&S SERENA

SERENA®
ChangeMan ZMF 8.1

XML Services User’s Guide

Serena Proprietary and Confidential Information

Copyright
Copyright © 2001-2015 Serena Software, Inc. All rights reserved.

This document, as well as the software described in it, is furnished under license and may
be used or copied only in accordance with the terms of such license. Except as permitted
by such license, no part of this publication may be reproduced, photocopied, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
recording, or otherwise, without the prior written permission of Serena. Any reproduction
of such software product user documentation, regardless of whether the documentation
is reproduced in whole or in part, must be accompanied by this copyright statement in its
entirety, without modification.

This document contains proprietary and confidential information, and no reproduction or
dissemination of any information contained herein is allowed without the express
permission of Serena Software.

The content of this document is furnished for informational use only, is subject to change
without notice, and should not be construed as a commitment by Serena. Serena
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document.

Trademarks

Serena, TeamTrack, StarTool, PVCS, Comparex, Dimensions, Prototype Composer,
Mariner, and ChangeMan are registered trademarks of Serena Software, Inc. The Serena
logo and Version Manager are trademarks of Serena Software, Inc. All other products or
company names are used for identification purposes only, and may be trademarks of their
respective owners.

U.S. Government Rights

Any Software product acquired by Licensee under this Agreement for or on behalf of the
U.S. Government, its agencies and instrumentalities is "commercial software" as defined
by the FAR. Use, duplication, and disclosure by the U.S. Government is subject to the
restrictions set forth in the license under which the Software was acquired. The
manufacturer is Serena Software, Inc., 1850 Gateway Drive, 4th Floor, San Mateo
California, 94404-4061.

Publication date: September 2015

CONTENTS

About This Book 13
Software Versions 13
Audience 13
Scope 14
Related Topics 14
Related Documents 14
Typographical Conventions 15
Manual Organization 15
Chapter 1: XML Services Concepts and Architecture 19
Software Architecture 19
Message Processing Cycle 21
Submitting a Serena XML Request 21
XML Parsing and Data Mapping 22
Generating the Serena XML Reply 22
ChangeMan ZMF Interface Comparison 23
Chapter 2: XML Syntax Basics 25
XML Syntax Standards 26
XML Tag Names 26
XML Data Elements 26
XML Tag Attributes 27
Comments 27
Character Entities 27
XML Documents as Complex Data Elements 28
Well-Formed Documents 29
XML Document Declarations 30
Identifying XML Documents 30
<?XML?> Declaration Syntax 30
Serena XML Message Documents 32
Serena XML Syntax Example 32
Logical Document Structure 34
High-Level Tags in Serena XML 35
<service> Tag: The Root Data Element 35

<scope> Tag 36

Contents

Chapter 3:

<message> Tag
<header> Tag
<request> Tag
<result> Tag
<response> Tag
Filtering XML Services Messages
<includelnResult> Tag
Service, Scope, and Message Summary
Core XML Services Summary
ERO XML Services Summary

Package Management

Package Message Syntax
Identifying Package Messages
Package Naming Conventions
Special Tag Syntax for Package Management

Package Lifecycle Tasks
Create a Package - PACKAGE SERVICE CREATE
Delete a Package - PACKAGE SERVICE DELETE
Freeze a Package - PACKAGE SERVICE FREEZE
Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT
Check a Package for Promotion Readiness - PACKAGE CHECK PROMOTE
Promote a Package - PACKAGE SERVICE PROMOTE
Lock Promotion Site for Package - PACKAGE PROMOTE LOCK
Demote a Package - PACKAGE SERVICE DEMOTE
Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE
Approve a Package - PACKAGE SERVICE APPROVE
List Package Installation Schedule - SCHEDULE SERVICE LIST
Hold Package Install Job - SCHEDULE SERVICE HOLD
Release Package Install Job - SCHEDULE SERVICE RELEASE
Back Out a Package - PACKAGE SERVICE BACKOUT
Revert a Package - PACKAGE SERVICE REVERT

Package-Level Component Change Management
Component Change Description List- CMPONENT CHG_DESC LIST
List Staged Components - CMPONENT PKG_COMP LIST
Component Description List- PACKAGE CMP_DESC LIST
List Components With Promotion Overlays - PACKAGE PRM_OVLY LIST
Unfreeze Source/Load Components - PACKAGE SRC_LOD UNFREEZE
Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE
Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE
Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE

36
37
38
38
39
40
40
41
41
47

51

51
51
52
52
53
53
63
65
67
70
70
74
75
76
79
82
85
86
87
90
93
94
97
109
112
118
120
122
123

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST 124
Unfreeze Scratch/Rename Records - PACKAGE SCR_REN UNFREEZE 129
Refreeze Scratch/Rename Records - PACKAGE SCR_REN REFREEZE 130

Package Validation Tasks 131
List Source-to-Load Dependencies - CMPONENT PKG_LOD LIST 131
Check Component Integrity - PACKAGE CMPONENT INTEGRTY 138
Audit a Package - PACKAGE SERVICE AUDIT 140

Package Information Management Tasks 146
List Package Description - PACKAGE GEN_DESC LIST 146
List General Package Parameters - PACKAGE GEN_PRMS LIST 148
Unfreeze Package Parameters - PACKAGE GEN_PRMS UNFREEZE 159
Refreeze Package Parameters - PACKAGE GEN_PRMS REFREEZE 160
List User-Defined Package Variables - PACKAGE USR_RECS LIST 160
List Package Install Sites - SITE PKG LIST 164
Unfreeze Package Install Sites - PACKAGE SITES UNFREEZE 168
Refreeze Package Install Sites - PACKAGE SITES REFREEZE 169
List Package Installation Dependencies - PACKAGE SCH_RECS LIST 169
List Package Implementation Instructions - PACKAGE IMP_INST LIST 173
List Package Approvers - APPROVER PKG LIST 174
List Affected Applications - PACKAGE AFF_APLS LIST 180
List Participating Packages - PACKAGE PRT_PKGS LIST 182
List Linked Packages - PACKAGE PKG_LINK LIST 183
List Package Library Types - LIBTYPE PKG LIST 187
List Package Promotion History - PACKAGE PRM_HIST LIST 193
Package Promoted Component List - PACKAGE PRM_CMP LIST 199
List Reasons for Backout or Revert - PACKAGE REASONS LIST 203

Chapter 4: Component Management 207

Component Management Message Syntax 207
Identifying Component Messages 207

Component Lifecycle Tasks 208
Check Out a Component - CMPONENT SERVICE CHECKOUT 209
Component Service Checkin - CMPONENT SERVICE CHECKIN 214
Check Designated Build Procedures - CMPONENT APL_DPRC CHECK 219
Find Designated Build Procedure - CMPONENT APL_DPRC FIND 223
List Designated Build Procedures - CMPONENT APL_DPRC LIST 224
List Global Designated Build Procedures - CMPONENT GBL_DPRC LIST 229
Component Service Build - CMPONENT SERVICE BUILD 229
Recompile a Component - CMPONENT SERVICE RECOMP 235
Relink a Component - CMPONENT SERVICE RELINK 240
Browse a Component - CMPONENT SERVICE BROWSE 246

Contents

Chapter 5:

Compare Components - CMPONENT SERVICE COMPARE

Rename a Component - CMPONENT SERVICE RENAME

Scratch a Component - CMPONENT SERVICE SCRATCH

Lock or Unlock a Component - CMPONENT SERVICE LOCK/UNLOCK
List Load Module Subroutines - CMPONENT LOD_SUBR LIST

List Copybook Names in Source - CMPONENT SRC_INCL LIST

Component Staging Version Management

List Component Staging Versions - CMPONENT SSV_VER LIST
Retrieve Component Staging Version - CMPONENT SSV_VER RETRIEVE

Component Information Management Tasks

List Component Change Description - CMPONENT CHG_DESC LIST
Find Component Description - CMPONENT APL_CDSC FIND

List Component Description - CMPONENT APL_CDSC LIST

List Global Component Description - CMPONENT GBL_CDSC LIST
List Component Promotion History - CMPONENT PRM_HIST LIST
Component History List - CMPONENT HISTORY LIST

List Short Component History - CMPONENT HISTORY LISTSHRT
List Current Component History - CMPONENT HISTORY LISTCURR
List Concurrent Comp. History - CMPONENT HISTORY LISTCONC
List Baselined Component History - CMPONENT HISTORY LISTBASE
List Comp. User Worklist Records - CMPONENT PKG_WRKL LIST

Component Security Tasks

Check Component Security - CMPONENT APL_SECR CHECK

Find Component Authorized Users - CMPONENT APL_SECR FIND

List Component Authorized Users - CMPONENT APL_SECR LIST

List Global Component Authorized Users - CMPONENT GBL_SECR LIST

Search, Summary, and Analysis Tasks
Syntax Conventions for Search, Summary, and Analysis

Semicolon-Delimited Lists
Yes/No Flag Tags

Package Search and Summary Tasks

General Package Search - PACKAGE GENERAL SEARCH

Search for Limbo Packages - PACKAGE LIMBO SEARCH

Search for Packages Pending Approval - PACKAGE APPROVE SEARCH
Search for Linked Packages - PACKAGE PKG_LINK SEARCH

Package Summary Statistics - PACKAGE SERVICE SUMMARY

Audit Trail Management

Create Log File Entry - LOG SERVICE CREATE
List Activity Log File Entries - LOG SERVICE LIST

Impact Analysis Functions

IMPACT BUN LIST

249
252
254
255
257
261
265
265
270
274
274
277
278
280
281
283
291
292
293
294
294
298
208
300
302
304

