable
in predefined message.

<requestorPhone> Optional 0 - 1 String (15),
variable

Phone number of requestor. Substituted for
variable in predefined message.

<sender> Required 1 String (8),
variable

TSO user ID of user taking reported action.
Substituted for (User) variable in
predefined messages.

<skelsName> Optional 0 - 1 String (8),
variable

Name of batch notification file tailoring
skeleton. Default value is CMN$$NTF.

NOTE: If <notifierType> value = 6, this
tag is required.

<subject> Optional 0 - 1 String (50),
variable

Entry for email or batch message “Subject”
field.

NOTE: Used only if <messageType>
value is blank.

NOTE: Used only if <notifierType>
value is 5 or 6.

<textLength> Optional 0 - 1 Integer (5),
variable

Length of <textMessage> in bytes.

NOTE: Required if value is blank in
<messageType>.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
543

54

Chapter 10: ChangeMan ZMF Administration Tasks
USER SERVICE NOTIFY — Replies

The reply message for this function contains no <result> data elements. It does, however,
return a standard <response> data element to indicate the success or failure of the request.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

<textMessage> Optional 0 - 1 String (1024),
variable

Free-format text of message.

NOTE: Required if value is blank in
<messageType>.

NOTE: If used, <textLength> tag also
required.

<workChangeRequest> Optional 0 - 1 String (12),
variable

Work order or change request ID.
Substituted for variable in predefined
message.

Exhibit 10-36. USER SERVICE NOTIFY<request> Data Structure (Continued)

Subtag Use Occurs
Data Type &
Length Values & Dependencies
4

SYSTEM ENVIRONMENT
INFORMATION
 11
System integrators may need programmatic access to system-level information about the
ChangeMan ZMF started task and its working environment. XML Services provides the
following such information for general use:

• System Setup Parameter List - SYSTEM SERVICE LIST

• SERNET Environment Parameter List - SYSTEM ENVIRON LIST

• SERNET Security Group List - SYSTEM SECGROUP LIST

• ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST

• ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST

System Setup Parameter List - SYSTEM SERVICE LIST

This multipurpose function accepts a setup keyword as input and returns its value for the
current instance of ChangeMan ZMF. Typically these are the names of external software
systems with which ChangeMan ZMF communicates, such as the security system, the
scheduling system, the job review system, or the mail system.

The Serena XML service/scope/message tags and attributes for a system setup parameter
list message are:

<service name=”SYSTEM”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

SYSTEM SERVICE LIST — Requests

This function requires a single tag as input. This tag, <systemTypeDesc>, is not really the
description of a system type, but rather a keyword used to retrieve a setup parameter value
from a dataset coded in the ChangeMan ZMF started task procedure. All keywords entered in
this tag must be in upper case.
545

546

Chapter 11: System Environment Information
Example XML — SYSTEM SERVICE LIST Request

<?xml version="1.0"?>
<service name="SYSTEM">
 <scope name="SERVICE">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 <systemTypeDesc>SECURITY</systemTypeDesc>
 </request>
 </message>
 </scope>
</service>

Data structure details for the <request> data element appear in Exhibit 11-1.

SYSTEM SERVICE LIST — Replies

This function returns zero to many <result> data elements. In most cases, a single
<result> contains the requested parameter value in the <systemName> tag, or a null value
if no such system type is used with ChangeMan ZMF. Two exceptions exist, however:

• Chunking Parameter — The value returned in <systemName> is not a system name,
but the ChangeMan ZMF chunk size in bytes.

• File System Parameters — Multiple <result> tags are returned, one for each file
system supported by this ChangeMan ZMF instance. Each <result> contains a file
system name (e.g., “PDSE”) in <systemName> and its corresponding ChangeMan ZMF
code (e.g., “7”) in <systemType>.

Exhibit 11-1. SYSTEM SERVICE LIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<systemTypeDesc> Required 1 String (8),
variable

System setup parameter name or keyword
for ZMF started task. Values:

CHUNKING - SERNET chunking value
CMN - ZMF license status
DISTRIB - File distribution system
FILE - File system(s) used
JES4XJR - Job review system used
MAIL - Mail system used
SCHEDULE - Scheduler used
SECURITY - Security system used

NOTE: Entry is case-sensitive.

NOTE: When value is “FILE”, all supported
file systems are requested as a group.

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The table in Exhibit 11-2 lists the possible values of <systemName> returned for any request
parameter supplied in <systemTypeDesc>.

Exhibit 11-2. SYSTEM SERVICE LIST systemTypeDesc, systemName XREF

Parameter Name
<systemTypeDesc>

Returned Values
<systemName>

CHUNKING Numeric; chunking size in bytes.

CMN CMN = ZMF is licensed
blank = ZMF not licensed

DISTRIB NDM = Network Data Mover (AKA CONNECT:Direct) is ZMF file
 distribution system
BDT = IBM bulk data transfer is ZMF file distribution system
IEBCOPY = IBM IEBCOPY utility is ZMF file distribution system
XCOM62 = Legent’s XCOM62 is ZMF file distribution system
FTP = File Transfer Protocol is ZMF file distribution system
NETMASTR = NetMaster is ZMF file distribution system
NETVIEW = Netview is ZMF file distribution system

FILE IMS = IMS database mgmt system
DB2 = DB2 database mgmt system
PDS = Partitioned data sets
PDSE = Partitioned data sets, extended
SEQ = Sequential files
LIB = CA Librarian
LIBA = CA Librarian Archie
PAN = CA Panvalet
VSAM = VSAM files
HFS = Hierarchical File System
OTHER = Other file system

JES4XJR JES2 = Job review system active under JES2
JES3 = Job review system active under JES3
blank = Job review system not active

MAIL MVSSEND = MVS SEND messaging used for notifications
EMC2 = EMC2 Tao mail system used for notifications
EMAIL = E-mail system used for notifications
PROFS = VM PROFS mail system used for notifications
DISSOS = DISSOS mail system used for notifications
MEMO = MEMO mail system used for notifcations
CCMAIL = cc:Mail mail system used for notifications
547

54

Chapter 11: System Environment Information
Following the <result> data element is the standard <response> data element, which
indicates the success or failure of the XML request. Successful requests have a return code
of 00. Unsuccessful requests have a return code of 04 or higher.

Example XML — SYSTEM SERVICE LIST Reply

<?xml version="1.0"?>
<service name="SYSTEM">
 <scope name="SERVICE">
 <message name="LIST">
 <result>
 <systemName>SAF</systemName>
 </result>
 <result>
 <systemName>RACF</systemName>
 </result>
 <result>
 <systemName>ACF2</systemName>
 </result>
 <result>
 <systemName>TSS</systemName>
 </result>
 <result>
 <systemName>OS2/UPM</systemName>
 </result>
 <response>
 <statusMessage>. . . .
 <statusReturnCode>. . . .
 <statusReasonCode>. . . .
 </response>
 </message>
 </service>

SCHEDULE CMN = ZMF scheduler used
CA7 = Computer Associates job scheduler
ESP = ESP scheduling system
OPCESA = OPC/ESA scheduling system
JOBTRAC = JobTrac scheduling system
CONTROLM = Control-m scheduling
MANUAL = Manual job scheduling
OTHER = Other scheduling system

SECURITY SAF = IBM Security Access Facility
RACF = IBM Resource Access Facility
ACF2 = CA Access Control Facility
TSS = CA Top Secret
OS2/UPM = OS/2 User Profile Management

Exhibit 11-2. SYSTEM SERVICE LIST systemTypeDesc, systemName XREF (Continued)

Parameter Name
<systemTypeDesc>

Returned Values
<systemName>
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> data element appear in Exhibit 11-3.

SERNET Environment Parameter List - SYSTEM ENVIRON LIST

This function accepts a required setup keyword — “ENVIRON” — as input. It returns the
values of several parameters associated with the SERNET system environment in which the
current instance of ChangeMan ZMF operates. These include server date and time, chunk
size, and whether or not SERNET communication is enabled between ChangeMan ZMF and
selected file management systems, job scheduling systems, and Serena products.

The Serena XML service/scope/message tags and attributes for a SERNET environment
parameter list message are:

<service name=”SYSTEM”>
<scope name=”ENVIRON”>
<message name=”LIST”>

These tags appear in both requests and replies.

SYSTEM ENVIRON LIST — Requests

The syntax of a SERNET environment parameter list request is virtually identical to that for a
system setup parameter list request. (See Exhibit 11-1.) However, the <systemTypeDesc>
tag takes a special keyword: “ENVIRON”. This value is case-sensitive.

The example shows exactly how you should code your SERNET environment parameter list
request. As always, the <header> data element is required only for batch jobs. (See
“<header> Tag” in Chapter 2, XML Syntax Basics.)

SYSTEM ENVIRON LIST — Replies

This function returns one <result> data element containing the requested parameters and
values. Following the <result> data structure is the standard <response> data structure,
which indicates the success or failure of the XML request and provides a status message.

Exhibit 11-3. SYSTEM SERVICE LIST <result> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<systemType> Optional 0 - 1 String (1) Code corresponding to file system named
in <systemName>.

NOTE: Returned only for FILE parameter.

<systemName> Optional 0 - 1 String (8),
variable

Value of system setup parameter. Usually
a system name such as RACF (for
security) or FTP (for distribution).

NOTE: Returns blank if requested system
type is not used with ZMF.

NOTE: For CHUNKING parameter, value
is SERNET chunk size in bytes.
549

55

Chapter 11: System Environment Information
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

Data structure details for the <result> data element appear in Exhibit 11-4.

Exhibit 11-4. SYSTEM ENVIRON LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<chunkSize> Optional 0 - 1 String (8),
variable

ZMF started task chunk size in bytes.

<cmnDesDevStatus> Optional 0 - 1 String (1) Code for license status of ChangeMan ZDD.
Values:

0 = Not licensed
2 = Licensed

<cmnStatus> Optional 0 - 1 String (1) Code for license status of ChangeMan ZMF.
Values:

0 = Not licensed
2 = Licensed

<cpxStatus> Optional 0 - 1 String (1) Code for license status of Comparex.
Values:

0 = Not licensed
2 = Licensed

<currentSystemApplid> Optional 0 - 1 String (3) Current system application (for example
CMN).

<currentSystemDateStamp> Optional 0 - 1 Date,
yyyymmdd

Current system date.

<currentSystemTimeStamp> Optional 0 - 1 Time,
hhmmss

Current system time, 24-hour format

<db2Status> Optional 0 - 1 String (1) Code for license status of IBM DB2. Values:

0 = Not licensed
1 = Licensed & inactive
2 = Licensed & active

<eclStatus> Optional 0 - 1 String (1) Code for license status of Eclipse. Values:

0 = Licensed
2 = Not licensed

<endevorStatus> Optional 0 - 1 String (1) Code for license status of Endevor. Values:

0 = Licensed
2 = Not licensed

<hfsStatus> Optional 0 - 1 String (1) Code for SERNET support status of IBM
hierarchical file system (HFS). Values:

0 = Supported
2 = Not supported

<hsmStatus> Optional 0 - 1 String (1) Code for SERNET support status of IBM
hierarchical storage management system
(HSM). Values:

0 = Supported
2 = Not supported
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<imsStatus> Optional 0 - 1 String (1) Code for license status of IBM IMS. Values:

0 = Not licensed
1 = Licensed & inactive
2 = Licensed & active

<libStatus> Optional 0 - 1 String (1) Code for SERNET support status of CA
Librarian. Values:

0 = Supported
2 = Not supported

<panStatus> Optional 0 - 1 String (1) Code for SERNET support status of CA
Panvalet. Values:

0 = Supported
2 = Not supported

<passphrase> Optional 0 - 1 String (1) Code for support status of passphrase.
Values:

0 = Supported
2 = Not supported

<pdseStatus> Optional 0 - 1 String (1) Code for SERNET support status of IBM
PDSE file system. Values:

0 = Supported
2 = Not supported

<sdsbStatus> Optional 0 - 1 String (1) Code for SERNET support status of SDSB.
Values:

0 = Supported
2 = Not supported

<serverCCSID> Optional 0 - 1 String (5) Server CCSID

<serverVersion> Optional 0 - 1 String (5) Server version.

<starToolStatus> Optional 0 - 1 String (1) Code for license status of StarTool FDM.
Values:

0 = Not licensed
2 = Licensed

<syncTracStatus> Optional 0 - 1 String (1) Code for license status of ChangeMan SSM.
Values:

0 = Not licensed
2 = Licensed

<unicodeNationalChars> Optional 0 - 1 String (12),
variable

Unicode national characters in hex.

<xchStatus> Optional 0 - 1 String (1) Code for license status of ChangeMan ZDD/
XCH. Values:

0 = Not licensed
2 = Licensed

Exhibit 11-4. SYSTEM ENVIRON LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
551

55

Chapter 11: System Environment Information
SERNET Security Group List - SYSTEM SECGROUP LIST

This function lists the RACF groups to which a user is connected.

The Serena XML service/scope/message tags and attributes for a SERNET security group
list message are:

<service name=”SYSTEM”>
<scope name=”SECGROUP”>
<message name=”LIST”>

These tags appear in both requests and replies.

SYSTEM SECGROUP LIST — Requests

This function does not accept input data; the request is performed for the user who is running
it. The <request> tag itself is required, however, to identify the message as a request rather
than a reply.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

The following example shows how to code the request with an empty <request> tag.

<xjrJesType> Optional 0 - 1 String (1) Job review JES type. Values:

0 = Not supported
2 = JES2
3 = JES3

<xjrStatus> Optional 0 - 1 String (1) Code for license status of IBM job review
system. Values:

0 = Not licensed
1 = Licensed & inactive
2 = Licensed & active

<xsdStatus> Optional 0 - 1 String (1) Software delivery status. Values:

0 = Not licensed
2 = Licensed

Exhibit 11-4. SYSTEM ENVIRON LIST <result> Data Structure (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

Be sure to code “XCH” in the <product> subtag, which will return security
groups for the user. If you code “CMN” in the <product> subtag, you will receive
a list of groups to which the started task is connected (because CMN tasks run
under the started task's security environment, rather than the user's).

Example XML — SYSTEM SECGROUP LIST Request

<?xml version="1.0"?>
<service name="SYSTEM">
 <scope name="SECGROUP">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>XCH</product>
 </header>
 <request>
 </request>
 </message>
 </scope>
</service>

SYSTEM SECGROUP LIST — Replies

This function returns zero to many <result> data elements, listing all of the RACF security
groups to which the current user is connected. Following the <result> data structure is the
standard <response> data structure, which indicates the success or failure of the XML
request and provides a status message. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Data structure details for the <result> data element appear in Exhibit 11-5.

ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST

This function returns the values of ChangeMan ZMF environment parameters for the current
started task and the current user. (For batch jobs, the “current” started task is the
ChangeMan ZMF instance identified in the <subsys> tag in the <header> data element of
the request.) Returned values include the environment type, the started task job name and

Exhibit 11-5. SYSTEM SECGROUP LIST <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<groupName> Optional 0 - 1 String (7),
variable

RACF security group name.
553

55

Chapter 11: System Environment Information
subsystem ID, the ChangeMan ZMF options licensed, and the product features (such as
administrator access) available to the current user.

The Serena XML service/scope/message tags and attributes for a ChangeMan ZMF
environment parameter list message are:

<service name=”ENVIRON”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

ENVIRON SERVICE LIST — Requests

Because this function accepts no input data, the Serena XML request message includes an
empty <request> tag. The <request> tag itself is required, however, to identify the
message as a request rather than a reply.

 Note

XML syntax allows both a long form and a short form for empty tags. An
empty <request> tag can therefore be coded in one of two ways.

Long form:
 <request>
 </request>

Equivalent short form:
 <request/>

The example shows how to code a ChangeMan ZMF environment parameter list request with
an empty <request> tag.

Example XML — ENVIRON SERVICE LIST Request

<?xml version="1.0"?>
<service name="ENVIRON">
 <scope name="SERVICE">
 <message name="LIST">
 <header>
 <subsys>8</subsys>
 <product>CMN</product>
 </header>
 <request>
 </request>
 </message>
 </scope>
</service>
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
ENVIRON SERVICE LIST — Replies

This function returns one <result> data element containing the ChangeMan ZMF
environment parameter values for the started task responding to the request. Following the
<result> data structure is the standard <response> data structure, which indicates the
success or failure of the XML request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — ENVIRON SERVICE LIST Reply

<?xml version="1.0"?>
<service name="ENVIRON">
 <scope name="SERVICE">
 <message name="LIST">
 <result>
 <startedTaskJobName>SERT8</startedTaskJobName>
 <startedTaskUser>SERT</startedTaskUser>
 <subSystemId>8</subSystemId>
 <cmnEnvironmentType>3</cmnEnvironmentType>
 <hasGlobalAccess>Y</hasGlobalAccess>
 <hasAdminAccess>Y</hasAdminAccess>
 <hasMonitorAccess>Y</hasMonitorAccess>
 <hasBackoutAccess>Y</hasBackoutAccess>
 <hasRevertAccess>Y</hasRevertAccess>
 <hasReleaseManAccess>Y</hasReleaseManAccess>
 <db2SubSystemId>DSN</db2SubSystemId>
 <imsSubSystemId>C113</imsSubSystemId>
 <cmnResourceClass>$CMNTP</cmnResourceClass>
 <enableTestMode>Y</enableTestMode>
 <enableNetTrace>N</enableNetTrace>
 <printTraceConsole>Y</printTraceConsole>
 <shutdownInProgress>N</shutdownInProgress>
 <disableCmnScheduling>N</disableCmnScheduling>
 <reinitParm>Y</reinitParm>
 <isPanPresent>N</isPanPresent>
 <isLibrPresent>N</isLibrPresent>
 <isRlsSupported>N</isRlsSupported>
 <isSmsVsamPresent>N</isSmsVsamPresent>
 <isDb2Licensed>Y</isDb2Licensed>
 <isInfoSystemInstalled>Y</isInfoSystemInstalled>
 <isImsLicensed>Y</isImsLicensed>
 <isCdfLicensed>Y</isCdfLicensed>
 <isOfmLicensed>Y</isOfmLicensed>
 <isLoadBalancingLicensed>Y</isLoadBalancingLicensed>
 <isEroLicensed>Y</isEroLicensed>
 <maximumSiteCount>00255</maximumSiteCount>
 </result>
 <response>
 <statusMessage>CMN8700I - Environment service completed</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
555

55

Chapter 11: System Environment Information
 </scope>
</service>

Data structure details for the <result> data element appear in Exhibit 11-6.

Exhibit 11-6. ChangeMan ZMF Environment Parameter List <result>

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<cmnEnvironmentType> Optional 0 - 1 String (1) Code for ZMF environment type. Values:

1 = All development & production
 handled by same ZMF instance;
 no remote production sites
2 = Development ZMF instance only
3 = Development & production handled
 by same ZMF instance; remote
 production sites also supported
4 = Production ZMF instance only

<cmnResourceClass> Optional 0 - 1 String (8),
variable

Security resource class for ZMF.

<db2SubSystemId> Optional 0 - 1 String (4),
variable

DB2 subsystem ID used by ZMF.

<disableCmnScheduling> Optional 0 - 1 String (1) Y = Yes, disable ZMF scheduling
N = No, don’t disable ZMF scheduling

<enableNetTrace> Optional 0 - 1 String (1) Y = Yes, net trace on
N = No, net trace off

<enableTestMode> Optional 0 - 1 String (1) Y = Yes, test mode on
N = No, test mode off

<hasAdminAccess> Optional 0 - 1 String (1) Y = Yes, user has administrator authority
N = No administrator authority

<hasBackoutAccess> Optional 0 - 1 String (1) Y = Yes, user has backout authority
N = No backout authority

<hasGlobalAccess> Optional 0 - 1 String (1) Y = Yes, user has global authority
N = No global authority

<hasMonitorAccess> Optional 0 - 1 String (1) Y = Yes, user has monitor authority
N = No monitor authority

<hasReleaseManAccess> Optional 0 - 1 String (1) Y = Yes, user has release mgr authority
N = No release manager authority

<hasRevertAccess> Optional 0 - 1 String (1) Y = Yes, user has revert authority
N = No revert authority

<imsSubSystemId> Optional 0 - 1 String (4),
variable

IMS subsystem ID used by ZMF.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
<isApsLicensed> Optional 0 - 1 String (1) Y = Yes, APS licensed
N = No, APS not licensed

<isCdfLicensed> Optional 0 - 1 String (1) Y = Yes, Merge+Reconcile licensed
N = No, Merge+Reconcile not licensed

<isDb2Licensed> Optional 0 - 1 String (1) Y = Yes, DB2 licensed
N = No, DB2 not licensed

<isEroLicensed> Optional 0 - 1 String (1) Y = Yes, ERO licensed
N = No, ERO not licensed

<isImsLicensed> Optional 0 - 1 String (1) Y = Yes, IMS licensed
N = No, IMS not licensed

<isInfoSystemInstalled Optional 0 - 1 String (1) Y = Yes, INFO installed
N = No, INFO not installed

<isLibrPresent> Optional 0 - 1 String (1) Y = Yes, CA Librarian present
N = No, CA Librarian not present

<isLoadBalancingLicensed> Optional 0 - 1 String (1) Y = Yes, Load Balancing Option licensed
N = No, Load Balancing not licensed

<isOfmLicensed> Optional 0 - 1 String (1) Y = Yes, Online Forms Option licensed
N = No, Online Forms Option not licensed

<isPanPresent> Optional 0 - 1 String (1) Y = Yes, CA Panvalet present
N = No, CA Panvalet not present

<isRlsSupported> Optional 0 - 1 String (1) Y = Yes, record-level sharing (RLS) active
N = No, record-level sharing not active

<isSmsVsamPresent> Optional 0 - 1 String (1) Y = Yes, SMS/VSAM (RLS) present
N = No, SMS/VSAM (RLS) not present

<licensedLine1> Optional 0 - 1 String (56),
variable

Licensed to line 1.

<licensedLine2> Optional 0 - 1 String (56),
variable

Licensed to line 2.

<maximumSiteCount> Optional 0 - 1 String (1) Maximum number remote sites supported.

<printTraceConsole> Optional 0 - 1 String (1) Y = Yes, trace to SERPRINT/WTO
N = No, don’t trace to SERPRINT/WTO

<printTraceOnly> Optional 0 - 1 String (1) Y = Yes, trace to SERPRINT only
N = No, don’t trace to SERPRINT only

<reinitParm> Optional 0 - 1 String (1) Y = Yes, PARM=REINIT
N = No, reinitialization parameter not set

<shutdownInProgress> Optional 0 - 1 String (1) Y = Yes, shutdown in progress
N = No, not shutting down

<startedTaskJobName> Optional 0 - 1 String (8),
variable

ZMF started task job name.

Exhibit 11-6. ChangeMan ZMF Environment Parameter List <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
557

55

Chapter 11: System Environment Information
ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST

This function retrieves the dataset and/or library concatenation list for a specified DDNAME
associated with the ChangeMan ZMF started task that processes the request.

The Serena XML service/scope/message tags and attributes for a ChangeMan ZMF library
concatenation list message are:

<service name=”DSS”>
<scope name=”SERVICE”>
<message name=”LIST”>

These tags appear in both requests and replies.

DSS SERVICE STCLIST — Requests

The request message for the library concatenation list function requires the DDNAME for the
ChangeMan ZMF started task as input. Data structure details for the <request> tag appear
in Exhibit 11-7.

DSS SERVICE STCLIST — Replies

This function returns zero to many <result> data elements. Each <result> contains the
fully qualified dataset name of a library, together with its ordinal position in the concatenation
named in the request message by <stcDDname>.

Following the final <result> tag is the standard <response> data element, which indicates
the success or failure of the XML request and provides a status message. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

<startedTaskUser> Optional 0 - 1 String (8),
variable

TSO user ID of current started task user.

<subsystemId> Optional 0 - 1 String (1) ZMF subsystem ID.

Exhibit 11-7. DSS SERVICE STCLIST <request> Data Structure

Subtag Use Occurs
Data Type &
Length Values & Dependencies

<stcDDname> Required 1 String (8),
variable

JCL DDNAME in the ZMF started task
procedure.

Exhibit 11-6. ChangeMan ZMF Environment Parameter List <result> (Continued)

Subtag Use Occurs
Data Type
& Length Values & Dependencies
8

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Data structure details for the <result> data element appear in Exhibit 11-8.

Exhibit 11-8. Library Concatenation List <result> Data Structure

Subtag Use Occurs
Data Type
& Length Values & Dependencies

<mvsLib> Optional 0 - 1 String (255),
variable

Fully qualified dataset name.

<mvsLibSequence> Optional 0 - 1 Integer (3),
variable

Ordinal position of <mvsLib> dataset in
library concatenation for ZMF instance.
559

56

Chapter 11: System Environment Information
0

XMLSERV – INTERACTIVE XML
PROTOTYPING TOOL
 A
XMLSERV is a host application that runs under ISPF on z/OS mainframes. It provides an
interactive user interface to SERXMLBC, the Serena XML batch processing client for
ChangeMan ZMF. (For more information about SERXMLBC, see “SERXMLBC – Executing
Native XML Service Calls” on page 575.)

Use XMLSERV to perform the following tasks:

• Prototype and test Serena XML requests to ChangeMan ZMF interactively, then
validate the XML replies.

• Browse the contents of ChangeMan ZMF master files interactively using Serena
XML requests and replies.

 Caution

Do not use XMLSERV in ISPF split screen mode. If you use split screen mode with
XMLSERV on one screen and ChangeMan ZMF on the other, you may corrupt the
system.

 Caution

Input and output dataset allocations for XMLSERV have been changed in ZMF 7.1.2
to support long names. Any userid.XMLIN and userid.XMLOUT datasets from
ZMF 7.1.1 or earlier must be deleted before running XMLSERV for ZMF 7.1.2 or later.
561

56

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
XMLSERV FUNCTIONAL OVERVIEW

When you first start XMLSERV, it displays a list of XML functions on the main screen.

The main screen lists valid Serena XML functions in alphabetical order by service name.
Names in the Service, Scope, and Message columns correspond to the name attributes for
the Serena XML <service>, <scope>, and <message> tags, respectively. Only valid
combinations are shown.

The Color column flags each service with the level of caution recommended for its use:

 Note

Yellow services are not normally displayed in XMLSERV. Contact Serena Customer
Support for Yellow services training, licensing information, and instructions on how to
include Yellow services on XMLSERV panel displays.

The Copybook column provides the stem name of the copybook used with each service.
These names can be combined with the service color to determine the names of the sample
COBOL-to-XML copybooks to be used with SERXMLCC. Sample COBOL copybooks are
prefixed with XMLC for green services and XMLY for yellow services. For example, the

 File Help

 XML Services Row 1 from 194
 Command ===> SCROLL ===> HALF
 Member .. TEMPNAME Test .. Subsys .. Z Product .. CMN
 S Service Scope Message Color Copybook
 APPROVER APL LIST G ****AAPR
 APPROVER PKG LIST G ****PAPR
 BASELIB SERVICE LIST G ****BASL
 CALENDAR SERVICE LIST G ****CLDR
 CMPONENT GBL_DPRC LIST G ****GDCP
 CMPONENT APL_DPRC CHECK G ****ADCP
 CMPONENT APL_DPRC FIND G ****ADCP
 CMPONENT APL_DPRC LIST G ****ADCP
 CMPONENT GBL_SECR LIST G ****GCSC
 CMPONENT APL_SECR CHECK G ****ACSC
 CMPONENT APL_SECR LIST G ****ACSC
 CMPONENT APL_SECR FIND G ****ACSC
 CMPONENT CHG_DESC LIST G ****PSVD
 CMPONENT GBL_CDSC LIST G ****GCGD
 CMPONENT APL_CDSC LIST G ****ACGD
 CMPONENT APL_CDSC FIND G ****ACGD
 CMPONENT HISTORY LIST G ****CHIS
 CMPONENT HISTORY LISTCONC G ****CHIS

 Color Meaning

G (Green) Equivalent to an ISPF interface function in most cases. No special training is
required prior to use.

Y (Yellow) Implements a low-level subset of an ISPF function without checks. Caution
must be exercised to prevent database integrity issues. Special customer
training is highly recommended before use.
2

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
copybook for the APPROVER.APL.LIST service would be XMLCAAPR. Copybooks are
delivered in the SERCOMC ASMCPY library unloaded from the ChangeMan ZMF installer.

Use the PF8 key to page through the list and find the function you want. Type an “S” beside
the function to select it. When you select a function, XMLSERV supplies all the valid XML
subtag names for the corresponding <request> message. The displayed tag names serve
as data entry prompts. After entering the data needed for your request, submit the XML
request to ChangeMan ZMF directly from XMLSERV. ChangeMan ZMF executes the request
and returns an XML reply. XMLSERV displays the <reply> message in XML format online.

Main Screen Menu Options

The XMLSERV main screen provides menu-driven shortcuts to frequently performed tasks.
These appear under the File and Help menus.

File Menu

Help Menu

Main Screen Primary Commands

XMLSERV supports the following primary commands at the main screen to facilitate its use.

ABOUT Command

The About command displays the 'About' panel, which includes the XML DSECT create date.

Syntax:

ABOUT

FILTER Command

The Filter command filters the list of XML functions to show only entries matching the
specified criteria. Parameters are positional but optional. Parameter values may be masked
with a trailing asterisk (*) wild card character.

Syntax:

FILTER (service|*) (scope|*) (message|*) (color|*) (copybook|*)

Open Opens an existing XML input document for editing in XMLSERV. You
will be offered a list of the members in the input dataset.

Exit Exit from XMLSERV.

Help Provides online information about how to use XMLSERV.

Keys
Help

Displays PF key definitions for use with XMLSERV.

About Gives release-level information about XMLSERV.
563

56

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
Examples:

The FILTER command uses the ISPF TBSARG service, which locates the scroll position as
close to its original position as possible. If you issue a second FILTER command without first
restoring the complete list (FILTER command with no parameters) and moving to the top of
the list, you may need to scroll up to see the new results.

FIND Command

The Find command finds the next entry that contains a specified string in the service, scope
or message name. No masking is available for the search string. If no search string is
specified, the previous Find command is repeated.

Syntax:

FIND string

Examples:

LOCATE Command

The Locate command finds the next entry that matches the specified criteria for one or more
parameters. Parameters are positional but optional. Parameter values may be masked with a
trailing asterisk (*) wild card character. If no parameters are specified, the previous Locate
command is repeated.

Syntax:

LOCATE (service|*) (scope|*) (message|*) (color|*) (copybook|*)

Examples:

FILTER SITE Lists all functions with the service name SITE.

FILTER * * UNFR* Lists all functions with a message name beginning in
‘UNFR’, such as UNFREEZE.

FILTER PACKAGE * * Y Lists all Yellow functions with the service name PACKAGE.

FILTER Lists all functions for all services. (Default)

FIND HIST Finds the next XML function with a service, scope, or
message name containing the string ‘HIST’.

FIND Repeats the previous Find command. (Default)

LOCATE SITE Finds the next function with the service name SITE.

LOCATE * * UNFR* Finds the next function with a message name beginning in
‘UNFR’, such as UNFREEZE.

LOCATE Repeats the previous Locate command. (Default)
4

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
LPRINT Command

The LPRINT command prints the currently displayed list of XML services to DDNAME
XMLPRINT. By default, XMLPRINT is allocated to SYSOUT.

Syntax:

LPRINT

OPEN Command

The Open command opens the named member in the XML input dataset for editing with
XMLSERV. If no member name is specified, the member list for the dataset is displayed.

Syntax:

OPEN (member)

RUN Command

The Run command submits the edited XML member to ChangeMan ZMF for execution.

By default, consecutive blanks in strings are collapsed to a single blank (in compliance with
the XML standard) and blank tag entries are dropped before transmission over the network.
However, if you wish preserve tag indentation or if blank tag values are intended for
submission to ZMF and should not be dropped, use the optional NODROP parameter.

Syntax:

RUN [NODROP]

Examples:

SORT Command

The Sort command sorts the list of XML services by column name or column number. The
first column in the parameter list identifies the outermost level of the sort. The last column in
the parameter list identifies the innermost level of the sort. If no parameters are supplied, the
sort is performed by service name, then scope within service, then message within scope.