307

307
307
308
309
309
326
327
328
336
345
345
349
350
351

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

IMPACT CMPONENT LIST 353
IMPACT TABLE LIST 355
Chapter 6: Dataset Management 361
Dataset Lifecycle Tasks 361
Allocate a Dataset - DSS SERVICE ALLOCATE 362
Delete a Dataset - DSS SERVICE DELETE 364
Delete a Dataset Member - DSS SERVICE MBRDEL 365
List Dataset Allocation Information - DSS SERVICE INFO 366
List Dataset Member Directory - DSS SERVICE LIST 369
List ISPF Dataset Allocation Information - DSS ISPFILE INFO 372
List Statistics for Baseline Members - DSS SERVICE BASESTAT 374
Expand Member in SRD Format - DSS SERVICE EXPAND 376
Chapter 7: Hierarchical File System Services 379
Overview 379
Hierarchical File System Functions 379
High-Level Syntax 379
Related Services 380
HFS Directory Services 380
Create a Directory — FILE SERVICE MKDIR 380
Delete a Directory — FILE SERVICE RMDIR 382
Rename a Directory — FILE SERVICE RENAME 382
List All Directory Contents — FILE SERVICE LIST 383
List Files in a Directory — FILE FILES LIST 387
List Directories in a Directory — FILE DIRS LIST 390
HFS File Lifecycle Services 393
Create a File — FILE SERVICE CREATE 393
Delete a File — FILE SERVICE DELETE 394
Rename a File — FILE SERVICE RENAME 395
Copy a File — FILE SERVICE COPY 396
Create a Link or Alias to a File — FILE SERVICE LINK 397
Change File Attributes — FILE SERVICE CHANGE 398
Check Access to a File — FILE SERVICE ACCESS 399
Scan Files for Strings — FILE SERVICE SCAN 401
File Conversion Services 402
Import a PDS Member into HFS — FILE SERVICE IMPORT 402
Export an HFS File to a PDS Library — FILE SERVICE EXPORT 403
Chapter 8: Database Management 405
IMS Development and Administration 405

Contents

Chapter 9:

Chapter 10:

IMS Control Region Package Records - PACKAGE IMS_CRGN LIST

Package IMS ACB List - PACKAGE IMS_ACB LIST

IMS DBD Package Overrides - IMSOVRD PKG_DBD LIST

IMS PSB Package Overrides - IMSOVRD PKG_PSB LIST

IMS DBD Application Overrides - IMSOVRD APL_DBD LIST

IMS PSB Application Overrides - IMSOVRD APL_PSB LIST

IMS DBD Global Overrides - IMSOVRD GBL_DBD LIST

IMS PSB Global Overrides - IMSOVRD GBL_PSB LIST

IMS Control Region Application Defaults - IMSCRGN APL LIST

IMS Control Region Global Defaults - IMSCRGN GBL LIST
DB2 Development and Administration

DB2 Active Libraries for Application - DB2ADMIN APL_ACTV LIST
DB2 Logical Subsystems for Application - DB2ADMIN APL_LOGL LIST

DB2 Global Physical Subsystems - DB2ADMIN GBL_PHYS LIST
DB2 Global Logical Subsystems - DB2ADMIN GBL_LOGL LIST

Online Forms Management

Online Forms Lifecycle Tasks
Unfreeze Online Forms - PACKAGE FORMS UNFREEZE
Refreeze Online Forms - PACKAGE FORMS REFREEZE
Submit a Form for Approval - FORMS PKG SUBMIT
Approve a Form - FORMS PKG APPROVE
Reject a Form - FORMS PKG REJECT
Add Comments to a Form - FORMS PKG COMMENT
Forms Information Management
List Global Online Forms - FORMS GBL LIST
List Package Online Forms - FORMS PKG LIST
List Package Online Form Details - FORMS PKG DETAIL

ChangeMan ZMF Administration Tasks

Change Library Administration

List Baseline Library Datasets - BASELIB SERVICE LIST

List Promotion Library Datasets - PROMLIB LIBRARY LIST

List Promotion Site Configuration Records - PROMLIB SITE LIST

List Production Library Datasets - PRODLIB SERVICE LIST
Site Administration

List Globally Defined Remote Sites - SITE GBL LIST

List Remote Sites for Application - SITE APPL LIST

List Install Calendar for Site - CALENDAR SERVICE LIST
Developer Environment Administration

List Global Library Types - LIBTYPE GBL LIST

List Application Library Types - LIBTYPE APL LIST

407
413
417
421
424
427
429
431
433
435
436
436
439
443
447

453

453
453
455
456
458
459
460
462
462
465
468

471

471
471
475
479
481
483
483
486
487
489
490
497

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

List Global Language Parsers - LANGUAGE GBL LIST 503

List Application Language Parsers - LANGUAGE APL LIST 505

List Global Build Procedures - PROCS GBL LIST 506

List Application Build Procedures - PROCS APL LIST 508

List Global Parameters - PARMS GBL LIST 509
Parameters Application List - PARMS APL LIST 523

List Global Reason Codes - REASONS SERVICE LIST 532
Approver and Notification Administration 533
List Application Approvers - APPROVER APL LIST 534
Download Global Notification File - NOTYFILE SERVICE DOWNLOAD 536
Upload Global Notification File - NOTYFILE SERVICE UPLOAD 537
Notify User - USER SERVICE NOTIFY 538
Chapter 11: System Environment Information 545
System Setup Parameter List - SYSTEM SERVICE LIST 545
SERNET Environment Parameter List - SYSTEM ENVIRON LIST 549
SERNET Security Group List - SYSTEM SECGROUP LIST 552

ChangeMan ZMF Environment Parameters - ENVIRON SERVICE LIST 553
ChangeMan ZMF STC DDNAME LIBRARIES - DSS SERVICE STCLIST 558

Appendix A: XMLSERV - Interactive XML Prototyping Tool 561
XMLSERYV Functional Overview 562

Main Screen Menu Options 563

Main Screen Primary Commands 563

XML Input and Output Documents 566

Usage Notes 567

Sample XMLSERYV Session 567

Step 1: Start XMLSERV 567

Step 2: Select an XML Service 568

Step 3: Edit the XML Input Document 569

Step 4: Execute the Edited XML Request 571

Step 5: Browse the XML Output Document 571

Step 6: Return to the XML Input Document and Exit 573

Appendix B: SERXMLBC - Executing Native XML Service Calls 575
Input Requirements 575

Output Requirements 575

JCL Requirements 576

Return Codes and ABENDs 576

Contents

Appendix C: SERXMLAC - Calling XML Services From Assembler 579

SERXMLAC Parameter List 579
Return Codes and Reason Codes 580
Sample Call to APPROVER PKG LIST 580
Setting SERXMLAC Parameter List Values 580
Building the XML Services Request Buffer 581
Calling SERXMLAC 582
Processing the Reply Buffer 583
Appendix D: SERXMLCC - Calling XML Services from COBOL 587
COBOL-to-XML Copybooks 587
Copybook Member Names 587
COBOL Variable Names 588
Control Variables 588
Content Variables 588
Data Types, Values, and Constraints 589
Input/Output Buffers 590
COBOL Batch Subroutine Client SERXMLCC 591
Compiling Programs That Call SERXMLCC 591
Running Programs That Call SERXMLCC 591
Return Codes 592
Sample COBOL Program CMNOPSCH 592
Compile, Link, and Execution JCL for CMNOPSCH 593
Display from Sample Program CMNOPSCH 594
Appendix E: SERXMLRC - Calling XML Services From REXX 595
SAMPLE JCL TO INVOKE XML REXX EXEC 595
SAMPLE REXX EXEC CMNO010 PROLOGUE 596
SAMPLE REXX EXEC CMNO010 MAINLINE 597
SAMPLE REXX EXEC CMNO010 XML SETUP and CALL 598
SAMPLE REXX EXEC CMNO010 XML PRINT OUTPUT 599
SAMPLE REXX EXEC CMNO010 XML DIAGNOSE ERROR 599
SAMPLE REXX EXEC CMNO010 XML DISCONNECT CODE 600
Calling SERXMLRC From Panel Exits 601
Appendix F: Problem Analysis and Troubleshooting Tools 603
Warn - XML Tag Name Warning 603
Warn Tag Name Error Examples 603
Enabling XML Tag Name Error Warning 606
Hierarchy of Warn Facility Controls 607
TEST - XML Batch Client Trace 607

10

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

TRACE and NETTRACE in the SERNET Started Task 608
Troubleshooting Tips 608
rc=08, reason code = 8130 error 608
Troubleshooting Variable Length Name Issues 609
Index 611

11

Contents

12

About This Book

The XML Services User’s Guide documents the most commonly used features of the

XML Services application programming interface (API) to Serena® ChangeMan® ZMF.
Tutorials, code examples, use cases, and tips and techniques for applications supplement
detailed data structure tables covering 162 functions available for general customer use.

Services used with the Enterprise Release Option (ERO) are not described in this manual but
are listed for reference in ERO XML Services Summary in Chapter 2, “XML Syntax Basics”.
Refer to the ChangeMan ZMF ERO XML Services User’s Guide for information on using
these services.

After reading this manual, you should be able to do the following:

* Understand the software architecture that underlies ChangeMan ZMF XML Services.
* Create a well-formed XML document that complies with Serena XML syntax.

* Use the Serena XML markup language to build reusable XML documents that invoke
functions and retrieve data from ChangeMan ZMF.

+ Use the XML batch execution client to issue Serena XML service requests to
ChangeMan ZMF and receive Serena XML replies.

* Experiment with the XMLSERYV interactive prototyping tool to learn Serena XML
syntax, generate prototype request messages, and browse Serena XML replies.

Software Versions

This manual discusses Serena Software’s XML Services as implemented in
ChangeMan ZMF version 8.1 (GA) and ChangeMan ZDD 8.1 (GA).

Audience

This manual targets experienced ChangeMan ZMF programmers, multi-platform systems
integrators, and ChangeMan ZMF administrators.

You should be familiar with your mainframe operating system and security system, and you
should understand the operation and administration of ChangeMan ZMF. Some familiarity
with basic XML syntax and schemas is helpful. Familiarity with PCs is assumed.

About This Book

14

Scope

The XML Services features described in this manual are limited to services and functions
available for general customer use. These are sometimes called the “Green” services.
“Green” functions address package and component lifecycle management, complex
searches and queries, data set management functions, change library management
functions, and detailed information retrieval from the ChangeMan ZMF database.