Syntax:

SORT (column_1) (column_2) ... (column_n)

RUN Submits the currently open XML file to ZMF for execution. All
blank tags are dropped and consecutive blanks in strings are
compressed to single blanks before submission. (Default)

RUN NODROP Submits the currently open XML file to ZMF for execution. All
blanks are preserved.
565

56

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
Examples:

XML Input and Output Documents

For each XML request and response document in your session, XMLSERV creates a new
dataset member in a PDS library. Your administrator sets up the input and output PDS names
and dataset allocations when installing XMLSERV. These datasets are passed to
SERXMLBC for execution, so they should be allocated using SERXMLBC specifications.
(See Appendix B, “SERXMLBC – Executing Native XML Service Calls,” on page 575 for
dataset allocation recommendations. See the ChangeMan ZMF Installation Guide for
information about installing XMLSERV.)

Within the input and output libraries, you can create multiple input and output members. Each
member contains the XML input request and the XML output result for a single request/
response cycle. Input and output members for the same request/response cycle share the
same member name. You can choose a different member name for each of several input/
output cycles.

For example, let’s say your input library is named userid.XMLIN and your output library is
named userid.XMLOUT. You perform two tasks in a single XMLSERV session. The first task
is a package search, so you assign the member name “PACKSRCH” to these input and
output XML documents in XMLSERV. The second task is a component search, so you name
its input and output document members “COMPSRCH” in XMLSERV. The resulting data set
names at the end of your XMLSERV session would then be:

Because the input and output data sets are saved between XMLSERV sessions, you can
reuse your XML request files either with XMLSERV or directly with the SERXMLBC client.
Similarly, XML reply files can serve (after file format conversion from EBCDIC to ASCII) as
input to XML-savvy reporting tools on the desktop.

SORT SCOPE Sorts function list by scope name.

SORT MESSAGE SERVICE Sorts function list by message name, then service name
within message.

SORT 3 1 Equivalent to ‘SORT MESSAGE SERVICE’.

SORT Sorts function list by service name, then scope name
within service, then message name within scope.
(Default)

XML Input Documents XML Output Documents

USER239.XMLIN(PACKSRCH) USER239.XMLOUT(PACKSRCH)

USER239.XMLIN(COMPSRCH) USER239.XMLOUT(COMPSRCH)
6

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Usage Notes

XMLSERV is a prototyping tool. It is provided as-is as an aid to systems integrators already
familiar with the internals of ChangeMan ZMF. As such, it does not incorporate the fail-safes
and self-checking you might expect to see in a general-purpose utility for end users. Serena
recommends that its use be limited to ChangeMan ZMF administrators and systems
programmers only.

SAMPLE XMLSERV SESSION

The following exercise walks you through a sample XMLSERV session. In this exercise, you
will do the following:

• Start XMLSERV.

• Change the dataset member name for your XML documents to a temporary value.

• Identify the ChangeMan ZMF subsystem that will execute your XML request.

• Specify a test setting.

• Request a general package search using Serena XML.

• Browse the ChangeMan ZMF package search results in Serena XML format.

• Exit XMLSERV.

Step 1: Start XMLSERV

To start XMLSERV, first start ISPF. At the ISPF command line or Option ==> prompt, type:

TSO XMLSERV

 Note

If XMLSERV does not start with this command, check with the ChangeMan ZMF
administrator who installed XMLSERV for the correct library and/or member name.

XMLSERV establishes connections with the resources it requires, then displays the main
screen. In this screen, XMLSERV displays its default parameter settings and lists the XML
functions you can choose to execute in this session.
567

56

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool

Step 2: Select an XML Service

The default parameters for your XMLSERV request appear at the top of the XMLSERV main
screen. They include the member name where XML request and response documents should
be saved, a setting for the diagnostic trace (“Test”) option, and the ChangeMan ZMF
subsystem to use. You can override these defaults for the duration of your XMLSERV
session.

 Note

Generally, you should leave the “Test” field blank (i.e., no diagnostic trace data is
collected for the SYSOUT log). Blank is the default. However, if you want to run your
XML request in test mode and collect trace diagnostics in the ChangeMan ZMF
SYSOUT log file, enter a “T” in the “Test” field.

1. Set the XMLSERV session parameters:

a) Tab to the Member field in the upper right corner of the screen. The default XML
input member name in this case is TEMPNAME. Change it to PACKSRCH.

b) Tab to the Test field. Ensure that this value is blank — meaning no diagnostic trace
is desired.

c) Tab to the Subsystem field. Change the default subsystem ID to that used by your
ChangeMan ZMF instance.

 Note

For this exercise, the screen prints will show a subsystem ID of Z and
an application name of DEMO.

 File Help

 XML Services Row 1 from 194
 Command ===> SCROLL ===> HALF
 Member .. TEMPNAME Test .. Subsys .. Z Product .. CMN
 S Service Scope Message Color Copybook
 APPROVER APL LIST G ****AAPR
 APPROVER PKG LIST G ****PAPR
 BASELIB SERVICE LIST G ****BASL
 CALENDAR SERVICE LIST G ****CLDR
 CMPONENT GBL_DPRC LIST G ****GDCP
 CMPONENT APL_DPRC CHECK G ****ADCP
 CMPONENT APL_DPRC FIND G ****ADCP
 CMPONENT APL_DPRC LIST G ****ADCP
 CMPONENT GBL_SECR LIST G ****GCSC
 CMPONENT APL_SECR CHECK G ****ACSC
 CMPONENT APL_SECR LIST G ****ACSC
 CMPONENT APL_SECR FIND G ****ACSC
 CMPONENT CHG_DESC LIST G ****PSVD
 CMPONENT GBL_CDSC LIST G ****GCGD
 CMPONENT APL_CDSC LIST G ****ACGD
 CMPONENT APL_CDSC FIND G ****ACGD
 CMPONENT HISTORY LIST G ****CHIS
 CMPONENT HISTORY LISTCONC G ****CHIS
8

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
2. Enter an XMLSERV command to find the PACKAGE.SEARCH.GENERAL function.

At the Command ---> prompt, type FIND PACKAGE GENERAL SEARCH, and press
Enter. XMLSERV skips down to the first service with a Service name of PACKAGE.

3. Select the XML function you wish to execute.

Type an S in the S(elect) column in the row for PACKAGE.GENERAL.SEARCH.

4. Press Enter.

Step 3: Edit the XML Input Document

XMLSERV starts an ISPF edit session for the PACKSRCH member and displays an XML
request template. The template contains all valid Serena XML tags predefined for use with
the function you selected on the main screen. Most tags are optional and need not be used.

In this example, XMLSERV displays XML tags for the “Package General Search” function.

 File Help

 XML Services Row 85 from 194
 Command ===> SCROLL ===> HALF
 Member .. PACKSRCH Test .. Subsys .. Z Product .. CMN
 S Service Scope Message Color Copybook
 PACKAGE CMP_DESC LIST G ****PCDS
 PACKAGE CMPONENT INTEGRTY G ****PINT
 PACKAGE FORMS REFREEZE G ****PFRZ
 PACKAGE FORMS UNFREEZE G ****PFRZ
 PACKAGE GEN_DESC LIST G ****PDSC
 PACKAGE GEN_PRMS LIST G ****PGPM
 PACKAGE GEN_PRMS REFREEZE G ****PFRZ
 PACKAGE GEN_PRMS UNFREEZE G ****PFRZ
 S PACKAGE GENERAL SEARCH G ****PSCH
 PACKAGE IMP_INST LIST G ****PIMI
 PACKAGE IMS_ACB LIST G ****PIAS
 PACKAGE IMS_CRGN LIST G ****PICR
 PACKAGE LIMBO SEARCH G ****PSCH
 PACKAGE NON_SRC REFREEZE G ****PFRZ
 PACKAGE NON_SRC UNFREEZE G ****PFRZ
 PACKAGE PKG_LINK LIST G ****PLNK
 PACKAGE PKG_LINK SEARCH G ****PSCH
 PACKAGE PRM_CMP LIST G ****PPRC
569

57

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
 Your screen should look something like the following:

At the top of the XML document template, you will find the header information used to route
your XML document to the correct ChangeMan ZMF instance for execution. The content
shown in the XML <header> tags is the information you entered in “Step 2: Select an XML
Service” on page 568. (For more information about Serena XML <header> tag syntax, see
“High-Level Tags in Serena XML” on page 35.

Below the <header> tag block comes the <request> tag block. Opening and closing tag
pairs appear on a single line. Between the opening and closing tags are blanks, which
represent the maximum data length accepted by the tag. Each tag pair serves as a data entry
prompt. XMLSERV assumes you already know what each tag means. Information about
allowed data types, valid tag combinations, and the like appear earlier in this manual.

In this exercise, you will search for all packages in an application with package numbers
starting in “0000”. Do the following:

Change the <package> tag in the XML <request> block to read as follows:

<package>appl0000*

where appl is your application ID.

The request for this service allows entry of multiple package names delimited by semicolon,
so you must scroll to the right to see the closing </package> tag. You can leave the spaces
between the end of your data and the closing tag, or you can eliminate the spaces.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 EDIT USER239.XMLIN(PACKSRCH) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> HALF
 ****** ***************************** Top of Data ******************************
 000001 <?xml version="1.0"?>
 000002 <service name="PACKAGE">
 000003 <scope name="GENERAL">
 000004 <message name="SEARCH">
 000005 <header>
 000006 <subsys>Z</subsys>
 000007 <test> </test>
 000008 <product>CMN</product>
 000009 </header>
 000010 <request>
 000011 <package>
 000012 <workChangeRequest> </workChangeRequest>
 000013 <requestorDept> </requestorDept>
 000014 <searchForSimpleLevel> </searchForSimpleLevel>
 000015 <searchForComplexLevel> </searchForComplexLevel>
 000016 <searchForSuperLevel> </searchForSuperLevel>
 000017 <searchForPartLevel> </searchForPartLevel>
 000018 <searchForPlannedPermType> </searchForPlannedPermType>
 000019 <searchForPlannedTempType> </searchForPlannedTempType>
0

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 Note

Be careful not to delete any of the lines after the </request> tag when you edit
your XML input document. These are the matching terminators for the opening XML
tags at the top of the document.

Step 4: Execute the Edited XML Request

When you are satisfied with the contents of your XML input document, it’s time to execute
your XML Services request. To do this:

1. Type RUN at the ISPF command line or COMMAND ===> prompt.

2. Press Enter.

XMLSERV saves the edits you made to your input document and passes it to SERXMLBC.
SERXMLBC submits the request to the specified ChangeMan ZMF server, which executes
the request and returns an XML reply to SERXMLBC. SERXMLBC saves the reply as an
XML output document, then passes it back to XMLSERV. XMLSERV opens an ISPF session
in which you can browse the returned XML.

Step 5: Browse the XML Output Document

XMLSERV starts an ISPF session to display your XML output document in view mode. The
screen should look something like this:

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 VIEW USER239.XMLOUT(PACKSRCH) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> HALF
 ****** ***************************** Top of Data ******************************
 000001 <?xml version="1.0"?>
 000002 <service name="PACKAGE">
 000003 <scope name="GENERAL">
 000004 <message name="SEARCH">
 000005 <result>
 000006 <package>DEMO000019</package>
 000007 <applName>DEMO</applName>
 000008 <packageId>000019</packageId>
 000009 <packageLevel>1</packageLevel>
 000010 <packageType>1</packageType>
 000011 <packageStatus>6</packageStatus>
 000012 <requestorName>Agusto Yearwood</requestorName>
 000013 <requestorPhone>808-393-6109</requestorPhone>
 000014 <creator>USER239</creator>
 000015 <tempChangeDuration>000</tempChangeDuration>
 000016 <isStageLibDeleted>N</isStageLibDeleted>
 000017 <isPackageLinked>N</isPackageLinked>
 000018 <isCmnSchedulerUsed>N</isCmnSchedulerUsed>
 000019 <isManualSchedulerUsed>Y</isManualSchedulerUsed>
571

57

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
Page down through the document with PF8. Each package that matches your search criteria
appears in a <result> block. Nested within the opening <result> and closing
</result> tag delimiters for the block, you will find XML subtags detailing the many items
found in the package general record for matching packages. Multiple <result> blocks, one
for each package found, may be returned in response to a package search request.

Following the final <result> block is the <response> block for this XML output document.
The <response> block contains a return code and any status messages concerning the
execution of your XML request. For a successful package search request, the <response>
block looks like this:

Always check the <response> block to verify that your XML request executed successfully.

Because XMLSERV displays the XML output in ISPF view mode, you can use standard ISPF
edit commands to review the data. This gives you a handy way to see a short list of all
packages that satisfied your search criteria. Do this:

At the ISPF command line or Command ===> prompt, type the following instructions to filter
the contents of the XML output document:

X ALL; F ALL <package>

ISPF shows the results as follows:

Type the RESET command to show all the XML output data once again.

 <response>
 <statusMessage>CMN8600I - The Package search list is complete.</statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8600</statusReasonCode>
 </response>

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 VIEW USER239.XMLOUT(PACKSRCH) - 01.00 72 CHARS '<PACKAGE>'
 Command ===> Scroll ===> HALF
 ****** ***************************** Top of Data ******************************
 - - - - - - - - - - - - - - - - - - - 7 Line(s) not Displayed
 000006 <package>DEMO000019</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
 000042 <package>DEMO000020</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
 000078 <package>DEMO000021</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
 000114 <package>DEMO000022</package>
 - - - - - - - - - - - - - - - - - - - 34 Line(s) not Displayed
 000149 <package>DEMO000023</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
 000185 <package>DEMO000027</package>
 - - - - - - - - - - - - - - - - - - - 42 Line(s) not Displayed
 000228 <package>DEMO000028</package>
 - - - - - - - - - - - - - - - - - - - 41 Line(s) not Displayed
 000270 <package>DEMO000029</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
 000306 <package>DEMO000030</package>
 - - - - - - - - - - - - - - - - - - - 35 Line(s) not Displayed
2

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Step 6: Return to the XML Input Document and Exit

When you have finished viewing the XML output document, do the following to finish your
XMLSERV session:

1. Press PF3 to return to the XML input document.

Notice that your request was saved by XMLSERV in condensed form, with null tags
removed. Also, spaces before the closing </package> tag are deleted:

 Note

If you think you might want to change an XMLSERV input document after it has been
saved, you can keep null tags and trailing spaces by using this form of the RUN
command:

RUN NODROP

2. Press PF3 to return to the XMLSERV main screen.

3. To exit XMLSERV, press PF3 or type Exit at the ISPF command line or Command ===>
prompt.

 File Edit Edit_Settings Menu Utilities Compilers Test Help

 EDIT USER239.XMLIN(PACKSRCH) - 01.00 Columns 00001 00072
 Command ===> Scroll ===> HALF
 ****** ***************************** Top of Data ******************************
 000001 <?xml version="1.0"?>
 000002 <service name="PACKAGE">
 000003 <scope name="GENERAL">
 000004 <message name="SEARCH">
 000005 <header>
 000006 <subsys>5</subsys>
 000007 <product>CMN</product>
 000008 </header>
 000009 <request>
 000010 <package>demo0000*</package>
 000011 </request>
 000012 </message>
 000013 </scope>
 000014 </service>
 ****** **************************** Bottom of Data ****************************
573

57

Appendix A: Appendix A: XMLSERV – Interactive XML Prototyping Tool
4

SERXMLBC – EXECUTING
NATIVE XML SERVICE CALLS
 B
Run batch client program SERXMLBC to execute native XML calls to XML Services. The
load module for this program is delivered in the SERCOMC LOAD library in the ChangeMan
ZMF installer.

SERXMLBC reads an XML request message from a file and preprocesses the message to
ensure a minimum level of well-formed syntax with required tags present. It then passes the
message to the SERCLIEN messaging client that handles the connection to the
ChangeMan ZMF server. When SERCLIEN receives the XML reply, it passes the reply to
SERXMLBC for delivery to an output file.

Input Requirements

SERXMLBC reads an XML request message at DD statement XMLIN. Requirements for
input include:

• The input file is a sequential data set, PDS member, or PDSE member.

• DCB requirements for file are flexible, but the following is suggested to accommodate
long tags:

 RECFM=VB
 LRECL=255

• Request messages must be formatted with one tag per record.

• Tag indenting is allowed (leading spaces are X’40’), but indenting is not required and no
information is conveyed by indenting.

Output Requirements

SERXMLBC writes an XML reply message to DD statement XMLOUT. Requirements for
output include:

• The output file is a sequential data set, PDS member, or PDSE member.

• The following DCB parameters are set internally by SERXMLBC:

 RECFM=VB
 LRECL=5000

• Reply messages are formatted with one tag per record.

• Tag indenting in reply messages expresses tag hierarchy.
575

57

Appendix B: Appendix B: SERXMLBC – Executing Native XML Service Calls
JCL Requirements

The following is an example of the JCL you might use to run SERXMLBC:

//XML EXEC PGM=SERXMLBC
//*
//STEPLIB DD DISP=SHR,DSN=somnode.CMNZMF.LOAD
// DD DISP=SHR,DSN=somnode.SERCOMC.LOAD
//*
//SER#PARM DD DISP=SHR,DSN=somnode.TCPIPORT
//SYSPRINT DD SYSOUT=*
//SERPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//XMLIN DD DISP=SHR,DSN=somnode.XMLIN(member_name)
//XMLOUT DD DISP=SHR,DSN=somnode.XMLOUT(member_name)

Note the following when you build JCL to execute SERXMLBC:

• The STEPLIB statement should use the same load library concatenation that you use for
the STEPLIB in the SERNET started task JCL.

• The SER#PARM ddname should point to the same partitioned data set you used for the
SER#PARM ddname in the SERNET started task JCL. This data set stores TCP/IP
addresses and port numbers for Serena applications.

• The XMLIN ddname should point to the data set that contains your XML request
message.

• The XMLOUT ddname should point to the data set that receives the XML reply message.

Return Codes and ABENDs

The following return codes are generated by SERXMLBC. Other return codes are passed
through from the low-level service objects on the server through SERXMLBC.

Return
Code General Description

00 Successful completion.

04 Warning message generated by low-level service object on server. Nonfatal error.

08 XML tag is missing a required name attribute. Fatal error.

12 XML tag contains a value that is the wrong length. Fatal error.

16 A mandatory XML tag is missing. Fatal error.

24 SERXMLBC is unable to load the SERCLIEN messaging client software. Fatal error.
6

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
SERXMLBC terminates abnormally if it cannot open your XML input file. You will receive the
following ABEND message:

SER622W - Unable to open XMLIN - abending
577

57

Appendix B: Appendix B: SERXMLBC – Executing Native XML Service Calls
8

SERXMLAC – CALLING XML
SERVICES FROM ASSEMBLER
 C
To execute XML Services from an assembler program, invoke client program SERXMLAC.
The load module for this program is delivered in the SERCOMC LOAD library in the
ChangeMan ZMF installer.

The caller supplies an input buffer containing a well formed XML request, and the reply is
returned in an output buffer, wrapped in the appropriate XML tags. The caller is then
responsible for parsing the XML reply in the output buffer. The caller preallocates the input
and output buffers and must make sure they are big enough to contain the request and reply
data.

As with all XML service data, unused tags are not required in the request buffer, and empty
tags are not returned in replies.

Program SERXMLAC may be called from ChangeMan ZMF exit programs to access XML
Services.

SERXMLAC PARAMETER LIST

SERXMLAC requires a 4-word parameter list as follows:

• +0 = Length of the XML request area.

• +4 = Address of the XML request.

• +8 = Length of the XML reply area.

• +12 = Address of the XML reply area.

You determine the amount of storage allocated for the reply buffer. Once the reply buffer is
full, SERXMLAC sends no more data to the service call.
579

58

Appendix C: SERXMLAC – Calling XML Services From Assembler
RETURN CODES AND REASON CODES

The following return codes (R15) and reason codes (R0) are generated by SERXMLAC.

SAMPLE CALL TO APPROVER PKG LIST

This section provides an example of how to call the APPROVER PKG LIST service from an
assembler program.

Setting SERXMLAC Parameter List Values

In this example, we allocate 4K bytes for the request buffer and 32K bytes for the replies.

**
----+----1----+----2----+----3----+----4----+----5----+----6----+----7--
*
* Allocate storage areas for XML request and reply (SERXMLAC)
*
* IXP$PARM +0 = length of request area
* IXP$PARM +4 = address of request area
* IXP$PARM +8 = length of reply area
* IXP$PARM +12 = address of reply area
* IXP$PARM +16 = address of current '<result>'
* IXP$PARM +20 = total getmain'd storage
*
**
 XC IXP$PARM,IXP$PARM clear parmlist
 LA R2,4+32 36k request
 SLL R2,10 bits
 STORAGE OBTAIN,LENGTH=(2), get storage
 COND=NO,SP=3, subpool 3
 LOC=(ANY,ANY) above, backed anywhere
 ST R1,IXP$PARM+4 adr of request area

Return
Code

Reason
Code

00 00 - Successful completion

04 08 - No information found for this request

16 08 - The following tag missing name

16 12 - The following tag wrong length

16 16 - The following tag is mandatory

16 20 - Reply buffer exceeded

20 26 - Invalid parameter list
0

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 ST R2,IXP$PARM+20 total getmained length
 LA R2,X09@RQLN actual request length
 ST R2,IXP$PARM length of request area
 LA R2,4 4k request
 SLL R2,10 bits
 AR R1,R2 bump +4k
 LA R2,32 32k reply length
 SLL R2,10 bits
 ST R2,IXP$PARM+8 length of reply area
 ST R1,IXP$PARM+12 adr of reply area
 ST R1,IXP$PARM+16 save current result pointer

Building the XML Services Request Buffer

In this example, we are calling the APPROVER PKG LIST service. The request must include
the package name and subsystem ID at tags <package> and <subsys> respectively.

XML Request Area

The following code shows the request area for the APPROVER PKG LIST request.

**
*
* XML Request
*
**
X09@XMLR DS 0H XML request block
 DC C'<?xml version="1.0"?>'
 DC C'<service name="APPROVER">'
 DC C' <scope name="PKG">'
 DC C' <message name="LIST">'
 DC C' <header>'
 DC C' <subsys>'
X09@SUBS EQU *-X09@XMLR,1
 DC C'x'
 DC C'</subsys>'
 DC C' <test>T</test>'
 DC C' <product>CMN</product>'
 DC C' </header>'
 DC C' <request>'
 DC C' <package>'
X09@PKGN EQU *-X09@XMLR,10
 DC C'aaaannnnnn'
 DC C'</package>'
 DC C' </request>'
 DC C' </message>'
 DC C' </scope>'
581

58

Appendix C: SERXMLAC – Calling XML Services From Assembler
 DC C'</service>'
X09@RQLN EQU *-X09@XMLR request length

Setting Request Tag Values

To make the program reentrant and reusable, move the request block to allocated storage,
and then move data values to fields imbedded in the appropriate tag names.

In this example, the subsystem ID comes from X09@SUBS and the package name comes
from X09@PKGN.

**
*
* Move request to SERXMLAC request buffer
*
**
 L R0,IXP$PARM+4 target request area
 L R1,IXP$PARM target request length
 LA R14,X09@XMLR source tags
 LR R15,R1 ditto request length
 MVCL R0,R14 source request to area
**
*
* Move service filtering data to SERXMLAC request buffer
*
**
 L R1,IXP$PARM+4 restore request area
 MVC X09@SUBS(,R1),IXP$SUBS ZMF subsys id
 MVC X09@PKGN(,R1),IXP$PNAM package name

Calling SERXMLAC

After the request buffer has been populated, the address of the parameter list is passed in
register 1, per normal convention, and SERXMLAC is called.

**
*
* Call SERXMLAC with service request.
*
**
 LA R1,IXP$PARM parameter list for serxmlac
 ST R1,IXP$WORK store parmlist address
 LOAD EP=SERXMLAC
 LR R15,R0 epa
 LA R1,IXP$WORK
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 BASSM R14,R15 call it
 LTR R15,R15 okay?
 BNZ X09$9000 .no, error

Processing the Reply Buffer

All replies are returned from the call in a single burst. The caller is responsible for ensuring
that the amount of storage allocated for the reply buffer is large enough to hold as many
results as are expected or required.

Reply data is wrapped in XML tags, starting with the usual header tags (XML version, service,
scope, and message), one or more sets of results tags, followed by the response tags (return
message, return code, and reason code).

When you process replies, scan the reply buffer for the tags you are interested in, and
examine the enclosed data. The buffer may contain multiple sets of result tags, so scan for
the <result> tag first, which indicates the beginning of one result. Each result is terminated
by a </result> ending tag. The <response> tag indicates the end of all results.

GETTAG Subroutine

This is the code for the GETTAG subroutine that parses the reply buffer to extract package
approver information returned by XML Services.

**
* GETTAG - find tag at R1
*
*Input R0 = length of tag value
* R1 = adr of tag value
* XML$PARM+16 start of search area
*
*Output R0 = length of data value
* R1 = adr of data value
* R15= +0 tag and data found
* R15= +4 tag not found before </result>
* R15= +8 tag not found before </response>
**
GETTAG DS 0H
 BAKR R14,0 stack registers
 LR R14,R1 save tag value adr
 LR R3,R0 save tag value length
 BCTR R3,0 -1 for ex instr
 L R4,XML$PARM+16 start of search
GETT0100 DS 0H
 TRT 0(256,R4),TRTBL look for chevron
 BZ GETT9100 not found - end of data
 CLC 0(9,R4),=C'</result>' end of result?
 BE GETT9000 .yes, end of this result
583

58

Appendix C: SERXMLAC – Calling XML Services From Assembler
 CLC 0(11,R4),=C'</response>' end of response?
 BE GETT9100 .yes, end of data
 EX R3,GETTCMPR compare tag with request
 LA R4,1(,R4) bump past chevron
 BNE GETT0100 not found, keep looking
 LA R4,0(R3,R4) bump over tag
 LR R5,R4 save start of reply data
 TRT 0(256,R4),TRTBL look for next chevron
 BZ GETT9100 not found - some error
 SR R1,R5 R1 = length of data
 LR R0,R1 R0 = length of data
 LR R1,R4 R1 = adr of data
 XR R15,R15 good return code
 B GETT9900 return
GETT9000 DS 0H
 LR R1,R4 adr of </result>
 LA R15,4 </result> found before tag
 B GETT9900 return
GETT9100 DS 0H
 LR R1,R4 adr of </response>
 LA R15,8 </response> found before tag
* B GETT9900 return
GETT9900 DS 0H
 PR , unstack, return
**
* DATA AREAS
**
GETTCMPR CLC 0(*-*,R4),0(R14) matching tag name?
 LTORG
**
* Translate table for '<'
**
TRTBL DC 256AL1(0)
 ORG TRTBL+C'<'
 DC C'<'
 ORG

GETTAG Subroutine Processing

This sample GETTTAG subroutine scans the reply buffer searching for a tag pointed to by
register 1. If a </result> tag is discovered before the required tag name is found, the return
code is set to +4, indicating the end of the current reply. If a </response> tag is discovered
before the required tag name is found, the return code is set to +8, indicating that all results
have been exhausted.

The sequence of events for managing reply tags should be:

1. Point Register 1 (R1) at the start of the reply buffer.

2. Scan for the first <result> tag.
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
3. Set R1 (stored in IXP$PARM+16 in this example) to the start of the <result>.

4. Point R1 to a tag name you wish to interrogate.

5. Call the GETTAG routine. If found, the data within the tag will be located at R1, and its
length in R0.

6. Continue calling the GETTAG routine with whatever tag names you wish to interrogate.

7. When GETTAG returns RC=4 (end of <result>), point R1 at the next set of <result>s, and
go to step 3.

8. When GETTAG returns with RC=8 (end of <response>), all results have been processed.
585

58

Appendix C: SERXMLAC – Calling XML Services From Assembler
6

SERXMLCC - CALLING XML
SERVICES FROM COBOL
 D

COBOL-TO-XML COPYBOOKS

To execute Serena XML Services calls, you need not work directly with XML and
SERXMLBC. Instead, you can use COBOL copybooks in your custom COBOL programs.

ChangeMan ZMF provides a set of copybooks that enable COBOL programs to generate
Serena XML message streams. The copybooks wrap literal strings containing XML tag
names and other syntax around COBOL variables. Your COBOL program populates these
variables with the values you want to submit to ChangeMan ZMF in your Serena XML
request. The data values for these COBOL variables are identical to those you would use to
populate their corresponding XML data elements.

If Serena XML Services returns one or more XML <result> tag, all tags are removed and
the result is presented to the user program as a table of COBOL variables with one row for
each <result>.

Copybook Member Names

In many cases, there is one COBOL-to-XML copybook for each combination of <service>,
<scope>, and <message> names supported by Serena XML Services. Some copybooks
are used for more than one <scope> and <message> combination. Copybook member
names have the following form:

XMLCxxxx

— where xxxx is a four-letter mnemonic for one or more service/scope/message
combinations.

For example, XMLCPAPV is the COBOL copybook file that accesses the “package approval”
function of the package management service object. It is associated with the following name
attributes in the XML <service>, <scope>, and <message> tags:

<service name=”package”>
<scope name=”service”>
<message name=”approve”>

Cross reference tables showing COBOL copybook names for each of the XML services is
provided in Exhibit 2-10 (for core ZMF functionality) and Exhibit 2-11 (for ERO services).
587

58

Appendix D: Appendix D: SERXMLCC - Calling XML Services from COBOL
 Caution

Do not modify the COBOL-to-XML copybooks. These code modules must
remain synchronized with various XML-to-DSECT mapping files in order to
work correctly. If you have a requirement that is not easily met using the
COBOL-to-XML copybooks, you should use Serena XML Services directly.

COBOL VARIABLE NAMES

The COBOL variable names used in the COBOL-to-XML copybooks are of two types: control
variables and content variables.

Control Variables

Control variable names appear in all capitals. Most control variables are used by the COBOL
batch client subroutine, SERXMLCC, to manipulate the data exchanged with user programs.
Some control variables map to the Serena XML Services subtags within the <header> and
<response> data structures. The function of a control variable is consistent across all
COBOL-to-XML copybooks.

The table below lists the COBOL control variables used in all COBOL-to-XML copybooks.

Content Variables

Content variables in the COBOL copybooks map one-to-one against Serena XML Services
subtags within the <request> and <result> data structures. Different sets of content
variables appear in each COBOL-to-XML copybook.

COBOL Variable Name XML Parent Tag XML Subtag Name Page #

REQUEST-BUFFER-LENGTH N/A N/A N/A

RESULT-COUNT N/A N/A N/A

HEADER-SUBSYS <header> <subsys>

HEADER-TEST <header> <test>

HEADER-SCOPE <service> <scope>

HEADER-MESSAGE <scope> <message>

RESULT-RC <response> <statusReturnCode>

RESULT-REASON <response> <statusReasonCode>

RESULT-MESSAGE <response> <statusMessage>
8

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
COBOL content variable names correspond closely to the names of their matching Serena
XML Services tags. Given an XML tag name, you can obtain its equivalent COBOL variable
name by applying the following transformation rules:

• Input variables (i.e., those corresponding to XML tags in the <request> data structure)
are prefixed in COBOL with I-.

• Output variables (i.e., those corresponding to XML tags in the <result> data structure)
are prefixed with O-.

• Underscores in XML tag names are replaced by hyphens in COBOL variable names.

• Delimiting angle brackets are not part of the XML tag name and are omitted from the
corresponding COBOL variable name.

• Case is preserved. Upper-case characters in XML tag names are upper-case in COBOL
variable names. Lower-case characters in XML tag names are lower-case in COBOL
variable names.

• XML tag names are truncated to 30 characters in COBOL variable names. When the
I/O prefix is added, the XML tag names are truncated to 28 characters.

The table below shows example transformations from XML tag names to their COBOL
variable names. This subset is selected from the “list general parameters” function of the
package management service object. The relevant copybook name is XMLCPGPM.