Additional services and functions exist to support advanced systems integration needs. The
latter features are known as the “Yellow” services because they pose some risk of database
corruption and should be used with caution. These are documented in quick-reference form
for customers who attend advanced training in XML Services. This information is available
from Serena Customer Support.

Related Topics

You need not become an XML expert to use XML Services. To master its advanced
capabilities, however, sound knowledge of XML standards is advised. The authoritative
source for this information is the World Wide Web Consortium (W3C). You can find the latest
XML specifications on the Web at http.//www.w3c.org.

The eXtensible Markup Language (XML) standard consists of many components in various
stages of development, change, and ratification. Of these, you should become familiar with
the core XML specifications that cover XML syntax and schemas. If you want to manipulate
and reformat the XML output from XML Services (e.g., for custom reports), you should also
study the XML stylesheet (XSL) specifications.

Related Documents

Title Description

Serena® ChangeMan® ZMF Documents the most commonly used ERO features
ERO XML Services User’s Guide of the XML Services application programming
interface to ChangeMan ZMF.

Serena® ChangeMan® ZMF HTML cross-reference tables for “green” and

XML Reference Tables “yellow” service/scope/message combinations
supported by XML Services, including ERO, and the
XML tags for each. If you have taken Serena’s
advanced training course in XML Services, you can
contact Customer Support for access to this guide.

Serena® ChangeMan® ZMF Step-by-step instructions for the initial installation of
Installation Guide ChangeMan ZMF. Includes installation instructions
for XML Services working data areas.

http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

Title Description

Serena® ChangeMan® ZMF Includes information on customizing exits to call
Administrator’s Guide XML Services.

Serena® ChangeMan® ZMF Documents the Web Services application

Web Services Getting Started Guide ~Programming interface to ChangeMan ZMF

Typographical Conventions

The following textual conventions are used throughout this document to highlight special

information:
This convention . .. Represents . . .
Monospace Serena XML code or keyword.
Bold Monospace Serena XML required tag.
< > Delimiters for XML tag name (e.g., <package>).
Tags omitted from example for clarity.
Italic URL, file name, function name, or book title.
Blue Italic Clickable cross-reference or active hyperlink in document.

MANUAL ORGANIZATION

This
chapter ... | Contains this information . ..

1 Introduction and architecture overview. Introduction to features,
functions, and benefits of XML Services. Layered software architecture,
dynamic client/server messaging, XML interface language, and modular
service objects. Choice of XML, COBOL copybook, or REXX batch
execution clients.

2 Serena XML basics. XML language extensions and XML schemas. Syntax
and structure of a well-formed XML document. High-level structure and
syntax of Serena XML message documents. Table of Serena XML service,
scope, and message names with corresponding COBOL copybooks.

15

About This Book

This

chapter. ..

Contains this information . ..

3

Package management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following package-related tasks:

» Package lifecycle functions (e.g., create, delete, freeze, submit, approve,
promote, demote, back out, revert).

» Package-level component change (e.g., unfreeze, refreeze, list).

+ Package control and metadata information management (e.g., list).

Component management. Serena XML syntax, data structures and values,
code examples, and usage tips for the following component tasks:

+ Component lifecycle functions (e.g., checkout, checkin, browse,
compare, build, recompile, relink, scratch, rename, lock, unlock).

» Component staging versions (e.g., list, retrieve).

* Component control and metadata information management (e.g., list).

+ Component history information (e.g., selective search and list).

Search, summary, and analysis tasks. Information retrieval and statistical
analysis that crosses package, component, and/or application boundaries.
Includes the following:

* Multi-package search (e.g., general and limbo search).

* Multi-package summary statistics.

+ Component impact analysis functions.

* Change log creation and listing.

Dataset management. XML Services support for managing sequential and
partitioned datasets on the mainframe. Includes PDS/PDSE lifecycle
functions (e.g., create and delete data set, delete data set member, and list
data set information).

Hierarchical file system services. XML Services support for managing
HFS files and directories on the mainframe. Includes:

» HFS directory services (e.g., create, delete, rename, or list the contents
of a directory).

» HFS file lifecycle services (e.g. create, delete, rename, or copy an HFS
file, change certain file attributes, or test for file existence and verify user
access permissions).

* File conversion services (e.g., import a z/OS PDS (Partitioned Data Set)
member as an HFS file or export an HFS file as a PDS member).

16

Serena® ChangeMan® ZMF 8.1: XML Services User’s Guide

This

chapter. ..

Contains this information . ..

8

Database management for IMS and DB2. Serena XML syntax and data
structures for retrieval of change control metadata about the following:

» IMS package-level, application-level, and global settings and data bind-
ing information (e.g. control region, ACB build statement, DBD and PSB
control statement /ist.)

+ DB2 application-level and global settings and data binding information
(e.g., list records for active DB2 applications, logical files, and physical
files).

Online forms management. Serena XML syntax and data structures for
retrieving information and submitting and approving custom online forms
associated with a package.

10

ChangeMan ZMF administration tasks. Serena XML syntax and data
structures for retrieving global and application-level information about
change libraries, sites, languages, library types, and build procedures. XML
access to site calendars and package installer scheduling facilities, approver
maintenance, reason code administration, and notifications are also
discussed.

11

System administration tasks. Serena XML syntax and data structures for
retrieving SERNET and ChangeMan ZMF setup information, environment
parameters, and started task library concatenation.

Appendix A

XMLSERYV - Interactive TSO/ISPF prototyping tool for XML Services.

Appendix B

SERXMLBC — Serena XML native-XML batch execution client.

Appendix C

SERXMLAC — Serena XML ASSEMBLER execution client.

Appendix D

SERXMLCC — Serena XML COBOL execution client.

Appendix E

SERXMLRC - Serena XML REXX execution client.

Appendix F

Problem analysis and troubleshooting tools. How to resolve errors when
using XML Services.

Change bars in the left margin identify changes in this publication since it was published on
March 21, 2012.

17

About This Book

18

XML SERVICES CONCEPTS AND
ARCHITECTURE

XML Services offers ChangeMan® ZMF customers and system integrators an enhanced
application programming interface (API) based on industry-standard XML (eXtensible
Markup Language). XML Services simplifies customization, data interchange, and cross-
product interoperability for ChangeMan ZMF and other products. An integrated feature of the
base ChangeMan ZMF product, XML Services supports all optional product features,
including the DB2 Option, IMS Option, ERO Option, M+R Option, and Load Balancing
Option. XML Services is the preferred API for customers and system integrators who work
with ChangeMan ZMF.

Functionally, XML Services:

» Offers a unified XML programming interface to ChangeMan ZMF functions.

* Provides open access to ChangeMan ZMF package master, component master,
Impact/Analysis repository, and activity log data.

* Interoperates seamlessly with Serena products such as ChangeMan® ZDD and
StarTool® DA.

+ Enables integration with third-party development tools, databases, and reporting.

* Includes “software developer kit” (SDK) environments to simplify developer access to
the XML Services API using native-XML, ASSEMBLER, COBOL, or REXX.

SOFTWARE ARCHITECTURE

XML Services comprises much more than syntax. It is fully integrated with ChangeMan ZMF
and builds on the following architectural keystones:

» A layered software architecture provides application independence from technology
changes in ChangeMan ZMF internals. The low-level “Extended Services” that perform
basic ChangeMan ZMF functions are isolated from higher-level interfaces.

* Modular service objects within the “Extended Services” layer provide a single point of
access to ChangeMan ZMF functions. The set of low-level service objects is both
comprehensive and extensible.

» Dynamic client/server messaging uses a shared object-request broker for all
ChangeMan ZMF communications. This approach supports asynchronous, stateless,
message-based transactions between XML client and server — ideal for network
environments and Web-enabled services.

19

Chapter 1: XML Services Concepts and Architecture

20

An overview of the layered XML Services architecture appears in Exhibit 1-1.

A tag-based XML markup language built on industry-standard XML is easily recognized
and processed by third-party software. Tag-based markup frees data interchange from
bit-offset dependencies and wireline sequence dependencies. It is also inherently
extensible, so that custom programs that use the XML Services interface need not be
changed when new features or functions are added to ChangeMan ZMF.

Developer-friendly SDK clients support COBOL-to-XML, ASSEMBLER-to-XML, and

REXX-to-XML API calls as well as interactive XML prototyping.

Exhibit 1-1. XML Services Architecture

NETWORK

(w7

-
MAINFRAME W rcemp
s A s
TCP/IP 4
SERCLIEN < > SERNET
Messaging Client < > Messaging Server
XMS
Y
TSO/BATCH SERENA XML SERVER
SERXMLBC XML Message Document Processing
XML Batch Execution
Client l€«— XML Schemas
[XmLIN | [xmLoUT | XMLI/O [« Mapping Files
HANDLERS
Parsing & Document
Data Mapping Content Model
XML > Internal DSECTs
y
EXTENDED
iERIi':::t-il;)n Server SERVICES
PP Service Objects
CHANGEMAN ZMF
USER ADDRESS SPACE SERVER ADDRESS SPACE

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

MESSAGE PROCESSING CYCLE

The architectural building blocks of XML Services come together in the Serena XML
message processing cycle. The message processing cycle flows through the following steps:

» Serena XML request message issued from client to server

+ XML message parsed

+ XML data mapped to internal ChangeMan ZMF data formats

* Requested task performed by low-level service object

» Service object success/failure codes and output data mapped to XML data elements

» Serena XML reply message sent by server to client

Every Serena XML request message that reaches the server triggers a Serena XML reply. At
minimum, the reply includes a result code that informs the requesting program whether the
requested task succeeded, generated a warning message, or failed. Successful requests
may trigger several result messages as well — each result representing, for example, a
record in a data set or a line in a report. All results generated by a single XML request
document are returned in a single XML reply document.