Data Types, Values, and Constraints

Data type, value constraints, and interdependencies for a given XML tag (or group of tags)
apply equally to any corresponding COBOL variable(s) in a COBOL-to-XML copybook. This

XML Parent Tag XML Subtag Name COBOL Variable Name

<request> <package> I-package

<applName> I-applName

<isLinkedPackage> I-isLinkedPackage

<result> <package> O-package

<applName> O-applName

<packageLevel> O-packageLevel

<packageType> O-packageType

<packageStatus> O-packageStatus

<dateFrozen> O-dateFrozen

<dateApproved> O-dateApproved

<dateInstalled> O-dateInstalled

<isLinkedPackage> O-isLinkedPackage
589

59

Appendix D: Appendix D: SERXMLCC - Calling XML Services from COBOL
information is detailed in the Serena XML Services Reference Tables, which contain a series
of indexed HTML files that describe each service.

 Tip

Serena XML Services data restrictions are defined broadly enough to
accommodate both mainframe and distributed ChangeMan products. Where
ChangeMan ZMF has a more restrictive internal data requirement than the XML
interface allows (e.g., for data length), the more restrictive requirement should be
followed.

INPUT/OUTPUT BUFFERS

All COBOL-to-XML copybooks place a REQUEST-BUFFER and a RESULT-BUFFER data
structure in your COBOL program’s working storage section. These data structures organize
the COBOL variables of the copybook for I/O processing.

The REQUEST-BUFFER data structure formats your populated COBOL variables into a
Serena XML Services request message. Included in REQUEST-BUFFER are control
variables for the XML <header> data structure, content variables for the XML <request>
data structure, and appropriate XML tags coded as literals in VALUE clauses. Your program
passes the populated REQUEST-BUFFER to program SERXMLCC, the COBOL batch
subroutine client for Serena XML Services.

The RESULT-BUFFER data structure contains a parsed XML reply message that is returned
to your program by SERXMLCC. The RESULT-BUFFER contains up to four subordinate data
structures.

This subordinate data structure is included in all reply messages.

• STATUS-MESSAGES — Contains COBOL variables for return code, reason code, and
message (i.e., the parsed contents of the Serena XML Services <response> tag).
STATUS-MESSAGES is always present in a reply.

These three subordinate structures appear only if a Serena XML Services <result> is
expected.

• RESULT-TAGS — Contains Serena Services XML tag names and their internal lookup
codes for all permitted subtags in the <result> type expected for a particular COBOL
copybook. These are literals provided for XML reply processing, and they provide no
information that you can use in your COBOL user program.

• RESULT-COUNT — Control variable populated with the number of XML <result> data
structures returned by Serena XML Services. RESULT-COUNT provides the maximum
value of a table index for the RESULT-AREA data structure below. If XML Services
returns no XML <result> data structure, then RESULT-COUNT is zero.

• RESULT-AREA — An table of parsed XML <result> data structures. Each table row
contains the populated COBOL content variables that correspond to the subtags in a
single instance of an XML <result> data structure returned by Serena XML Services.
0

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
The subtags are not included in a RESULT-AREA table row. The number of populated
table rows in RESULT-AREA is indicated in RESULT-COUNT.

COBOL BATCH SUBROUTINE CLIENT SERXMLCC

To process requests and receive replies from the SERERNA XML Services interface, your
custom COBOL program must call the COBOL batch client program, SERXMLCC. You issue
this call after initializing and populating a set of request variables in the REQUEST-BUFFER
data structure of a particular COBOL copybook. Your custom COBOL program may issue
only one Serena XML Services request at a time. The associated reply — which is delivered
to the RESULT-BUFFER data structure by SERXMLCC — should be processed before
another request is sent.

SERXMLCC preprocesses your generated XML request message to ensure a minimum level
of well-formed syntax and to verify that all required XML tags are present. It then passes your
message to the SERCLIEN messaging client for delivery to SERNET and the
ChangeMan ZMF server. On receipt of an XML reply, SERXMLCC parses the XML message
and populates the COBOL variables in the RESULT-BUFFER.

The SERXMLCC subroutine is designed to run in batch mode only.

Compiling Programs That Call SERXMLCC

Your custom program that uses COBOL-to-XML copybooks and calls SERXMLCC observe
the following JCL requirements.

Compile JCL

The SYSLIB DD statement in your compile JCL must include the Serena SERCOMC
ASMCPY library that you unloaded from the ChangeMan ZMF installer. This is where the
COBOL-to-XML copybooks reside.

Make dynamic COBOL calls to SERXMLCC and use compile parameter DYNAM to avoid
having to relink your program each time a new version of SERXMLCC is released by Serena.

Link-edit or Binder JCL

If you choose to link SERXMLCC statically to your custom program, then the SYSLIB DD
statement in your link-edit JCL must include the Serena SERCOMC LOAD library you
unloaded from the ChangeMan ZMF installer. This is where the COBOL batch subroutine
client SERXMLCC and all other Serena subroutines reside.

Link edit your program into your custom CMNZMF LOAD library.

Running Programs That Call SERXMLCC

When you call SERXMLCC from your user program, you connect indirectly to the SERNET
started task with the subsystem ID that you moved to the HEADER-SUBSYS variable in the
COBOL-to-XML copybook in your program.
591

59

Appendix D: Appendix D: SERXMLCC - Calling XML Services from COBOL
The libraries you use in the execution JCL for your programs must be the same as the
libraries in the SERNET started task JCL.

• STEPLIB or JOBLIB — Use the same load library concatenation that you use in the
STEPLIB for the SERNET started task JCL.

• SER#PARM — Point to the same PDS that is coded in the SERNET started task JCL at
the SER#PARM statement.

Return Codes

COBOL batch subroutine client SERXMLCC generates the following return codes.

Other reason codes and error messages are passed through from the low-level service
objects in ChangeMan ZMF to your COBOL program in the STATUS-MESSAGES variables
in the COBOL copybooks.

SAMPLE COBOL PROGRAM CMNOPSCH

Program CMNOPSCH delivered in the CMNZMF SAMPLES library is an example of a
COBOL program that calls Serena XML Services through the COBOL batch client program,
SERXMLCC. The sample program uses the PACKAGE GENERAL SEARCH service to list
packages with IDs that fit mask JONH00057* in the ChangeMan ZMF instance that runs
under SERNET subsystem L.

Program CMNOPSCH passes XML requests to SERXMLCC using the PSCH02-REQUEST
data structure in copybook XMLCPSCH. Replies from SERXMLCC are received in the
PSCH02-RESULT data structure in the same copybook.

These are the significant processing steps in program CMNOPSCH.

1. Prepare request data in the PSCH02-REQUEST data structure in copybook XMLCPSCH
in Working Storage.

a) Initialize the entire REQUEST-BUFFER.

a) Set <subsys> name by moving a literal to the HEADER-SUBSYS variable. The
literal value is the subsystem ID of the target SERNET instance.

Return
Code General Description

00 Successful completion.

04 Warning message generated by low-level service object on server. Nonfatal error.

08 XML tag is missing a required name attribute. Fatal error.

12 XML tag contains a value that is the wrong length. Fatal error.

16 A mandatory XML tag is missing. Fatal error.
2

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
b) Set <package> name by moving a literal to the I-PACKAGE variable. The literal
value is the search mask for the package search operation.

c) Set the REQUEST-BUFFER-LENGTH variable in copybook XMLCPSCH by using the
MOVE LENGTH OF operator.

2. Call COBOL batch client program SERXMLCC, passing the address of the REQUEST-
BUFFER in the PSCH02-REQUEST data structure and the RESULT-BUFFER in the
PSCH02-RESULT in copybook XMLCPSCH in Working Storage.

3. Process data returned by SERXMLCC in the PSCH02-RESULT data structure in
copybook XMLCPSCH in Working Storage.

a) If the STATUS-RETURN-CODE is 0, increment Working Storage subscript RESULT-
SUBSCR from 1 to the value of RESULT-COUNT returned by SERXMLCC, and
display data from each occurrence of RESULT-AREA in the RESULT-BUFFER.

Note: Working Storage subscript STATUS-SUBSCR is used to translate the numeric
code in O-PACKAGESTATUS into the familiar three-character abbreviation for
package status in lookup table STATUS-VALUES in Working Storage.

b) If the STATUS-RETURN-CODE value is not 0, display the values of the STATUS
variables in the RESULT-BUFFER, and set the return code for program CMN0PSCH
to the STATUS-RETURN-CODE.

4. Exit the program.

Compile, Link, and Execution JCL for CMNOPSCH

This JCL shows steps to compile and link edit sample COBOL program CMNOPSCH with
dynamic calls to XML Services batch client program SERXMLCC.

 Note

You must copy the source for sample program CMNOPSCH from the delivered
CMNZMF SAMPLES library to a library with LRECL=80 to input the source to the
compiler. The SAMPLES library has LRECL=4096.

//COBOL EXEC PGM=IGYCRCTL,
// PARM='LIB,DYNAM',
// REGION=2048K
//STEPLIB DD DSN=SYS2.ECOB310.SIGYCOMP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIB DD DSN=somnode.SERCOMC.ASMCPY,DISP=SHR
//SYSIN DD DSN=somnode.CMNZMF.CUSTOM.SAMPLES(CMNOPSCH),
// DISP=SHR
//SYSLIN DD DSN=&&LOADSET,
// DISP=(MOD,PASS),
// UNIT=SYSDA,SPACE=(TRK,(3,3)),
// DCB=(BLKSIZE=3200)
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
593

59

Appendix D: Appendix D: SERXMLCC - Calling XML Services from COBOL
//SYSUT3 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT5 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT6 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//SYSUT7 DD UNIT=SYSDA,SPACE=(CYL,(1,1))
//*
//LKED EXEC PGM=HEWL,
// COND=(4,LT),
// REGION=1024K
//SYSLIB DD DSN=CEE.SCEELKED,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSLMOD DD DSN=somnode.SERCOMC.CUSTOM.LOAD(CMNOPSCH),
// DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(10,10))
//*
//EXECUTE EXEC PGM=CMNOPSCH,
// COND=(4,LT)
//STEPLIB DD DSN=somnode.CMNZMF.CUSTOM.LOAD,DISP=SHR
// DD DSN=somnode.SERCOMC.CUSTOM.LOAD,DISP=SHR
// DD DSN=somnode.CMNZMF.LOAD,DISP=SHR
// DD DSN=somnode.SERCOMC.LOAD,DISP=SHR
// DD DSN=CEE.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//SNAPOUT DD SYSOUT=*
//SER#PARM DD DSN=somnode.SERCOMC.TCPIPORT,DISP=SHR
//SERPRINT DD SYSOUT=*

 Display from Sample Program CMNOPSCH

This is an example of the data displayed to SYSOUT by sample program CMNOPSCH.

PACKAGE STA TYP LVL INSTALL CREATOR
========== === === === ======== ========
DEMO000021 DEV PLN SMP 20081024 USER240
DEMO000022 DEV PLN SMP 20090323 USER240
DEMO000023 DEV PLN SMP 20081023 USER240
DEMO000027 BAS PLN SMP 20081117 USER239
DEMO000028 DEV PLN SMP 20081015 USER239
DEMO000029 DEV PLN SMP 20081025 USER239
4

SERXMLRC - CALLING XML
SERVICES FROM REXX
 E
REXX batch execution client SERXMLRC provides an interface to Serena XML Services
from REXX programs.

The function of SERXMLRC is to generate Serena XML documents from REXX stem
variables. The generated Serena XML data stream is validated for well-formed XML syntax,
then routed by the SERCLIEN interface on the client to SERNET on the host. SERNET
passes the XML request to the ChangeMan ZMF instance named in the <header> tag.

ChangeMan ZMF output is passed back to SERXMLRC as a separate XML document. This
document is parsed, and the Serena XML tag names are presented to the calling REXX
program in the same stem as the input. The raw XML result is also made available to the
caller of the service should native parsing be a requirement of the caller.

Your custom REXX program creates and populates the request stem variable, calls
SERXMLRC, and processes the REXX result.

SERXMLRC can run in batch, and it can be called from ISPF panel exits. The load module for
SERXMLRC is delivered with other XML Services batch clients in the SERCOMC LOAD
library in the ChangeMan ZMF ChangeMan ZMF installer.

SAMPLE JCL TO INVOKE XML REXX EXEC

The following is an example of JCL used to invoke CMN010. This JCL is included in member
REPORTS in the CMNZMF CNTL library delivered in the ChangeMan ZMF installer. The
REXX EXEC, which is included in the CMNZMF REX library, produces the Summary of
Planned and Unplanned Packages report:

//REXX EXEC PGM=IRXJCL,REGION=0M,
// PARM='CMN010 ABCD 1 USER000 T' <=== Change Accordingly
//* ZMF/SERCOMC LOAD LIBRARIES
//STEPLIB DD DISP=SHR,DSN=somnode.CMNZMF.LOAD
// DD DISP=SHR,DSN=somnode.SERCOMC.LOAD
//* REXX LIBRARIES
//SYSEXEC DD DISP=SHR,DSN=somnode.CMNZMF.REX
//* SER#PARM
//SER#PARM DD DISP=SHR,DSN=somnode.SERCOMC.TCPIPORT
//* TCP/IP OUTPUT
//SYSPRINT DD SYSOUT=*
//* XML REPORT OUTPUT
//SYSTSPRT DD SYSOUT=*,DCB=(RECFM=FBA,LRECL=133)
//* XML DIAGNOSTIC TRACE DATA
//SERPRINT DD SYSOUT=*
595

59

Appendix E: Appendix E: SERXMLRC - Calling XML Services From REXX
//* ABEND OUTPUT
//SYSABEND DD SYSOUT=*

SAMPLE REXX EXEC CMN010 PROLOGUE

/* REXX */
/* ** */
/* Copyright 2003-2007 (C) SERENA Software, Inc. */
/* Licensed material. All rights reserved. */
/* ChangeMan is a registered trademark of SERENA (R) Software Inc. */
/* ** */
/* USE OF THE SAMPLE CODE CONTAINED HEREIN IS SUBJECT TO THE TERMS */
/* CONDITIONS OF THE LICENSE AGREEMENT LOCATED IN THE MEMBER LICENSE */
/* ** */
/* Date Author Reason */
/* 2003-06-01 Serena Original version */
/* ** */
/* REXX CMN010 Summary of Planned and Unplanned Packages */
/* */
/* This report makes use of two XML Services */
/* */
/* Service Scope Message Description */
/* */
/* 1 PARMS APL LIST Obtain the list of Appl. names */
/* 2 PACKAGE SUMMARY SERVICE Obtain counts about Package types */
/* and statuses */
/* */
/* Parameters */
/* */
/* Application name 1 to 4 character mnemonic which may */
/* include the asterisk '*' character to */
/* represent a wild card. If omitted '*' */
/* is assumed. Omission is indicated by a '.'*/
/* in the parm list. */
/* */
/* Subsystem letter 1 character indicative of the ChangeMan */
/* system that is being reported upon. Must */
/* be present. A '.' indicates the default */
/* subsystem of ' ' (blank). */
/* */
/* TSO userid 1 to 8 character TSO id used to perform */
/* security checking. Required parameter. */
/* */
/* Test switch An indicator with the value 'T' which */
/* specifies that diagnostic trace */
/* information is to be sent to the */
/* SERPRINT DD. The default is no value */
/* other words Tracing is Off. */
/* Since this is the last parm a positional */
/* placeholder is not required. */
/* */
/* ** */
6

 Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
SAMPLE REXX EXEC CMN010 MAINLINE

/* Mainline *** */
arg arguments

/* validate users input parms */

 ok=CMN000(CMN010 arguments)

 if ok= 'OK' then nop
 else call Error_Message /* never to return */

/* Read input parms */

arg appname subname tsoname tst .

/* initialize variables and set defaults where appropriate */

call Init_Variables

/* set up first xml service call */

call Init_XMLStem1

/* make first xml service call */

call Serxmlrc

/* for each application returned perform 2nd XML call */

do jx=1 to SER1.result.0
 call Init_XMLStem2 /* set up 2nd XML call */
 call Serxmlrc /* make 2nd XML call */
 if rxrc=0 then call Output_result /* if ok, print out result */
end

/* Print out totals */

call Output_Totals

/* terminate ZMF session */

call Disconnect

Notes:

This sample consists of three stages: The initialization of variables, the calls to SERXMLRC
and the presentation of the results.
597

59

Appendix E: Appendix E: SERXMLRC - Calling XML Services From REXX
SAMPLE REXX EXEC CMN010 XML SETUP and CALL

/* Set variables for XML call */

Init_XMLStem1:
 rxrc = 0 /* initialize our return code */
 stem = "SER1." /* set outgoing stem name */
 SER2. = "" /* initialize outgoing stem */ NOTE 1
 SER1. = "" /* initialize outgoing stem */
 SER1.Subsys = subname /* subsystem name to query */ NOTE 2
 SER1.Userid = tsoname /* userid */
 SER1.Test = tst /* set test value */
 SER1.Product = "CMN " /* set product */ NOTE 3
 SER1.Service = "PARMS" /* set service*/ NOTE 4
 SER1.Message = "LIST" /* set message */
 SER1.Scope = "APL" /* set scope */
 SER1.applname = appname /* set application name */
 /* set result set to return */
 SER1.includeInResult.1 = "applName"
Return

 Notes:

1. This clears the stem and defines all possible values starting with an empty string.

2. This nominates the subsystem that you are communicating with.

3. The product code defaults to CMN. There may be other products later.

4. Both Service and Message are compulsory. Scope is optional and defaults to SERVICE if
omitted.

 /* XML service call */

 Serxmlrc:
 address LINKMVS "SERXMLRC stem"
 rxrc=rc NOTE 1
 if rxrc<>0 then call Diagnose_Error NOTE 2
 Return

Notes:

1. Rxrc is a copy of the return code. The REXX variable rc is special in that it is the return
code of the latest external operation. Therefore, it is good practice to record the rc in a
separate variable after every external call.

2. Error diagnostics are only needed if there is an error.
8

 Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
SAMPLE REXX EXEC CMN010 XML PRINT OUTPUT

/* print output lines */

Output_Result:
 do ix=1 to SER2.result.0 NOTE 1
 ctSimple = formit(SER2.totalsBySimpleLevel.ix) NOTE 2
 ctComplex = formit(SER2.totalsByComplexLevel.ix)
 ctSuper = formit(SER2.totalsBySuperLevel.ix)
 ctPart = formit(SER2.totalsByPartLevel.ix)
 ctPlanPerm = formit(SER2.totalsByPlannedPermType.ix)
 ctPlanTemp = formit(SER2.totalsByPlannedTempType.ix)
 ctUnplanPerm= formit(SER2.totalsByUnplannedPermType.ix)
 ctUnplanTemp= formit(SER2.totalsByUnplannedTempType.ix)
 call Print_Line left(SER1.applname.jx,11),
 right(ctSimple,8),
 right(ctComplex,8),
 right(ctSuper,8),
 right(ctPart,13),
 right(ctPlanPerm,9),
 right(ctPlanTemp,9),
 right(ctUnplanPerm,9),
 right(ctUnplanTemp,9)
 /* keep running totals */
 GTSimple =GTSimple+ctSimple
 GTComplex=GTComplex+ctComplex
 GTSuper =GTSuper+ctSuper
 GTPart =GTPart+ctPart
 GTPPerm =GTPPerm+ctPlanPerm
 GTPTemp =GTPTemp+ctPlanTemp
 GTUPerm =GTUPerm+ctUnplanPerm
 GTUTemp =GTUTemp+ctUnplanTemp
 end
Return

Notes:

1. Stem.result.0 is the number of results.

2. Stem.result.1 is the first result. Stem.result.2 is the 2nd and so on.

SAMPLE REXX EXEC CMN010 XML DIAGNOSE ERROR

/* Print out any error we do not expect, 6504 means 'no data found' */
/* and is not necessarily an error */

Diagnose_Error:
 Select
.
.
.
 when stem="SER1." then
599

60

Appendix E: Appendix E: SERXMLRC - Calling XML Services From REXX
 do
 if SER1.reasonCode<> '6504' then
 do
 call Print_Line "Return Code:" rc "from SERXMLRC" NOTE 1
 call Print_Line "Subsystem :" SER1.Subsys
 call Print_Line "Service :",
 SER1.Service SER1.Message SER1.Scope
 call Print_Line "Reason Code:" SER1.reasonCode NOTE 2
 call Print_Status
 call Disconnect rc
 end
 else
 do
 call Print_Line "No applications found"
 call Disconnect 4
 end
 end
.
.
.
 end
 otherwise nop
 end
Return

Notes:

1. When RC is not 0, then SERXMLRC completed abnormally.

2. When RC is not 0, there may be a reason code from the service.

SAMPLE REXX EXEC CMN010 XML DISCONNECT CODE

/* Disconnect and set return code */
Disconnect:

 arg exitcode
 if exitcode =' ' then exitcode ='0'
 call Init_XMLstem0
 call Serxmlrc
 drop SER0.
 exit exitcode

 /* Set variables for XML call */

 Init_XMLStem0:
 rxrc = 0 /* initialize our return code */
 stem = "SER0." /* set outgoing stem name */
 SER0. = "" /* initialize outgoing stem */
 SER0.Subsys = subname /* subsystem name to query */
 SER0.Userid = tsoname /* userid */
 SER0.Test = tst /* set test value */
 SER0.Product = "CMN " /* set product */
 SER0.Service = " " /* set service */
0

 Serena® ChangeMan® ZMF 8.1 XML Services User’s Guide
 SER0.Message = "DISCONCT" /* set message */
 SER0.Scope = "SERVICE" /* set scope */
 Return

All messages good and bad are recorded in the REXX variable STEM.Message.n. The
number of messages is in STEM.Message.0. The most common error is when the subsystem
is not up. In this case, the above example fails:

Following is the output for an unsuccessful execution of CMN010:

Report CMN010 generated from subsystem: 8 on: 24 Mar 2009 at: 09:42:35 Page: 1

Summary of Planned and Unplanned Packages

Application Simple Complex Super Participating Planned Planned Unplanned Unplanned
Name Packages Packages Packages Packages Permanent Temporary Permanent Temporary
----------- -------- -------- -------- ------------- --------- --------- --------- ---------
Return Code: 8 from SERXMLRC
Subsystem :
Service :
Reason Code: 6028
Message : SER6602I Using defined TEST option T
Message : SER6604I Using specified IncludeInResult: applName
Message : SerNet started task "8" is not active (Error=5)
Message : SerNet started task "8" is not active (Error=5)
Message : Connection failed
Message : SerNet started task "8" is not active (Error=5)
Message : Connection failed
******************************** BOTTOM OF DATA **

Following is the output for a successful execution of CMN010:

Report CMN010 generated from subsystem: 8 on: 24 Mar 2009 at: 05:58:55 Page: 1

Summary of Planned and Unplanned Packages

Application Simple Complex Super Participating Planned Planned Unplanned Unplanned
Name Packages Packages Packages Packages Permanent Temporary Permanent Temporary
----------- -------- -------- -------- ------------- --------- --------- --------- ---------
ACTP 14 0 0 0 14 0 0 0
----------- -------- -------- -------- ------------- --------- --------- --------- ---------
Totals 14 0 0 0 14 0 0 0
----------- -------- -------- -------- ------------- --------- --------- --------- ---------
******************************** BOTTOM OF DATA **

Calling SERXMLRC From Panel Exits

If you add ISPF panel exits to ChangeMan ZMF that call XML Services through SERXMLRC,
allocate DD name SERLOAD in your ChangeMan ZMF logon CLIST. Concatenate the same
load libraries at SERLOAD as you do in the LIBDEF for ISPLLIB in the logon CLIST.
601

60

Appendix E: Appendix E: SERXMLRC - Calling XML Services From REXX
ALLOC DD (SERLOAD) DSN(+
 'somnode.CMNZMF.CUSTOM.LOAD' +
 'somnode.SERCOMC.CUSTOM.LOAD' +
 'somnode.CMNZMF.LOAD' +
 'somnode.SERCOMC.LOAD' +
) SHR REU

SERXMLRC checks for a SERLOAD DD statement before it executes the standard search
order of STEPLIB, JOBLIB, etc., which are allocated to your TSO/ISPF session and are
difficult to alter dynamically.

Add an ALLOC statement for SERLOAD to other CLISTS and REXX execs that run in a
user’s TSO session and call SERXMLRC.

 Note

DD name SERLOAD is used only by SERXMLRC. Keep the LIBDEF for ISPLLIB in
your ChangeMan ZMF logon CLIST and any other procedures that execute
SERXMLRC in an ISPF environment.

DD name SERLOAD remains allocated after you exit from the logon CLIST, which is similar
to the current behavior of DD names SER#PARM, SERLIC, and SERPRINT in the logon
CLIST.
2

PROBLEM ANALYSIS AND
TROUBLESHOOTING TOOLS
 F
This appendix provides information about tools you can use to resolve errors you get
when using XML Services. If you seek assistance from Serena Support with an XML
Services issue, Support may ask you to use some of these tools to provide them with
information to diagnose the problem.

WARN - XML TAG NAME WARNING

The Warn facility in XML Services displays SERNET messages in the SERPRINT data set
that describe tag name errors in XML Services requests.

When XML Services processes a request, an unrecognized tag name is ignored, and
processing continues with the next tag.

If the data for that tag is critical to the execution of the request, the request fails and an error
message based on the effect of the missing data is displayed in the response. If the data is
not critical to the execution of the request, the request is executed without the data, and no
error message is displayed. However, the result might not be the desired result.

The Warn facility helps you detect syntax errors in an XML Services request that may effect
the response.

Warn Tag Name Error Examples

This section shows two examples of how the Warn facility alerts you to syntax errors in an
XML Services message. These examples were executed in XML Services prototyping tool
XMLSERV.

Example 1: Failed Request

In this example, the <applName> tag is misspelled, and since application is required to find
any approval entities, the request fails. The response tells you that the request failed, but it
does not describe the tag name error. The tag name error is described in a SERPRINT
message.

REQUEST

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="APL">
603

60

Appendix F: Problem Analysis and Troubleshooting Tools
 <message name="LIST">
 <header>
 <subsys>5</subsys>
 <test> </test>
 <warn>Y</warn>
 <product>CMN</product>
 </header>
 <request>
 <approverListType>1</approverListType>
 <xxxxName>ACTP</applName>
 <approverEntity>OPS </approverEntity>
 </request>
 </message>
 </scope>
</service>

RESULT

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="APL">
 <message name="LIST">
 <response>
 <statusMessage>CMN8490I - package name was not specified.</
statusMessage>
 <statusReturnCode>08</statusReturnCode>
 <statusReasonCode>8490</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

SERPRINT MESSAGES

SER8209I Logon accepted for user USER239; Local CCSID=00037
SER8414W Unrecognized tag in request for user USER239, tag: xxxxName,
service: APPROVER, scope: APL, message: LIST
SER2005I CMN Detach user USER239: TCA=1718D000 ASID=00B1

Example 2: Successful Request With Error

In this example, tag <yyyyyyyyEntity> is invalid and ignored, but since there is only one
unplanned approver for this application, the result looks valid. However, the message in
SERPRINT reveals the tag name error.

REQUEST

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="APL">
 <message name="LIST">
 <header>
 <subsys>5</subsys>
 <test> </test>
4

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
 <warn>Y</warn>
 <product>CMN</product>
 </header>
 <request>
 <approverListType>1</approverListType>
 <applName>ACTP</applName>
 <yyyyyyyyEntity>OPS </approverEntity>
 </request>
 </message>
 </scope>
</service>

RESULT

<?xml version="1.0"?>
<service name="APPROVER">
 <scope name="APL">
 <message name="LIST">
 <result>
 <approverListType>1</approverListType>
 <applName>ACTP</applName>
 <approverEntity>OPS</approverEntity>
 <approverDesc>OPERATIONS SUPERVISOR</approverDesc>
 <approvalOrder>00</approvalOrder>
 <notification>
 <notifierType>1</notifierType>
 <userList>USER239</userList>
 </notification>
 </result>
 <response>
 <statusMessage>CMN8700I - LIST Approver service completed</
statusMessage>
 <statusReturnCode>00</statusReturnCode>
 <statusReasonCode>8700</statusReasonCode>
 </response>
 </message>
 </scope>
</service>

SERPRINT MESSAGES

SER8209I Logon accepted for user USER239; Local CCSID=00037
SER8414W Unrecognized tag in request for user USER239, tag: yyyyyyyyEntity,
service: APPROVER, scope: APL, message: LIST
SER2005I CMN Detach user USER239: TCA=1718D000 ASID=00B1
605

60

Appendix F: Problem Analysis and Troubleshooting Tools
Enabling XML Tag Name Error Warning

There are three methods for turning on the Warn facility of XML Services:

• <warn> tag in an XML Services message header

• WARN keyword option for SERNET

• WARN modify command

<warn> Tag in an XML Services Message Header

When you set the <warn> tag in a request to Y, the Warn facility is active for that request
when it is executed. The Warn facility is not invoked for other requests unless they are also
coded with the <warn> tag set to Y.

Example:

<warn>Y</warn>

Setting the tag to <warn>N</warn> has no effect.

WARN Keyword Option for SERNET

The Warn facility can be turned on for all XML Services messages executed on a server by
including the SERNET keyword option WARN in the parameters input to the started task when
it is initiated.

Examples:

WARN
WARN(YES)

The WARN keyword option is described in the ChangeMan ZMF Installation Guide in the
appendix titled "SERNET Keyword Options." Methods to input SERNET keyword options to a
SERNET started task are described in topic "Passing Parameters to SERNET" in the same
book.

WARN Modify Command

The Warn facility can be toggled on and off for all XML Services messages executed on a
server by issuing the WARN modify command through the operator console.

Examples:

Command: /F SERT5,WARN,YES

SERPRINT Messages:

SER0850I Operator command: WARN,YES
SER0960I XML syntax warning has been turned on
6

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Command: /F SERT5,WARN,NO

SERPRINT Messages:

SER0850I Operator command: WARN,NO
SER0959I XML syntax warning has been turned off

Hierarchy of Warn Facility Controls

The hierarchy of Warn facility controls is:

1. <warn>Y</warn> in an XML Services request

2. WARN modify command

3. WARN keyword option.

The WARN keyword option turns the Warn facility on for all XML Service requests.

The WARN modify commands toggles the Warn facility on or off, overriding the WARN
keyword option.

<warn>Y</warn> in an XML Services request turns on the Warn facility for that request
only, regardless of the status of the WARN keyword option or WARN modify command.

<warn>N</warn> in an XML Services request has no effect.

TEST - XML BATCH CLIENT TRACE

The <test> tag in the header of an XML Services request turns on SERCLIEN tracing in
clients SERXMLAC, SERXMLBC, SERXMLCC and SERXMLRC.

A trace on the client side of the communication between the client and the SERNET started
task is output to the SERPRINT DD statement in the client job. This trace is similar to the
communication trace in the SERNET started task generated by the NETTRACE modify
command.

Values:

<test>T</test> turns on the SERCLIEN trace for this request

<test> </test> leaves the SERCLIEN trace off for this request

The <test> tag is generally used only at the request of Serena Support for diagnostic
purposes. This client side trace is unaffected by the NETTRACE or TRACE settings in the
SERNET started task.
607

60

Appendix F: Problem Analysis and Troubleshooting Tools
TRACE AND NETTRACE IN THE SERNET STARTED TASK

The TRACE facility in the SERNET started task provides functional traces for SERNET and
for the ChangeMan ZMF application running under SERNET. This facility is controlled by the
TRACE keyword option input to SERNET at startup, and by the TRACE modify command,
which dynamically overrides the keyword option setting.

Serena Support may ask you to turn on the TRACE facility to help diagnose problems you
have with XML Services.

The NETTRACE keyword option for controls the display of SERNET communication buffer
contents. Serena Support may ask you to turn on the NETTRACE facility to diagnose
communication issues between XML Services clients and the server.

Details about SERNET keyword options and modify commands are in the Appendices of the
ChangeMan ZMF Installation Guide.