Submitting a Serena XML Request

Serena XML service request messages are issued from the client to the server via a software
developer’s “kit” (SDK) or environment optimized for a particular programming language.
Batch XML is submitted via the SERXMLBC batch client. Interactive XML can be prototyped
in XMLSERYV with prompts for required tags and other ease-of-use features, then submitted
for execution through SERXMLBC.

The SERXMLCC COBOL-to-XML batch execution client, together with a collection of COBOL
copybooks, facilitates XML Services API requests using native COBOL data formats and
program calls. Each copybook wraps the proper Serena XML syntax around the contents of
predefined COBOL variables populated by your custom COBOL program. Your COBOL
program then calls SERXMLCC to generate a true Serena XML request document and place
it in the normal XML message processing stream.

The SERXMLRC REXX-to-XML batch execution client similarly facilitates XML Services API
requests using native REXX stem data formats and program calls. Your REXX program
populates an approximate REXX stem structure, then calls SERXMLRC to generate a
Serena XML request document and place it in the normal XML message processing stream.

The SERXMLAC ASSEMBLER-to-XML batch execution client facilitates XML Services API
requests using native ASSEMBLER data formats and program calls.
Service, Scope, and Message Syntax

Every Serena XML service request uses a high-level XML syntax that identifies the

ChangeMan ZMF service, scope, and message names for the task requested. These values,
in combination, uniquely identify the modular service object on the server that must process
the request. They also identify the function to be performed and the category of information to

21

Chapter 1: XML Services Concepts and Architecture

22

perform it against. Their values also must be specified with CAPITAL letters. The batch
execution client that submits your request first preprocesses it to ensure that the combination
of service, scope, and message names is valid.

Message Routing

If the XML Services service, scope, and message names are valid, the execution client calls
the appropriate client messaging program — either SERCLIEN on the mainframe or
SERNET Connect on distributed platforms — to initiate a connection to ChangeMan ZMF.
The preferred communications protocol for this connection is TCP/IP, but cross-memory
services (XMS) is also supported if the client and server both reside on the same mainframe
LPAR. The messaging client performs any necessary data compression and packages the
XML message with appropriate headers for network addressing, handshaking, and
mainframe logon. It then requests a communications session to ChangeMan ZMF via the
SERNET messaging server.

The SERNET messaging server resides on the host in the ChangeMan ZMF server address
space, where it listens on one or more communication ports for incoming messages. When a
message arrives, SERNET completes any network handshaking needed, processes the
communications headers, and establishes a conversation. SERNET also decompresses
messages and performs any needed data format conversions (e.g. from ASCII to EBCDIC).

If the inbound message contains Serena XML, the SERNET messaging server calls the XML
Services input handler to transform that data into internally readable form. The XML input
handler then returns the transformed data to the SERNET messaging server, which routes it
to the appropriate low-level service object for action.

XML Parsing and Data Mapping

At the core of XML Services are its XML parsing and bidirectional data mapping processes.
These interpret Serena XML message streams and map the identified XML data structures of
a request to the internal assembler DSECT formats used by the low-level service objects in
ChangeMan ZMF. In the reverse direction, the low-level service objects return results that are
mapped from their internal assembler DSECT formats to Serena XML data elements, then
marshalled into Serena XML reply messages. Serena uses proprietary parsing to achieve
faster XML processing.

Generating the Serena XML Reply

After the XML input handler has parsed the Serena XML request message and mapped its
data to an appropriate DSECT structure, SERNET queues that DSECT request block for
input to the requested low-level service object. The service object receives the request block,
performs the requested task, and generates (at minimum) a numeric return code. It may also
generate an output message, a report listing, or a set of search results. This output data is
stored in one or more output DSECTs populated by the low-level service object. The output is
then returned to SERNET for routing to the XML output handler.

The XML output handler marshals a Serena XML reply document from one or more of these
output DSECTs. Guided by the permanent object mapping table, the XML output handler

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

maps each field in the DSECT to its corresponding XML tag and creates a document content
model for the reply document in a temporary hashed tag pool. The output handler then
transforms the document content model into well-formed XML and places the resulting
document in a user response area known to the SERNET messaging server.

Control then returns to SERNET, which compresses the XML reply message, packages it
with appropriate communications headers, and routes it to the requesting client. Note that, for
distributed clients, the SERNET messaging server echoes the original XML request in the
XML reply document. For ChangeMan ZMF clients, however, the original XML request is not
echoed.

CHANGEMAN ZMF INTERFACE COMPARISON

ChangeMan ZMF supports following interfaces:

* Interactive ISPF end-user and administrator panels

* Interactive and batch-mode programming clients (SDKs) for XML Services —
including SERXMLAC, SERXMLBC, SERXMLCC, SERXMLRC, and XMLSERV

Of these, the interactive ISPF interface is functionally comprehensive. User tasks are
presented at a high level; many low-level software functions might take place behind the
scenes to accomplish a “simple” high-level ISPF request. The ISPF interface also builds in
robust data validation features on every panel. No other interface provides this level of data
validation support.

No one-to-one mapping exists between XML Services interface functions and ISPF interface
functions, although similarities are apparent. The XML Services interface targets a lower level
of internal function than does ISPF, and is more directly shaped by underlying database

implementations and service object technology. Consequently, ISPF-based intuitions may not
always apply to XML Services. In addition, XML Services includes no built-in data validation.

& Caution

Data validation is the responsibility of XML Services customers. XML Services
provides no built-in data validation. All ISPF tables that are available to the ISPF
interface to ChangeMan ZMF are not necessarily available to the corresponding
functions that are performed with the Serena XML Services. Furthermore, the target
XML Services do not need these tables to perform their functions correctly. Using the
XMLWARN facility can provide further information concerning data validation, as
documented in “Warn - XML Tag Name Warning” on page 603.

23

Chapter 1: XML Services Concepts and Architecture

24

ChangeMan ZMF interface differences are summarized in Exhibit 1-2.

Exhibit 1-2. ChangeMan ZMF Interface Comparison

Reusable Functional Data
Interface Interactive | Batch Jobs Coverage Validation
ISPF Yes No Complete, Yes
high-level
XML Services batch clients (SERXMLAC, No Yes XML, COBOL, No
SERXMLBC, SERXMLCC, SERXMLRC) REXX, Assembler
XML Services interactive client Yes Yes XML No

(XMLSERV)

XML SYNTAX BASICS

Serena XML is SERENA Software’s markup language for Enterprise Change Management
(ECM). It is standard XML extended to support the customization, data interchange, and
interoperability needs of ChangeMan ZMF customers as they implement change
management solutions. Serena XML is the most visible component of XML Services.

The Serena XML markup vocabulary consists of more than a thousand special-purpose XML
tags used to delimit values in a text file. These tags are defined according to XML’s rules for
adding new tags to itself. The particular mechanism for defining these special-purpose tags is
called an XML schema. The Serena XML schemas define not only the tag vocabulary of
Serena XML, but also the structure of each data element named by these tags and the syntax
used when populating these data elements in an XML document.

Is Serena XML “really” XML, then? The answer is, emphatically, yes. XML stands for
eXtensible Markup Language. Its reason for being is to provide a standard method for
creating special-purpose markup languages — extensions, that is, to the base XML tag set.
There are two points to remember about XML extensions:

+ Extensions are not replacements; they are additions. XML imposes a discipline on its
language extensions that makes them systematically extensible over time. Within broad
limits, this discipline prevents the foreclosure of alternatives; future options remain open.
Built-in XML extensibility means that Serena XML can grow and change without forcing
obsolescence on earlier versions of the language.

+ Extensions to XML are syntactically consistent with XML. All special-purpose
extensions to XML follow the same basic syntactic and structural rules. Familiarity with
basic XML syntax makes all XML-based markup languages easier to learn and use.

Some knowledge of Serena XML syntax is needed by all users of XML Services. For
example, COBOL programmers working with the COBOL-to-XML copybook interface need to
know about individual copybook functions and predefined COBOL variable names, data
types, and value information — all of which derive from Serena XML. Programmers who work
directly with Serena XML need not only data type and value information, but also detailed
information about XML language syntax and data structures.

This chapter begins with a discussion of general XML syntax and standards as defined by the
World Wide Web Consortium (W3C). It then addresses the basic features of Serena XML.
The features discussed are those that apply to all message documents created in Serena
XML and to all ChangeMan ZMF user tasks performed via Serena XML. The chapter
concludes with a summary of all valid combinations of <service>, <scope>, and

25

Chapter 2: XML Syntax Basics

26

<message> name attributes in Serena XML available to customers for general use. This
summary includes the names of the corresponding COBOL-to-XML copybooks.

XML SYNTAX STANDARDS

The body of standards defining XML is actually quite large, but only two core specifications
directly concern users of Serena XML. These are the XML Version 1.0 syntax specification
and the XML Schema specification. These and other XML specifications are established by
the World Wide Web Consortium (W3C) and are published online at http.//www.w3c.org.

To use the Serena XML programming interface to XML Services, you first need a basic
familiarity with this core XML syntax.

XML Tag Names

Programmers familiar with Web markup will note that XML syntax resembles HTML syntax.
Like HTML, XML makes use of tags (of the form <tag>) and attributes (of the form
name="value"). Like HTML tags, XML tags delimit units of content and identify that content
by tag name. Generally, XML statements look something like this:

<tag attribute="value">data value or structured content</tag>

In standard-compliant XML, tag and attribute names are case-sensitive — that is, <tag> is
not the same as <Tag>. Tag and attribute names may include alphanumeric characters,
hyphens, underscores, and periods. Other punctuation marks are generally prohibited, since
they may have special meanings in XML.

XML Data Elements

Functionally, XML tags mark data elements in text. Data elements are of two types:

+ Simple data elements contain basic data types such as integers, dotted decimal
numbers, dates, times, fixed-length or variable-length character strings, or the like.
Simple data elements cannot be decomposed into subordinate XML data elements; they
are, in that sense, “atomic” units of data. Such a tag might look something like this:

<package>ACCT000025</package>

* Complex data elements contain a data structure composed of one or more subordinate
XML data elements, each delimited by its own pair of subtags within the main tag pair.
The subordinate elements may themselves be either simple or complex. Complex tags
may be built up from successively simpler tags to form a hierarchical tree structure. A
complex tag structure with just one level of subtags might look something like this:

<response>
<statusMessage>CMN8700I - LIST Package service completed</status
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

http://www.w3c.org

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The contents of an actual data element must conform to whatever data validation restrictions
are imposed by the tag definition. For simple data elements, such restrictions would include
data type, data pattern, allowable value range, and/or membership in a predefined value list.
For complex data elements, the data structure must also conform to the tag definition.
Restrictions at this level include allowable subtags, subtag sequencing, mutually exclusive
subtag choices, and mandatory subtag inclusion. Restrictions on the minimum and maximum
number of consecutive tag repetitions, if any, must also be met.

XML Tag Attributes

Attributes qualify the manner in which a tag is used or processed. One tag may have multiple
attributes, so each attribute must be explicitly named. The value assigned to an attribute
must appear in double quotes and must be a simple data type — such as a date, a character
string, or an integer.

Attributes are not (or should not be) used to hold application data. That’'s what data elements
—i.e., tags and subtags — are for! Attributes are used to:

» Identify the subtype of a tag that is complex enough to have alternative formats,
substructures, or validation requirements.

* Identify a particular tag instance to distinguish it uniquely from other instances of use.

+ Set a flag for the target application to use when choosing among several data
interpretations or processing options.

In the case of Serena XML, attributes are used primarily to identify which of many alternative
data structures is intended when a particular tag is used. Depending on the value of the
attribute, the allowed subtag content and sequence may vary.

Comments

In addition to tags and attributes, standard-compliant XML allows comments. XML
comments, like those in HTML, begin with <! -- and end with —->. Multi-line comments are
permitted. The end-of-comment delimiter must be preceded by a blank or be the first item on
a new line. Double hyphens cannot appear anywhere within the comment body.

An XML comment might look something like this:

<!'-- This is a comment, line 1.
This is a comment, line 2. -->
Character Entities

XML relies on reserved characters (e.g., angle brackets and double quotes) to delimit
language-specific constructs (e.g., tags and attribute values). If you include one of XML'’s
reserved characters in your tag data or in attribute values, the XML parser will attempt to treat
it as a reserved character — e.g., as the opening angle bracket for a tag name — with
unpredictable results. To get around this difficulty, XML provides a mechanism for escaping
these characters from the special treatment they normally receive, so that they can be
included in ordinary data. This is achieved using character entity codes.

27

Chapter 2: XML Syntax Basics

28

Character entity codes begin with an ampersand (&) and end with a semicolon (;). Between
these delimiters is a character entity name that identifies the character represented by the
entity code. Numeric character entity codes are also allowed in generic XML; however, the
XML Services parser does not support numeric character entities at this time.

Five character entities have predefined names in XML. They are listed in Exhibit 2-1.

Exhibit 2-1. XML Character Entities

Entity Code Character Represented

< Less-than symbol or opening angle bracket (<)
> Greater-than symbol or closing angle bracket (>)
& Ampersand (&)

" Straight, double quotation mark (")

' Apostrophe or straight, single quotation mark ()

For example, you might use ampersands in the names of program modules that you mention
in your package implementation instructions. Simply typing an ampersand, in most cases,
would generate a parser error. To insert the ampersand without generating an error, use the
& character entity where you would normally type an ampersand. For example:

<packageImplInst>Requires prior execution of USR&001.</packageImplInst>

XML parsers vary in their sensitivity to the occurrence of reserved characters in data. You can
usually get away with using a regular apostrophe (‘) instead of the sapos; character entity
in data strings, for example. But you should always escape any ampersands or angle
brackets in your data strings, and escape all special characters in attribute values.

i

ais
o

Tip

Use character entities instead of special characters in data or attribute values.

XML Documents as Complex Data Elements

XML documents as a whole are themselves defined as complex data elements. The start and
end of the document is identified by a root tag. Nested within the root tag are the subtags that
make up the content of an instance document — that is, an actual XML document containing
data. There is one and only one root element in an XML document, and the overall structure
of the document is always a hierarchical tree. Data structures that loop back upon
themselves are forbidden anywhere in an XML document.

The structure of an XML document and its component data elements is defined externally in
one of two types of files: a Document Type Definition (DTD) or an XML schema. XML
Services uses the schema approach, because schemas support more sophisticated and
rigorous data typing than DTDs. XML documents can be validated against the relevant
schema by an XML parser to ensure data validity.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Well-Formed Documents

The elements of XML syntax must be combined in a way that conforms to XML rules for a
well-formed document. If XML Services receives XML input that is not well-formed, it will
return an error and make no attempt to process the service request.

XML rules for a well-formed document mirror those in the latest version of HTML. Unlike past
practice with HTML, however, the rules for XML are strictly enforced. In particular:

Only one root tag is allowed in a document. A well-formed XML document must map
to an n-way tree data structure. Such a tree has exactly one root node. The root node
may have multiple branches to lower-level nodes, each of which may also branch
similarly to any depth. Nodes in the tree structure correspond to tags in the XML syntax.

Every opening tag must be matched by a closing tag. Closing tags have the same tag
name as the opening tag, preceded by a forward slash. For example, the opening tag
<tag> must be paired with the closing tag </tag>.

Standalone tags must be self-closing. Standalone tags are defined to mark points in a
document rather than contain data; they are explicitly declared to be “empty”in the XML
schema. Since it contains no data, the standalone opening tag is also the closing tag. As
such, it includes a final slash just before the ending angle bracket. For example:

<tagname />

Attribute values must be enclosed in double quotes. The quotes are never optional.
For example:

<tag attribute=”value”>

Nested tags must be opened and closed in the proper order. The rules for pairing the
opening and closing tags in a nested data structure are the same as those for pairing the
opening and closing parentheses in a mathematical expression. The first tag opened

must be the last tag closed, the next tag opened must be the next-to-last tag closed, and
the last tag opened must be the first tag closed. Visually:

Vo —

<firstTag><nextTag><lastTag> . . . </lastTag></nextTag></firstTag>

XML comments are comments — and nothing else. The frequent HTML practice of
embedding non-markup processing instructions in comments is not allowed in XML.
Instead, non-XML processing instructions and other non-XML declarations should
precede the root tag in the document file.

Strict enforcement of these syntax rules prevents ambiguity when interpreting XML
documents. This is vital in XML, because general-purpose XML parsers, unlike their HTML
counterparts, can’t rely on the names of tags to help resolve ambiguity.

29

Chapter 2: XML Syntax Basics

30

For example, if you see the tag *<p>’ in an HTML file, you can assume it marks a
paragraph. This works because HTML predefines what each tag and attribute name means
in advance and all HTML parsers build in at least some of that knowledge.

However, in XML, you cannot assume anything about the tag *<p>’. XML leaves the
interpretation of document markup and document content completely to the application that
reads it. Tag meaning is defined externally to the document in either a DTD specification or
an XML schema specification.

XML DOCUMENT DECLARATIONS

An XML document must identify itself as such to the SERNET messaging server in order to
be routed properly to and from XML Services. In addition, once an XML document reaches
an XML parser or similar XML processor on either the server or the client, the document must
declare the type of XML document it is. This allows the XML parser to interpret the document
data structures properly.

Identifying XML Documents

Standard-compliant XML relies on a combination of file naming conventions and declarations
in the XML instance document itself to flag XML documents for processing. Conventions for
doing this differ somewhat on distributed systems and mainframes.

Distributed systems usually identify XML documents by the Web-style .xml file name
extension, which is appended to a base file name of up to 8 characters (or more on modern
systems). The file name extension identifies the document type immediately for Web
browsers and other distributed applications that work with XML. This eliminates the need for
these applications to open each document they receive and inspect the contents to
determine whether it contains XML. If you access XML Services from a distributed client, you
may want to append the .xml/ file extension to any file names when saving reusable Serena
XML documents in your local development environment. This facilitates the integration of
ChangeMan ZMF with distributed applications.

Mainframes do not support the same file naming conventions used on most distributed
systems. The SERNET messaging server therefore cannot rely on file naming conventions to
identify XML documents. Instead, SERNET inspects the first line of an incoming message to
determine whether or not it contains XML. For this reason, XML Services requires that XML
documents always include an <?xml ?> declaration to identify themselves. This requirement
applies regardless of the type of system on which the document originates.

Mainframe users may find it useful to define a library type called “XML” for storing reusable
XML documents. However, this is not a requirement of XML Services.

<?XML?> Declaration Syntax

An <?xml ?> declaration is required on the first line of an XML document. Because it is not
properly an XML statement, it precedes the XML root tag of your document. It also precedes
any other non-XML declarations or processing instructions that appear before the root tag.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The <?xml1?> declaration looks something like this:
<?xml version="1.0" encoding="UTF-8"?>

The version attribute is required. The encoding attribute is optional (the default is UTF-8).

<?XML?> Version Attribute

The version attribute in the <?xm1 ?> declaration refers to the particular W3C syntax
standard followed in your XML document. XML Services recognizes XML Version 1.0,
Second Edition, which was published by the W3C in October 2000. This is the latest version
of XML. Attempts to use other versions will fail. Consequently, your <?xm1 ?> declaration will
always have the following version attribute:

<?xml version="1.0"7?>

<?XML?> Encoding Attribute

The encoding attribute in the <?xm1 ?> declaration identifies the character encoding
standard used to represent text in your XML document. To ensure both cross-platform and
international language compatibility, the W3C specification for XML states that all standard-
compliant XML parsers support Unicode. Support for additional character sets is optional.

Unicode is a superset of the 7-bit ASCII character code, with international language and
special symbol extensions. The most widely supported variant of Unicode is UTF-8, a
variable-length encoding that uses one to four 8-bit bytes to represent characters and
symbols. It yields compact files sizes for Latin-based alphabetic text, yet expands to support
non-Latin alphabets, ideographic characters, and a wide variety of special symbols on
demand. The first 128 code points in UTF-8 — i.e., character codes 0 to 127 — correspond to
the same character codes in 7-bit ASCII.