TROUBLESHOOTING TIPS

 rc=08, reason code = 8130 error

The '8130' (SEND function failed - connection lost) indicates that the client job did not get a
response from the server started task. This can occur either because of a communication
setup problem or because of an abend in the ChangeMan ZMF started task. The following
are some things you should check to make sure your XML service is communicating with the
ChangeMan ZMF started task:

1. Is there an abend in the ChangeMan ZMF started task? If so, report the abend to
SERENA Technical Support.

2. If the ChangeMan ZMF started task did not abend, does the '8130' error occur for all XML
requests coded in the job? If so, check the following:

a) Verify ChangeMan ZMF started task IP address and port# are correct.

b) Verify the ChangeMan ZMF started task JCL has the parm 'XML=YES'.

c) Verify XML job SER#PARM DSN references the same IP address and port# used by
the ChangeMan ZMF started task.

d) Verify client LPAR has IP connectivity to ChangeMan ZMF started task LPAR.

e) Verify the XMLSPACE DD is in the ChangeMan ZMF started task JCL.

f) Verify the correct version of MAPDATA was loaded into the XMLSPACE VSAM file for
the version of ChangeMan ZMF being run.
8

 Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
Troubleshooting Variable Length Name Issues

If ChangeMan ZMF asserts in an error message that a known component or library type is
not found, this may be due to a bug in variable length name processing by the XML service.
As a workaround, try filling the <component> or <libtype> tag with trailing blanks so that the
length of the marked data is the maximum allowed.
609

61

Appendix F: Problem Analysis and Troubleshooting Tools
0

INDEX
Symbols
<header> XML tag 37

<includeInResult> XML tag 40

<message> XML tag 36

<request> XML tag 38

<response> XML tag 39

<result> XML tag 38

<scope> XML tag 36

<service> XML tag 35

A
About command 563
activity log files

described 307

add comments to online form 460

affected applications list 180
application administration

approvals 533
change libraries 471
developer environment 524
notifications 533
sites 483

application administrator tasks
approver list 534
build procedures list 508
developer environment 489
language list 505
library type list 490, 497
parameters list 523
parser list 505
site list 486

application programming interface
(API)

XML Services 19
approvals

administration 533

approve online form 458

APPROVER APL LIST 534

approver list 534

approver list, package 174

audit
cross-application 140
single application 140

B
BASELIB SERVICE LIST 471

baseline library list 471

blank retention 565

build procedures list 506, 508

C
calendar list for install jobs 481, 487

calendar list for site 487

CALENDAR SERVICE LIST 487
change libraries

administration 471

ChangeMan ECP 538
ChangeMan ZMF

ChangeMan ECP and 538
ChangeMan ZMF administration

approvals 533
change libraries 471
developer environment 489, 524
notifications 533
sites 483

ChangeMan ZMF environment
parameter list 553

clients
XMLSERV 561, 587, 595

CMPONENT APL_CDSC FIND 277

CMPONENT APL_CDSC LIST 278

CMPONENT APL_DPRC CHECK
219

CMPONENT APL_DPRC FIND 223

CMPONENT APL_DPRC LIST 224

CMPONENT APL_SECR CHECK
298

CMPONENT APL_SECR FIND 300

CMPONENT APL_SECR LIST 302

CMPONENT CHG_DESC LIST 94,
274

CMPONENT GBL_CDSC LIST 280

CMPONENT GBL_DPRC LIST 229

CMPONENT GBL_SECR LIST 304

CMPONENT HISTORY LIST 283

CMPONENT HISTORY LISTBASE
294

CMPONENT HISTORY LISTCONC
293

CMPONENT HISTORY LISTCURR
292

CMPONENT HISTORY LISTSHRT
291

CMPONENT LOD_SUBR LIST 257

CMPONENT PKG_COMP LIST 97

CMPONENT PKG_WRKL LIST 294

CMPONENT PRM_HIST LIST 281

CMPONENT SERVICE BROWSE
246

CMPONENT SERVICE BUILD 229

CMPONENT SERVICE CHECKIN
214

CMPONENT SERVICE CHECKOUT
209

CMPONENT SERVICE COMPARE
249

CMPONENT SERVICE LOCK/
UNLOCK 255

CMPONENT SERVICE RECOMP
235

CMPONENT SERVICE RELINK 240

CMPONENT SERVICE RENAME
252

CMPONENT SERVICE SCRATCH
254

CMPONENT SRC_INCL LIST 261

CMPONENT SSV_VER LIST 265

CMPONENT SSV_VER RETRIEVE
270

COBOL-to-XML client
copybooks 41
611

61

Index
comList Current (Active) Component
History 292

component change descriptions list
94

component descriptions list 109
component information

browse 246
compare 249
find component description 277
list all history 283
list change descriptions 274
list component description 278
list concurrent user history 293
list global component description

280
list promotion history 281
list user worklist 294
XML described 274

component lifecycle
browse 246
build JCL install job 229
check designated build procedure

219
check in 214
check out 209
check security authorization 298
compare 249
XML described 208

component promotion history list 199

component promotion overlay list 112
component security

find authorized user 300
list authorized users 302
list global security 304
XML described 298

component staging versions
list 265
XML described 265

concurrent development
list concurrent user history 293

copybooks 562

create a package 53

D
data validation 23

database management tasks 405
DB2 436, 439, 443, 447
IMS 405, 407, 413, 417, 421,

424, 427, 429, 431, 433, 435

dataset lifecycle
allocate dataset 362
delete dataset 364
delete dataset member 365
extract SRD format data 376
list baseline statistics 374
list dataset allocation 366
list ISPF dataset allocation 372
list member directory 369
list SRD format data 376

dataset management 361, 379
lifecycle tasks 361

DB2 active library list for application
436

DB2 library types and subtypes 490,
497

DB2 logical subsystem list for
application 439

DB2 logical subsystem list for started
task (global) 447

DB2 physical subsystem list for
started task (global) 443

DB2ADMIN APL_ACTV LIST 436

DB2ADMIN APL_LOGL LIST 439

DB2ADMIN GBL_LOGL LIST 447

DB2ADMIN GBL_PHYS LIST 443

delete a package 63

delete dataset 364

delete dataset member 365
demote a package

no cleanup 75
with cleanup 76

designated build procedures
check for component 219

download global notification file 536

DSS ISPFILE INFO 372

DSS SERVICE ALLOCATE 362

DSS SERVICE BASESTAT 374

DSS SERVICE DELETE 364

DSS SERVICE EXPAND 376

DSS SERVICE INFO 366

DSS SERVICE LIST 369

DSS SERVICE MBRDEL 365

DSS SERVICE STCLIST 558

E
ENVIRON SERVICE LIST 553

ERO XML services summary 47

execution clients
COBOL batch client for XML

(SERXMLCC) 591
extract

SRD format data 376

F
FILE DIRS LIST 390

FILE FILES LIST 387

FILE SERVICE ACCESS 399

FILE SERVICE CHANGE 398

FILE SERVICE COPY 396

FILE SERVICE CREATE 393

FILE SERVICE DELETE 394

FILE SERVICE EXPORT 403

FILE SERVICE IMPORT 402

FILE SERVICE LINK 397

FILE SERVICE LIST 383

FILE SERVICE MKDIR 380

FILE SERVICE RENAME 382, 395

FILE SERVICE RMDIR 382

FILE SERVICE SCAN 401

file tailoring 538
Find command

XMLSERV commands
Find 564

Find Designated Build Procedure 223

FORMS GBL LIST 462

FORMS PKG APPROVE 458

FORMS PKG COMMENT 460

FORMS PKG DETAIL 468

FORMS PKG LIST 465

FORMS PKG REJECT 459

FORMS PKG SUBMIT 456

freeze a package 65

G
general package parameters list 148
global administration

approvals 533
change libraries 471
developer environment 524
notifications 533
sites 483
2

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
global administrator tasks
baseline library list 471
build procedures list 506
developer environment 489
install calendar list 481, 487
language list 503
library type list 490, 509
list language parsers 503
notification file download 536
notification file upload 537
parameters list 509
parser list 503
production library list 481
promotion library list 475
promotion site configuration list

479
reason code list 532
site list 483

H
HFS directories

create 380
delete 382
list all contents 383
list files only 387
list subdirectories only 390
rename 382

HFS files
alias or shortcut to 397
change attributes 398
check access 399
converting formats 402
copy 396
create 393
create link 397
delete 394
export as PDS library member 403
import PDS library members as

402
rename 395
scan 401

Hierarchical File System (HFS)
directory functions 379–380
file lifecycle functions 379, 393
file transfer functions 379
overview 379
PDS import/export functions 379
syntax, high-level 379

hold package install job 85

I
IMPACT BUN LIST 351

IMPACT COMPONENT LIST 353

IMPACT TABLE LIST 355

implementation instructions list 173
IMS ACB build statement list for

package 413

IMS control region global list 435

IMS control region list for application
433

IMS control region list for package
407

IMS DBD override list, application
424

IMS DBD override list, global 429

IMS DBD override list, package 417

IMS PSB override list, application 427

IMS PSB override list, global 431

IMS PSB override list, package 421

IMSCRGN APL LIST 433

IMSCRGN GBL LIST 435

IMSOVRD APL_DBD LIST 424

IMSOVRD APL_PSB LIST 427

IMSOVRD GBL_DBD LIST 429

IMSOVRD GBL_PSB LIST 431

IMSOVRD PKG_DBD LIST 417

IMSOVRD PKG_PSB LIST 421

install calendar list 481, 487

install sites list, package 164
installation dependencies list ,

package 169
interfaces

ISPF 23
SERXMLBC 23
SERXMLCC 23
SERXMLRC 23
XML Services 23
XMLSERV 23

L
LANGUAGE APL LIST 505

LANGUAGE GBL LIST 503

language list 503, 505

library concatenation list 558

library type list 490, 497, 509

library types list, package 187

libtype > pkg > list 187

LIBTYPE APL LIST 497

LIBTYPE GBL LIST 490

like-library types 490, 497

linked package list 183
613

61

Index
list
affected applications for a package

180
application approvers 534
application build procedures 508
application language parsers 505
application library types 497
application parameters 523
application sites 486
approvers, package 174
baseline library dataset names 471
baseline statistics 374
calendar for install jobs 481, 487
calendar for site 487
component change descriptions for

a package 94
component descriptions for a

package 109
component promotion history for a

package 199
components with promotion

overlays in a package 112
dataset allocation 366
dataset member directory 369
DB2 active libraries for application

436
DB2 logical subsystems for

application 439
DB2 logical subsystems for started

task (global) 447
DB2 physical subsystems for

started task (global) 443
general package parameters 148
global build procedures 506
global language parsers 503
global library types 490, 509
global online forms 462
global parameters 509
global reason codes 532
global sites 483
implementation instructions,

package 173
IMS ACB build statements for

package 413
IMS control region application

defaults 433
IMS control region global defaults

435
IMS control regions for package

407
IMS DBD overrides, application

424
IMS DBD overrides, global 429
IMS DBD overrides, package 417
IMS PSB overrides, application

427

IMS PSB overrides, global 431
IMS PSB overrides, package 421
install calendar 481, 487
install sites, package 164
installation dependencies, package

169
ISPF dataset allocation 372
languages 503, 505
library concatenation 558
library types, package 187
linked packages 183
package description 146
package installation schedule 82
package online form details 468
package online forms 465
parsers 503, 505
participating packages 182
production library dataset names

481
promotion history, package 193
promotion library dataset names

475
promotion site configurations 479
scratch and rename (IUTL) records

for a package 124
SERNET environment parameters

549
SERNET security groups 552
site install calendar 481, 487
source-to-load (ILOD)

dependencies in a package
131

SRD format data 376
system setup parameters 545
user-defined variables for a

package 160
ZMF environment parameters 553

List Copybook Names in Source 261

List Designated Build Procedures
224

List Designated Component Build
Procedures — Requests 223–
224

List Global Designated Build
Procedures 229

List Load Module Subroutines 257

List Short Component History 291

Locate command 564

Lock or Unlock a Component 255

lock promotion site for package 74

LOG SERVICE CREATE 345

LOG SERVICE LIST 349

LPRINT command 565

M
MPACT TABLE LIST 355

MVSSEND 538

N
NODROP parameter 565

notification file download 536

notification file upload 537
notifications

administration 533
email 538

notify user 538

NOTYFILE SERVICE DOWNLOAD
536

NOTYFILE SERVICE UPLOAD 537

O
online forms 453

add comments 460
approve 458
forms information management

462
lifecycle tasks 453
list global form definitions 462
list package form details 468
list package forms 465
refreeze 455
reject 459
submit for approval 456
unfreeze 453

Open command 565

P
PACKAGE APPROVE SEARCH 327

PACKAGE CHECK PROMOTE 70

PACKAGE CLEANUP DEMOTE 76

PACKAGE CMP_DESC LIST 109

PACKAGE CMPONENT INTEGRTY
138

package description list 146

PACKAGE FORMS REFREEZE 455

PACKAGE FORMS UNFREEZE 453

PACKAGE GENERAL SEARCH 309

PACKAGE IMS_ACB LIST 413

PACKAGE IMS_CRGN LIST 407
4

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide
package information
list reasons for backout or revert

203
package information management

affected applications list 180
approver list 174
component promotion history list

199
general package parameters list

148
implementation instructions list 173
install sites list 164
installation dependencies list 169
library types list 187
linked package list 183
package description list 146
participating packages list 182
promotion history list, package 193
unfreeze install sites 168
user-defined variable list 160

package information management
tasks

unfreeze general parameters 159

package install job hold 85

package install job release 86

package installation schedule list 82
package lifecycle

approve 79
back out 87

package lifecycle tasks 76
create 53
delete 63
demote, no cleanup 75
freeze 65
hold package install job 85
list installation schedule records 82
lock promotion site for package 74
promote 70
promotion readiness check 70
refreeze install sites 169
release package install job 86
revert 90
submit a package for JCL build 67

PACKAGE LIMBO SEARCH 326

package management 207

PACKAGE PKG_LNK SEARCH 328

PACKAGE PRM_OVLY LIST 112

PACKAGE PROMOTE LOCK 74
package query

described 307

PACKAGE REASONS LIST 203

PACKAGE SERVICE APPROVE 79

PACKAGE SERVICE BACKOUT 87

PACKAGE SERVICE CREATE 53

PACKAGE SERVICE DELETE 63

PACKAGE SERVICE DEMOTE 75

PACKAGE SERVICE FREEZE 65

PACKAGE SERVICE PROMOTE 70

PACKAGE SERVICE REVERT 90

PACKAGE SERVICE SUBMIT 67

PACKAGE SERVICE SUMMARY
336

package validation
audit 140
component integrity check 138
source-to-load dependencies

(ILOD) list 131
package-level component change

management
component promotion overlay list

112
list component change descriptions

94
refreeze general parameters 160
refreeze non-source components

123
refreeze scratch and rename

(IUTL) records 130
refreeze source and load

components 120
unfreeze non-source components

122
unfreeze scratch and rename

(IUTL) records 129
unfreeze source and load

components 118
package-level component

management
list component descriptions 109
scratch and rename (IUTL) record

list 124

parameters list 509, 523

PARMS APL LIST 523

PARMS GBL LIST 509

parser list 503, 505

participating packages list 182
PDS libraries

export HFS file to 403
import member to HFS 402

PROCS APL LIST 508

PROCS GBL LIST 506

PRODLIB SERVICE LIST 481

production library list 481
programming interfaces

COBOL 591

PROMLIB LIBRARY LIST 475

PROMLIB SITE LIST 479

promote a package 70

promotion history list, package 193

promotion library list 475
promotion readiness check for a

package 70

promotion site list 479

Q
query

described 307

R
reason code list 532

REASONS SERVICE LIST 532

Recompile a Component 235
refreeze

general parameters 160
install sites 169
non-source components 123
scratch and rename (IUTL) records

130
source and load components 120

refreeze online forms 455

reject online form 459

release package install job 86

Relink a Component 240

remote site list 483, 486

Rename a Component 252

Retrieve Component Staging Version
270

Retrieve Component Staging Version
— Replies 271

Retrieve Component Staging Version
— Requests 271

revert a package 90

RUN command 565

S
SCHEDULE SERVICE HOLD 85

SCHEDULE SERVICE LIST 82

SCHEDULE SERVICE RELEASE 86
scheduling records

see installation dependencies 169

Scratch a Component 254
615

61

Index
scratch and rename (IUTL) record list
124

send user notification 538

SERNET environment parameter list
549

SERNET security group list 552
services

package 207

SERXMLCC 591
copybooks 41

Short Component History List —
Replies 292

Short Component History List —
Requests 291

SITE APPL LIST 486

SITE GBL LIST 483

site list 483, 486
software developer kits (SDKs)