XML Services supports 7-bit ASCII and the full U.S. EBCDIC character set, as well as the
subset of UTF-8 that happens to match 7-bit ASCII. Any of the following encoding attributes
are therefore valid in the <?xm1 ?> declaration for XML Services:

<?xml version="1.0" encoding="UTF-8"7>
<?xml version="”1.0" encoding="US-ASCII”?>
<?xml version="1.0"” encoding="EBCDIC-US”?>

Note

You may also omit the encoding attribute and it will default to UTF-8.

The values for the encoding attribute have the meanings shown in Exhibit 2-2.

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

UTF-8 Variable-length Unicode representation in one to four 8-bit bytes. Supports international
languages, including non-Latin and ideographic scripts. The default encoding for XML.
XML Services accepts documents with this attribute, but interprets them as 7-bit ASCII at
this time. Codes higher than 127 are ignored.

31

Chapter 2: XML Syntax Basics

32

Exhibit 2-2. XML Character Encoding Attributes

Attribute Value Character Encoding Description

US-ASCII 8-bit ASCII character set. XML Services accepts documents with this attribute, but
interprets them as 7-bit ASCII at this time. Codes higher than 127 are ignored.

EBCDIC-US 1987 standard EBCDIC for U.S. English & IBM 3270 terminals. Fully supported by XML
Services.

Undefined Character Code Handling

The double-byte variant of Unicode is UTF-16. UTF-16 reserves the range of character codes
E000 — F8FF as the Private Use Area (PUA) range. The PUA range is reserved for private
use by software vendors.

When converting from EBCDIC to UTF-16 or UTF-8, conversion will fail for characters that
are not defined in the EBCDIC code page. To handle characters that fail conversion,
SERNET utilizes PUA range F800 — F8FF. For UTF-16, undefined characters are converted
to F8xx, where xx is the hexadecimal value of the undefined EBCDIC character.

For UTF-8, in binary this corresponds to:
11101111 101000bb 10bbbbbb
where bbbbbbbb is the binary value of the undefined EBCDIC character.

When converting from UTF-16 or UTF-8 back to EBCDIC, SERNET will convert the F8xx
characters back to their original xx form.

SERENA XML MESSAGE DOCUMENTS

Every Serena XML request and reply message is an XML document. From a syntactic point
of view, each document consists of free-format text delimited by nested markup tags. Tags
may be nested to any depth, repeated, or exhibit other forms of structure. The nested tag
syntax of an XML document is logically equivalent to a hierarchical n-way tree structure.

Serena XML Syntax Example

Syntactically, a Serena XML document begins with a document type declaration, then opens
the root <service> tag. The document ends with the closing </service> tag.

The name attribute of the <service> tag determines which <scope> subtags are valid for
nesting within the <service> tag for a particular instance document. Similarly, the name
attribute of the <scope> tag determines which <message> subtags are valid for nesting
within it.

The <message> tag completes the trio of nested tags needed to invoke a low-level service
objectin the Extended Services layer of XML Services. The name attribute of the <message>
tag, in the context provided by the superordinate <service> and <scope> tags, determines
which complex data structures are valid within the <message>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The following Serena XML example illustrates the nested structure of a Serena XML
document. The role of the <service> tag as the root node is clear from the indentation —
although in practice, both indentation and line breaks are optional in XML.

It should also be clear from this example why markup tags in free-format text are so flexible
for data interchange. Adding one more tag to some level in the hierarchy does not change the
meaning of any other tag in the message.

XML Example — PACKAGE SERVICE CREATE:

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="CREATE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<applName>ACTP</applName>
<createMethod>0</createMethod>
<packageLevel>1</packageLevel>
<packageType>1</packageType>
<reasonCode>000</reasonCode>
<requestorDept>IDD</requestorDept>
<requestorName>USER24</requestorName>
<requestorPhone>555 5555</requestorPhone>
<packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
<packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
<packageImplInst>TEST XML PACKAGE SERVICE CREATE</packageImplInst>
<siteInfo>
<siteName>SERT8</siteName>
<installDate>20091231</installDate>
<fromInstallTime>0100</fromInstallTime>
<toInstallTime>0200</toInstallTime>
<contactName>USER24</contactName>
<contactPhone>555 5555</contactPhone>
<alternateContactName>USER24</alternateContactName>
<alternateContactPhone>555 5555</alternateContactPhone>
</siteInfo>
</request>
</message>
</scope>
</service>

33

Chapter 2: XML Syntax Basics

Logical Document Structure

The logical structure of a ChangeMan ZMF XML Services document can be visualized as an
n-way hierarchical tree. This structure is illustrated for the high-level nodes common to all
services in Exhibit 2-3.

Exhibit 2-3. High-Level XML Document Structure

<service> Legend
name = . —— Required —» Subtags
* approver * forms eprocs | _____ ; .
* baselib « imsovrd « prodlib Optional ¢ * ¢ Omitted Subtags
 calendar * language * promlib Tag Name @ Sequence
* cmponent * libtype * reasons
. datﬁ; . . |ogyp. schedule Attribute Name ~ 0-00 Repetitions
: ggg admin : ngylflalge o s;,sstlé?n Attribute Value Exclusive Or
* environ * parms * user
\ 4
<scope>
name = (1) -““;;‘““';““’,
-aff apls egbldbd = pkg_dbd .
* apl * gbl_logl * pkg_link ! 0-1
* apl_actv * gbl_phys * pkg_lod 1
* apl_dbd * gbl_psb * pkg_ofm H <subsys>
* apl_dprc * general * pkg_psb 1 '
* apl_logl * gen_desc * pkg_util H Ve,
* apl_psb * gen_prms * pkg_wrkl i L--N <product> 1
* apl_secr * history * prm_cmp H 1 “-------------O-_-i-
* check * imp_anal * prm_hist ' VP ,
* chg_desc * imp_inst * prt_pkgs i '.__»: <test> !
* cleanup * ims_acb * sch_recs i SoEeasssse !
e cmponent * ims_crgn * service i 0-1
e cmp_desc * ispfile * scr_ren ! (2]
« dirload * library * src_lod <request>
« dirnone ¢ limbo * site !
* dirpds * non_src * ssv_ver ! e
* environ * pkg * usr_recs '--9! <includelnResult> E
» forms * pkg_comp * xap_anal i 6 T
. . -
gl Request .
Message
v | ¢
<message> L »(XOR)
name = |
« allocate « find * reject Reply
* approve * freeze * release Message
* audit * hold * relink
* backout * info erename | (@ ecomcmmcnmooooos z
* browse * integrty * retrieve <result>) ® e @
* build * list B Y S N ey :
 check * listconc * scratch 0-
* checkin * listcurr * search
* checkout * listshrt * stclist <response> |
* comment * lock * submit
* compare * mbrdel * summary
* create * notify * unfreeze > | <statusReturnCode> |
* delete * promote * unlock
* demote * recomp * upload
* download * refreeze _>| <statusReasonCode> |

—>| <statusMessage> |

34

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Diagram conventions for Exhibit 2-3 are as follows. Each node of the tree (shown as a
rectangle) corresponds to a named data element represented in markup by an XML tag. One
or more branches from a node (shown by solid or dashed lines) represent the inclusion of
subsidiary nodes in the higher-level node’s contents. Dashed borders indicate an optional
data element; solid borders indicate that the node is required. Multiple occurrences of a node
are allowed — each occurrence of which includes the node’s subordinate data structure.
Mutually exclusive relationships among nodes is shown by a lozenge-shaped octagon
labeled “XOR,” from which branches extend to the mutually exclusive nodes with their
substructures. Leaf nodes indicate simple data elements containing raw data rather than a
substructure of subordinate data elements. An ellipsis (three consecutive dots) indicates the
omission of subordinate nodes from the diagram for clarity.

Nodes in the structure diagram are annotated according to the following conventions:

» Tag names appear in the blue region of the node.

» If attributes for the tag exist, their names and permitted values appear in a white
region appended to the node.

* If the number of occurrences of a node is variable, the allowed range for the number
of repetitions appears below the lower right corner of the node. The number of
occurrences can range from zero to unbounded.

* A mandatory sequence for nodes in a data structure is shown by sequence numbers
in solid circles at the left of each node in the sequence.

HIGH-LEVEL TAGS IN SERENA XML

A few tags at the highest levels in the Serena XML document hierarchy are used consistently
in all XML instance documents. These consistent usage patterns persist despite variations in
the low-level service object called, the function requested of that object, or the scope of
action requested. These high-level tags are documented below.

<service> Tag: The Root Data Element

The root data element in an XML Services message document is marked by the <service>
tag. The <service> tag identifies the low-level service object that processes the message
— such as the approver maintenance service (name="approver”) or the package
management service (name="package”).

The <service> tag represents a complex data element with one attribute and one
subordinate data element (or subtag). All attributes and subtags are required. The
<service> tag data structure is summarized in Exhibit 2-4.

35

Chapter 2: XML Syntax Basics

36

Exhibit 2-4. Data Structure for Serena XML <service> Tag

Data Type &
Attribute or Subtag Use Occurs Length Description and Values
name Required 1 String (8), Attribute. XML service object name.
variable Actual data length and value fixed for
each service object. See Exhibit 2-10 for
allowed values.
<scope> Required 1 Complex Element. See <scope> tag.

<scope> Tag

The <scope> tag is the sole subtag of the <service> data element. It identifies the types of
objects or class of services to be included in the scope of the service object’s operations.
Example scopes include global records (name="gb1 "), application records (name="apl”),
package records (name="pkg”), component records (name="cmponent”), and service-
wide functions (name="service”). The chosen scope must be compatible with the
requested service. Valid combinations are listed at the end of this chapter in Exhibit 2-10 and
Exhibit 2-11.

The <scope> tag represents a complex data structure that has one attribute and one subtag.
Both are required. The <scope> data structure is summarized in Exhibit 2-5.

Exhibit 2-5. Data Structure for Serena XML <scope> Tag

Data Type &
Attribute or Subtag Use Occurs Length Description and Values
name Required 1 String (8), Attribute. XML scope name. Must be
variable compatible with service name. Actual
data length & value fixed for each service
& function. See Exhibit 2-10 for values.
<message> Required 1 Complex Element. See <message> tag.

<message> Tag

The XML Services <message> tag occurs as a subtag of <scope>. It identifies the task to be
performed by the requested service within the requested scope of action. Example message
names include create (name="create”), delete (name="delete”), update
(name="update”), list (name="11ist”), and approve (name="approve”). Message names
must be consistent with the higher-level service and scope names. Valid combinations of
service, scope, and message attribute names are listed at the end of this chapter in

Exhibit 2-10 and Exhibit 2-11.

The <message> tag delimits a complex data element with one attribute and four optional
subtags. Subtags must appear in sequence. The use and/or structure of each subtag
depends on the service/scope/message combination in the XML document.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The <message> tag data structure is summarized in Exhibit 2-6.

Exhibit 2-6. Data Structure for Serena XML <message> Tag

Data Type &
Attribute or Subtag Use Occurs Length Description & Values
name Required 1 String, Attribute. XML message type name for
variable service and scope. Actual data length and
value fixed for each service object and
function. Allowed values appear in
Exhibit 2-10.
<header> Requiredin {0 -1 Complex Element. Consistent substructure
mainframe whenever used. See <header> tag
batch jobs. below.
<request> Requiredin |0-1 Complex Element. Structure varies with service,
requests. scope, and message. See particular
Not used in <request> tag for desired user task
replies. elsewhere in this manual.
<result> Optionalin | 0-00 Complex Element. Structure varies with service,
replies. scope, and message. See particular
Not used in <result> tag for desired user task in
requests. XML Services User Guide.
<response> Requiredin [0-1 Complex Element. Consistent substructure
replies. whenever used. See <response> tag
Not used in below.
requests.

<header> Tag

The <header> tag is a subtag within the <message> data structure. It contains routing and
test options specific to the ChangeMan ZMF mainframe environment and is required only for
TSO batch jobs. It does not appear in reply messages or in request messages submitted
interactively.

Syntactically, the <header> tag takes the following general form:

<header>
<subsys>P</subsys>
<product>CMN</product>
<test>T</test>
</header>

Note the absence of a name attribute.

Data structure details for the <header> tag appear in Exhibit 2-7.

37

Chapter 2: XML Syntax Basics

Exhibit 2-7. Data Structure for Serena XML <header> Tag

Data Type &
Attribute or Subtag Use Occurs Length Description & Values

<subsys> Required 1 String (1) Element. One-byte identifier for
ChangeMan ZMF instance or subsystem
to which request is addressed.

<product> Optional 0-1 String (3) Element. Mnemonic for product to run
under subsystem in <subsys> tag.
Values:

CMN = ChangeMan ZMF (default)

XCH = Exchange (ZDD)

<test> Optional 0-1 String (1) Element. Used only at request of Serena
Customer Support personnel for
diagnostic purposes. Values:

T = Enable test mode

<warn> Optional 0-1 String (1) Element. Used to enable XML WARN
Facility for this XML request. See “Warn -
XML Tag Name Warning” on page 603.
This overrides the XML WARN Facility
specification for the started task. Values:

Y = Enable XML Warning

<request> Tag

The <request> tag is a subtag within the <message> data structure. It contains the actual
content of a Serena XML request message and appears in all requests.

The syntax and structure of the <request> tag varies with the service/scope/message
combination used in the XML message document. It takes no attributes, and on occasion it
may even be empty (i.e., contain no subtags). Further information about specific <request>
tag structures appears later in this manual.

<result> Tag

The <result> tag is a subtag within the <message> data structure. It appears only in reply
messages and contains the output data, if any, generated by a low-level service object in
response to a Serena XML request. It takes no attributes.

The <result> tag may be repeated 9,999 times to accommodate multiple result records.
For reasons of performance and to minimize memory demands, ZMF limits the maximum
number of occurrences of any tag -- including the <results> tag -- to 9999. Each <result>
tag in a series may contain, for example, a line of code in a browsed component or an item in
a list of search results. Alternatively, the tag may not appear at all.

All <result> tags in a Serena XML reply message appear before the final <response> tag,
which contains the return code indicating whether or not the service completed successfully.

38

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The syntax and structure of the <result> tag varies by the service/scope/message
combination used in the document.

Further information about specific <result> tag structures appears later in this manual.

<response> Tag

The <response> tag is a subtag of the <message> data structure. It contains a mainframe
return code, reason code, and/or message concerning the success or failure of your request.
The <response> tag appears in every reply message issued by XML Services.

The structure of the <response> tag is consistent across all service objects and functions,
all client environments, and all client products. It contains one required subtag and two
optional subtags in a fixed sequence. It takes no attributes.

Syntactically, the <response> tag takes the following general form:

<response>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>0000</statusReasonCode>
<statusMessage>Contents of message.</statusMessage>
</response>

You should always monitor the contents of the <statusReturnCode> tag to trap error
conditions. The value returned will be ‘00’ if your request executed successfully. Successively
higher numeric values correspond to increasingly severe error conditions. System error
codes and ABENDs may append an alphanumeric prefix to the code. You should familiarize
yourself with ChangeMan ZMF return codes and messages before taking action on the
<statusReturnCode> subtag or other elements of the <response> tag.

Data structure details for the <response> tag appear in Exhibit 2-8.

Exhibit 2-8. Data Structure for Serena XML <response> Tag

Data Type &
Subtag Use Occurs Length Description & Values
<statusReturnCode> Required 1 String (4), Element. ChangeMan ZMF return code
variable indicating successful completion or class

and severity of error. Typical values:

00 - Execution successful

04 - Warning message

08 - Processing error (e.g.,
package does not exist)

16 - Syntax error (e.g.,
unrecognized tag, possibly because
of incorrect case)

NOTE: Higher values indicate more
severe errors. Abend or system error
return codes may exceed 2 bytes &
include alphanumerics.

NOTE: Always check this tag to
determine success of XML request.

39

Chapter 2: XML Syntax Basics

Exhibit 2-8. Data Structure for Serena XML <response> Tag (Continued)

Data Type &
Subtag Use Occurs Length Description & Values
<statusReasonCode> Optional 0-1 String (4), Element. ChangeMan ZMF reason code
variable indicating type or cause of error, if any.
Generally the status codes in XML
replies are the same as the internal
message numbers. For example, a
status code of 8203 corresponds to
SERNET message SER8203x
<statusMessage> Optional 0-1 String (255), Element. ChangeMan ZMF message
variable text associated with the return code and
reason code, if any.

FILTERING XML SERVICES MESSAGES

The ChangeMan ZMF XML Services API, like all text markup languages, is verbose.
Occasionally, when large volumes of data are returned in response to a request, the verbosity
of XML can overwhelm working storage capacity or severely degrade performance. To
address this issue, Serena XML supports custom result filtering for XML services that accept
<request> subtags in the request message and return <result> tags in the reply. This is
accomplished by using the optional <includeInResult> tag in the <request> data
structure.

<includelnResult> Tag

The <includeInResult> tag applies to all XML services with explicit <request> subtags
in the request message and explicit <result> subtags in the reply.

The <includeInResult> tag explicitly identifies the subtags to include in the <result>
tags returned in the XML reply message. The tag is repeatable to accommodate multiple
<result> subtags. If used, only the subtags explicitly named in an instance of
<includeInResult> will be returned. All other subtags normally returned in the <result>
by the service are suppressed.

The <includeInResult> tag filters returned tags only. XML Services uses this tag to post-
process reply messages and strip out extraneous tags as it builds each <result> data
element. The <includeInResult> tag has no effect on the filtering applied by a service
when identifying which records to process or include in a report.

An example of the <includeInResult> tag in a package general search follows. This
example requests a search for all packages in frozen status. But the full set of <result>
tags is not desired in the reply; instead, only the <package> tag and <auditReturnCode>
will be returned.

Data structure details for the <includeInResult> tag appear in Exhibit 2-9.

40

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

XML Example — Filtering a General Package Search with <includelnResult>

<?xml version="1.0"” encoding="UTF-8"7?>
<service name="PACKAGE”>
<scope name="GENERAL">
<message name="SEARCH"”>
<request>
<searchForFrozenStatus>Y</searchForFrozenStatus>
<includeInResult>package</IncludeInResult>
<includeInResult>auditReturnCode</IncludeInResult>
</request>
</message>
</scope>
</service>

Exhibit 2-9. <includelnResult> Data Structure

Data Type &
Subtag Use Occurs |Length Description & Values
<includelnResult> Optional inany |- o0 String (255), | Contains desired <result> subtag
<request> tag variable name without angle brackets.
NOTE: Value is case-sensitive.

SERVICE, SCOPE, AND MESSAGE SUMMARY

Only certain combinations of service, scope, and message name attributes are valid in
Serena XML. The combination chosen must make sense for the low-level service object
invoked and for the task or information desired. Valid service/scope/message combinations
are listed in the following tables:

* Core XML Services Summary
* ERO XML Services Summary

Core XML Services Summary

Valid combinations of service, scope, and message names for the core XML Services
functions are listed in Exhibit 2-10. Names of the corresponding COBOL copybooks are also
listed for each function.

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL

Name Name Name Description of Function Copybook

approver apl * list « List default approver list for application * XMLCAAPR
pkg o list « List package approvers * XMLCPAPR

41

Chapter 2: XML Syntax Basics

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
baselib service * list * List baseline library records + XMLCBASL
calendar service * list « List calendar records by site + XMLCCLDR
cmponent |apl cdsc |- find * Find application-level component description « XMLCACGD
* list « List application-level component description * XLMCACGD
apl_dprc » check » Check designated build procedure for component *+ XMLCADCP
* find » Find components with designated build procedures |+ XMLCADCP
* list « List designated build procedures for component + XMLCADCP
apl_secr |+ check » Check security authorization for component + XMLCACSC
« find * Find security entity for component + XMLCACSC
* list * List security entities for component + XMLCACSC
chg_desc |- list « List active component change description + XMLCPSVD
gbl_cdsc |- list « List global component description + XMLCGCGD
gbl_dprc * list « List global component build procedure + XMLCGDCP
gbl_secr * list « List global component member-level security setting | + XMLCGCSC
history * list * List comprehensive component history + XMLCCHIS
* listbase * List baselined component history + XMLCCHIS
* listconc « List concurrent development history of component * XMLCCHIS
* listcurr « List current component history * XMLCCHIS
* listshrt « List active component history (short list) * XMLCCHIS
lod_subr |- list * List component subroutines * XMLCPINC
pkg_comp | list « List source/copybook relationship (ISAL/ICPY) « XMLCPSCC
records for components in package
pkg_lod * list * List load-to-source relationship (ILOD) records for + XMLCPILC
components in package
pkg_util * list * List scratch/rename (IUTL) records for components |+ XMLCPUTL
in package
pkg_wrkl | list * List users working on component (ICWK) + XMLCPCUW
prm_hist |« list * List component promotion history * XMLCPPCH
service * browse » Browse (or download) component + XMLCCBRW
* build Build component (with stage & compile options) *+ XMLCBULD
* checkin » Check in component * XMLCCKIN
» checkout |+ Check out component *+ XMLCCKOT
» compare |+ Compare component in package vs baseline + XMLCCMPR
* lock * Lock component + XMLCCLCK
* recomp » Recompile component from baseline * XMLCRCMP
* relink * Relink component from baseline * XMLCRLNK
* rename * Rename a component/member * XMLCSCRN
* scratch » Scratch a component/member * XMLCSCRN
* unlock * Unlock component * XMLCCLCK
src_incl * list « List source-to-included-copies relationship records |+ XMLCPISC

for components in package

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
Ssv_ver * list * List component staging version change description o | «+ XMLCPSSV
* retrieve Retrieve staging version of component * XMLCPSSV
db2admin | apl_actv o list » List active DB2 records for application * XMLCAAD2
apl_logl * list » List logical DB2 records for application * XMLCALD2
gbl_logl * list « List global DB2 logical records * XMLCGLD2
gbl_phys |- list « List global DB2 physical records * XMLCGPD2
dss ispfile * list « List ISPF file + XMLCDSIN
service + allocate * Allocate dataset + XMLCDSAL
» basestat |- List statistics for baseline library member + XMLCDSBS
* delete * Delete dataset + XMLCDSDE
» expand » Expand baseline member in SRD format + XMLCDSEX
* info » Get dataset allocation information + XMLCDSIN
* list * List dataset member, directory entries, & hash token | + XMLCDSLI
* mbrdel * Delete dataset member + XMLCDSMD
* stclist » List datasets allocated to requested DDNAME by the |+ XMLCDSST
ZMF started task
environ service . list + List ChangeMan ZMF environment parameters + XMLCENVR
file dirs * list * List HFS directories * XMLCFILL
files * list * List HFS files in a directory * XMLCFILL
service * access « List HFS (Hierarchical File System) file access * XMLCFILA
» change » Change HFS file attributes + XMLCFILC
* copy » Copy HFS file + XMLCFILC
* create » Create HFS file * XMLCFILC
* delete * Delete HFS file * XMLCFILD
» download |+ Download HFS file + XMLCFILE
* export + Export HFS file * XMLCFILE
* import * Import HFS file * XMLCFILL
e link * Link HFS file + XMLCFILC
o list * List HFS file contents * XMLCFILC
* mkdir » Make an HFS file directory * XMLCFILC
* rename * Rename an HFS file or directory * XMLCFILU
* rmdir * Remove an HFS file directory * XMLCFILM
* scan » Scan HFS files for requested strings * XMLCFILS
* upload » Upload HFS files + XMLCFILU
forms gbl * list « List global online forms + XMLCGOFM
pkg * approve » Approve online form for package *+ XMLCPOFM
» comment |+ Add comment or reject reason to form for package |+ XMLCPOFM
* detail « List online form details for package * XMLCPOFM
* list » List online form for package * XMLCPOFM
* reject * Reject online form for package * XMLCPOFM
* submit + Submit online form for package + XMLCPOFM
impact bun * list + List BUN library type information + XMLCIABN
cmponent | ¢ list * List impact analysis information for component + XMLCIACM

43

Chapter 2: XML Syntax Basics

44

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
table * list « List impact analysis table + XMLCIATB
imscrgn apl o list « List IMS control region defaults for application * XMLCAICR
gbl o list « List global IMS control region defaults + XMLCGICR
imsovrd apl * apl_dbd « List IMS DBD overrides for application * XMLCAIOR
* apl_psb « List IMS PSB overrides for application *+ XMLCAIOR
gbl * gbl_dbd « List global IMS DBD overrides * XMLCGIOR
* gbl_psb « List global IMS PSB overrides * XMLCGIOR
pkg * pkg_dbd |- List IMS DBD overrides for package * XMLCPIOR
* pkg_psb |- List IMS PSB overrides for package * XMLCPIOR
language | apl * list « List default programming language for application *« XMLCALNG
gbl * list « List global default programming language * XMLCGLNG
libtype apl * list « List library types defined for application * XMLCALTP
gbl * list * List globally defined library types * XMLCGLTP
pkg * list « List library types defined for package * XMLCPLTP
log service * create « Create activity log entry *+ XMLCALOG
* list « List activity log entries + XMLCALOG
notyfile service » download |+ Download the global notification file * XMLCNTFI
* upload » Upload the global notification file * XMLCNTFI

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
package aff_apls * list « List affected applications * XMLCPAAP
approve * search » Search for packages pending approval * XMLCPSCH
check » promote |+ Check promotion readiness of package * XMLCPPRM
cleanup * demote » Demote package & clean up promotion libraries * XMLCPPRM
cmponent | integrty » Check component integrity of package * XMLCPINT
cmp_desc | ° list » List component description records for package « XMLCPCDS
forms * refreeze |« Refreeze online forms for package + XMLCPFRZ
» unfreeze |+ Unfreeze online forms for package * XMLCPFRZ
gen_desc |- list « List general description of package + XMLCPDSC
gen_prms |- list « List general parameters for package * XMLCPGPM
» refreeze | » Refreeze general parameters for package * XMLCPFRZ
» unfreeze |+ Unfreeze general parameters for package * XMLCPFRZ
general * search » General package search *+ XMLCPSCH
imp_inst * list * List implementation instructions * XMLCPIMI
ims_acb * list « List IMS ACB control blocks + XMLCPIAS
ims_crgn | ¢ list « List IMS control regions for package *+ XMLCPICR
limbo * search » Search for limbo packages * XMLCPSCH
non_src * refreeze |+ Refreeze non-source modules in package + XMLCPFRZ
» unfreeze |+ Unfreeze non-source modules in package +« XMLCPFRZ
pkg_link * list « List linked packages * XMLCPLNK
* search Search for linked packages + XMLCPSCH
prm_cmp |- list « List component promotion history for package + XMLCPPRC
prm_hist |« list « List promotion history for package + XMLCPPRH
prm_ovly |- list « List overlaid components for package promotion + XMLCPPRO
promote * lock » Lock promotion site for a package + XMLCPPLU
prt_pkgs * list « List participating packages + XMLCPPPK
reasons * list « List reasons for backout or revert « XMLCPRBR
sch_recs |- list « List installation schedule for package + XMLCPSCD
scr_ren * refreeze |+ Refreeze scratched/renamed member +« XMLCPFRZ
» unfreeze |+ Unfreeze scratched/renamed member + XMLCPFRZ

45

Chapter 2: XML Syntax Basics

Exhibit 2-10. Core XML Service, Scope, and Message Names with COBOL Copybooks

(Continued)
Service Scope Message COBOL
Name Name Name Description of Function Copybook
service * approve « Package approval action * XMLCPAPV
* audit Audit a frozen package *+ XMLCPAUD
* backout » Back out installed package from production * XMLCPBKO
* create Create change package * XMLCPCRT
* delete * Memo-delete change package +« XMLCPMDL
* demote » Demote a promoted change package (no cleanup) |+ XMLCPPRM
* freeze * Freeze package + XMLCPFRZ
* promote * Promote package to next promotion library * XMLCPPRM
* revert * Revert package to development status * XMLCPRVT
* submit » Submit package for file tailoring and JCL build « XMLCPFTC
« summary | List package summary statistics + XMLCPSUM
sites * refreeze |+ Refreeze site records for package + XMLCPFRZ
» unfreeze |+ Unfreeze site records for package + XMLCPFRZ
src_lod refreeze |« Refreeze source & load modules in package + XMLCPFRZ
* unfreeze |+ Unfreeze source & load modules in package + XMLCPFRZ
usr_recs * list » List user records for package *+ XMLCPURC
parms apl o list * List general parameters for application * XMLCAPRM
gbl o list » List global default general parameters * XMLCGPRM
procs apl o list « List application procedures *+ XMLCAPRC
gbl o list * List global procedures * XMLCGPRC
prodlib service o list * List production libraries + XMLCPRDL
promlib library * list « List promotion library records + XMLCPRLN
site * list * List promotion site records * XMLCPRSN
reasons service o list * List global reason codes for unplanned changes *+ XMLCGRSN
schedule | service * hold » Hold scheduled package installation + XMLCSCHD
o list + List installation schedule records + XMLCSCHD
* release » Release held package installation * XMLCSCHD
site apl o list » List site records for application * XMLCASIT
gbl o list « List global site records * XMLCGSIT
pkg o list » List site records for package * XMLCPSIT
system environ * list « List SERNET environment parameters + SERVSYSO
service * list * List system setup & install parameters + SERVSYSO
user service * notify » Sends notification message to user * XMLCNTFY
util line * print » SERNET print service * XMLCUTIL

46

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

ERO XML Services Summary

Valid combinations of service, scope, and message names for the Enterprise Release