SERXMLBC 23
SERXMLCC 23
SERXMLRC 23
XMLSERV 23

Sort command 565
source-to-load dependencies (ILOD)

list 131
staging versions

list component staging versions
265

XML described 265

submit a package for JCL build 67

submit online form for approval 456
syntax

package messages 51–52
package naming conventions 52
user-defined package variables

161

SYSTEM ENVIRON LIST 549
system environment

library concatenation list 558
SERNET environment parameter

list 549
SERNET security group list 552
system setup parameter list 545
ZMF environment parameter list

553

SYSTEM SECGROUP LIST 552

SYSTEM SERVICE LIST 545

system setup parameter list 545

U
unfreeze

general parameters 159
install sites 168
non-source components 122
scratch and rename (IUTL) records

129
source and load components 118

unfreeze online forms 453

Unicode 31

upload global notification file 537

user notification 538

USER SERVICE NOTIFY 538

user-defined package variables list
160

W
World Wide Web Consortium (W3C)

26

X
XML processing

escaping from 27
filtering results 40
parser 28

XML Services
architecture 19
character encoding 31
data validation 23
described 19
message processing 21
parser 22
reply message 22
request message 21
service, scope, & message table

41
summary table 41
Unicode 31
XML syntax 25
XMLSERV client 561, 587, 595

XML syntax
attribute 27
character encoding table 31
character entity 27
comment 27
component management tasks 207
data element, complex 26
data element, simple 26
document 29, 32
document declaration 30
document structure 28
Document Type Definition (DTD)

28
example 32, 41
naming conventions 26
root tag 28
schema 28
standards 26
tag 25–26
tree structure 34
well-formed document 29
XML schema 25

XML tags
<header> 37
<includeInResult> 40
<message> 36
<request> 38
<response> 39
<result> 38
<scope> 36
<service> 35
Serena XML, described 35
service, scope, & message table

41
XMLSERV commands

About 563
Locate 564
LPRINT 565
NODROP parameter 565
Open 565
RUN 565
Sort 565

Z
ZMF environment parameter list 553
6

	Contents
	About This Book
	Software Versions
	Audience
	Scope
	Related Topics
	Related Documents
	Typographical Conventions
	Manual Organization

	XML Services Concepts and Architecture
	Software Architecture
	Message Processing Cycle
	Submitting a Serena XML Request
	XML Parsing and Data Mapping
	Generating the Serena XML Reply

	ChangeMan ZMF Interface Comparison

	XML Syntax Basics
	XML Syntax Standards
	XML Tag Names
	XML Data Elements
	XML Tag Attributes
	Comments
	Character Entities
	XML Documents as Complex Data Elements
	Well-Formed Documents

	XML Document Declarations
	Identifying XML Documents
	<?XML?> Declaration Syntax

	Serena XML Message Documents
	Serena XML Syntax Example
	Logical Document Structure

	High-Level Tags in Serena XML
	<service> Tag: The Root Data Element
	<scope> Tag
	<message> Tag
	<header> Tag
	<request> Tag
	<result> Tag
	<response> Tag

	Filtering XML Services Messages
	<includeInResult> Tag

	Service, Scope, and Message Summary
	Core XML Services Summary
	ERO XML Services Summary

	Package Management
	Package Message Syntax
	Identifying Package Messages
	Package Naming Conventions
	Special Tag Syntax for Package Management

	Package Lifecycle Tasks
	Create a Package - PACKAGE SERVICE CREATE
	Delete a Package - PACKAGE SERVICE DELETE
	Freeze a Package - PACKAGE SERVICE FREEZE
	Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT
	Check a Package for Promotion Readiness - PACKAGE CHECK PROMOTE
	Promote a Package - PACKAGE SERVICE PROMOTE
	Lock Promotion Site for Package - PACKAGE PROMOTE LOCK
	Demote a Package - PACKAGE SERVICE DEMOTE
	Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE
	Approve a Package - PACKAGE SERVICE APPROVE
	List Package Installation Schedule - SCHEDULE SERVICE LIST
	Hold Package Install Job - SCHEDULE SERVICE HOLD
	Release Package Install Job - SCHEDULE SERVICE RELEASE
	Back Out a Package - PACKAGE SERVICE BACKOUT
	Revert a Package - PACKAGE SERVICE REVERT

	Package-Level Component Change Management
	Component Change Description List- CMPONENT CHG_DESC LIST
	List Staged Components - CMPONENT PKG_COMP LIST
	Component Description List- PACKAGE CMP_DESC LIST
	List Components With Promotion Overlays - PACKAGE PRM_OVLY LIST
	Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE
	Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE
	Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE
	Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE
	List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST
	Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE
	Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE

	Package Validation Tasks
	List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST
	Check Component Integrity - PACKAGE CMPONENT INTEGRTY
	Audit a Package - PACKAGE SERVICE AUDIT

	Package Information Management Tasks
	List Package Description - PACKAGE GEN_DESC LIST
	List General Package Parameters - PACKAGE GEN_PRMS LIST
	Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE
	Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE
	List User-Defined Package Variables - PACKAGE USR_RECS LIST
	List Package Install Sites - SITE PKG LIST
	Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE
	Refreeze Package Install Sites - PACKAGE SITES REFREEZE
	List Package Installation Dependencies - PACKAGE SCH_RECS LIST
	List Package Implementation Instructions - PACKAGE IMP_INST LIST
	List Package Approvers - APPROVER PKG LIST
	List Affected Applications - PACKAGE AFF_APLS LIST
	List Participating Packages - PACKAGE PRT_PKGS LIST
	List Linked Packages - PACKAGE PKG_LINK LIST
	List Package Library Types - LIBTYPE PKG LIST
	List Package Promotion History - PACKAGE PRM_HIST LIST
	Package Promoted Component List - PACKAGE PRM_CMP LIST
	List Reasons for Backout or Revert - PACKAGE REASONS LIST

	Component Management
	Component Management Message Syntax
	Identifying Component Messages

	Component Lifecycle Tasks
	Check Out a Component - CMPONENT SERVICE CHECKOUT
	Component Service Checkin - CMPONENT SERVICE CHECKIN
	Check Designated Build Procedures - CMPONENT APL_DPRC CHECK
	Find Designated Build Procedure - CMPONENT APL_DPRC FIND
	List Designated Build Procedures - CMPONENT APL_DPRC LIST
	List Global Designated Build Procedures - CMPONENT GBL_DPRC LIST
	Component Service Build - CMPONENT SERVICE BUILD
	Recompile a Component - CMPONENT SERVICE RECOMP
	Relink a Component - CMPONENT SERVICE RELINK
	Browse a Component - CMPONENT SERVICE BROWSE
	Compare Components - CMPONENT SERVICE COMPARE
	Rename a Component - CMPONENT SERVICE RENAME
	Scratch a Component - CMPONENT SERVICE SCRATCH
	Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK
	List Load Module Subroutines - CMPONENT LOD_SUBR LIST
	List Copybook Names in Source - CMPONENT SRC_INCL LIST

	Component Staging Version Management
	List Component Staging Versions - CMPONENT SSV_VER LIST
	Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE

	Component Information Management Tasks
	List Component Change Description - CMPONENT CHG_DESC LIST
	Find Component Description - CMPONENT APL_CDSC FIND
	List Component Description - CMPONENT APL_CDSC LIST
	List Global Component Description - CMPONENT GBL_CDSC LIST
	List Component Promotion History - CMPONENT PRM_HIST LIST
	Component History List - CMPONENT HISTORY LIST
	List Short Component History - CMPONENT HISTORY LISTSHRT
	List Current Component History - CMPONENT HISTORY LISTCURR
	List Concurrent Comp. History - CMPONENT HISTORY LISTCONC
	List Baselined Component History - CMPONENT HISTORY LISTBASE
	List Comp. User Worklist Records - CMPONENT PKG_WRKL LIST

	Component Security Tasks
	Check Component Security - CMPONENT APL_SECR CHECK
	Find Component Authorized Users - CMPONENT APL_SECR FIND
	List Component Authorized Users - CMPONENT APL_SECR LIST
	List Global Component Authorized Users - CMPONENT GBL_SECR LIST

	Search, Summary, and Analysis Tasks
	Syntax Conventions for Search, Summary, and Analysis
	Semicolon-Delimited Lists
	Yes/No Flag Tags

	Package Search and Summary Tasks
	General Package Search - PACKAGE GENERAL SEARCH
	Search for Limbo Packages - PACKAGE LIMBO SEARCH
	Search for Packages Pending Approval - PACKAGE APPROVE SEARCH
	Search for Linked Packages - PACKAGE PKG_LINK SEARCH
	Package Summary Statistics - PACKAGE SERVICE SUMMARY

	Audit Trail Management
	Create Log File Entry - LOG SERVICE CREATE
	List Activity Log File Entries - LOG SERVICE LIST

	Impact Analysis Functions
	IMPACT BUN LIST
	IMPACT CMPONENT LIST
	IMPACT TABLE LIST

	Dataset Management
	Dataset Lifecycle Tasks
	Allocate a Dataset - DSS SERVICE ALLOCATE
	Delete a Dataset - DSS SERVICE DELETE
	Delete a Dataset Member - DSS SERVICE MBRDEL
	List Dataset Allocation Information - DSS SERVICE INFO
	List Dataset Member Directory - DSS SERVICE LIST
	List ISPF Dataset Allocation Information - DSS ISPFILE INFO
	List Statistics for Baseline Members - DSS SERVICE BASESTAT
	Expand Member in SRD Format - DSS SERVICE EXPAND

	Hierarchical File System Services
	Overview
	Hierarchical File System Functions
	High-Level Syntax
	Related Services

	HFS Directory Services
	Create a Directory — FILE SERVICE MKDIR
	Delete a Directory — FILE SERVICE RMDIR
	Rename a Directory — FILE SERVICE RENAME
	List All Directory Contents — FILE SERVICE LIST
	List Files in a Directory — FILE FILES LIST
	List Directories in a Directory — FILE DIRS LIST

	HFS File Lifecycle Services
	Create a File — FILE SERVICE CREATE
	Delete a File — FILE SERVICE DELETE
	Rename a File — FILE SERVICE RENAME
	Copy a File — FILE SERVICE COPY
	Create a Link or Alias to a File — FILE SERVICE LINK
	Change File Attributes — FILE SERVICE CHANGE
	Check Access to a File — FILE SERVICE ACCESS
	Scan Files for Strings — FILE SERVICE SCAN

	File Conversion Services
	Import a PDS Member into HFS — FILE SERVICE IMPORT
	Export an HFS File to a PDS Library — FILE SERVICE EXPORT

	Database Management
	IMS Development and Administration
	IMS Control Region Package Records - PACKAGE IMS_CRGN LIST
	Package IMS ACB List - PACKAGE IMS_ACB LIST
	IMS DBD Package Overrides - IMSOVRD PKG_DBD LIST
	IMS PSB Package Overrides - IMSOVRD PKG_PSB LIST
	IMS DBD Application Overrides - IMSOVRD APL_DBD LIST
	IMS PSB Application Overrides - IMSOVRD APL_PSB LIST
	IMS DBD Global Overrides - IMSOVRD GBL_DBD LIST
	IMS PSB Global Overrides - IMSOVRD GBL_PSB LIST
	IMS Control Region Application Defaults - IMSCRGN APL LIST
	IMS Control Region Global Defaults - IMSCRGN GBL LIST

	DB2 Development and Administration
	DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST
	DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST
	DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST
	DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST

	Online Forms Management
	Online Forms Lifecycle Tasks
	Unfreeze Online Forms - PACKAGE FORMS UNFREEZE
	Refreeze Online Forms - PACKAGE FORMS REFREEZE
	Submit a Form for Approval - FORMS PKG SUBMIT
	Approve a Form - FORMS PKG APPROVE
	Reject a Form - FORMS PKG REJECT
	Add Comments to a Form - FORMS PKG COMMENT

	Forms Information Management
	List Global Online Forms - FORMS GBL LIST
	List Package Online Forms - FORMS PKG LIST
	List Package Online Form Details - FORMS PKG DETAIL

	ChangeMan ZMF Administration Tasks
	Change Library Administration
	List Baseline Library Datasets - BASELIB SERVICE LIST
	List Promotion Library Datasets - PROMLIB LIBRARY LIST
	List Promotion Site Configuration Records - PROMLIB SITE LIST
	List Production Library Datasets - PRODLIB SERVICE LIST

	Site Administration
	List Globally Defined Remote Sites - SITE GBL LIST
	List Remote Sites for Application - SITE APPL LIST
	List Install Calendar for Site - CALENDAR SERVICE LIST

	Developer Environment Administration
	List Global Library Types - LIBTYPE GBL LIST
	List Application Library Types - LIBTYPE APL LIST
	List Global Language Parsers - LANGUAGE GBL LIST
	List Application Language Parsers - LANGUAGE APL LIST
	List Global Build Procedures - PROCS GBL LIST
	List Application Build Procedures - PROCS APL LIST
	List Global Parameters - PARMS GBL LIST
	Parameters Application List - PARMS APL LIST
	List Global Reason Codes - REASONS SERVICE LIST

	Approver and Notification Administration
	List Application Approvers - APPROVER APL LIST
	Download Global Notification File - NOTYFILE SERVICE DOWNLOAD
	Upload Global Notification File - NOTYFILE SERVICE UPLOAD
	Notify User - USER SERVICE NOTIFY

	System Environment Information
	System Setup Parameter List - SYSTEM SERVICE LIST
	SERNET Environment Parameter List - SYSTEM ENVIRON LIST
	SERNET Security Group List - SYSTEM SECGROUP LIST
	ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST
	ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST

	XMLSERV – Interactive XML Prototyping Tool
	XMLSERV Functional Overview
	Main Screen Menu Options
	Main Screen Primary Commands
	XML Input and Output Documents
	Usage Notes

	Sample XMLSERV Session
	Step 1: Start XMLSERV
	Step 2: Select an XML Service
	Step 3: Edit the XML Input Document
	Step 4: Execute the Edited XML Request
	Step 5: Browse the XML Output Document
	Step 6: Return to the XML Input Document and Exit

	SERXMLBC – Executing Native XML Service Calls
	Input Requirements
	Output Requirements
	JCL Requirements
	Return Codes and ABENDs

	SERXMLAC – Calling XML Services From Assembler
	SERXMLAC Parameter List
	Return Codes and Reason Codes
	Sample Call to APPROVER PKG LIST
	Setting SERXMLAC Parameter List Values
	Building the XML Services Request Buffer
	Calling SERXMLAC
	Processing the Reply Buffer

	SERXMLCC - Calling XML Services from COBOL
	COBOL-to-XML Copybooks
	Copybook Member Names

	COBOL Variable Names
	Control Variables
	Content Variables
	Data Types, Values, and Constraints

	Input/Output Buffers
	COBOL Batch Subroutine Client SERXMLCC
	Compiling Programs That Call SERXMLCC
	Running Programs That Call SERXMLCC
	Return Codes

	Sample COBOL Program CMNOPSCH
	Compile, Link, and Execution JCL for CMNOPSCH
	Display from Sample Program CMNOPSCH

	SERXMLRC - Calling XML Services From REXX
	SAMPLE JCL TO INVOKE XML REXX EXEC
	SAMPLE REXX EXEC CMN010 PROLOGUE
	SAMPLE REXX EXEC CMN010 MAINLINE
	SAMPLE REXX EXEC CMN010 XML SETUP and CALL
	SAMPLE REXX EXEC CMN010 XML PRINT OUTPUT
	SAMPLE REXX EXEC CMN010 XML DIAGNOSE ERROR
	SAMPLE REXX EXEC CMN010 XML DISCONNECT CODE
	Calling SERXMLRC From Panel Exits

	Problem Analysis and Troubleshooting Tools
	Warn - XML Tag Name Warning
	Warn Tag Name Error Examples
	Enabling XML Tag Name Error Warning
	Hierarchy of Warn Facility Controls

	TEST - XML Batch Client Trace
	TRACE and NETTRACE in the SERNET Started Task
	Troubleshooting Tips
	rc=08, reason code = 8130 error
	Troubleshooting Variable Length Name Issues

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	U
	W
	X
	Z

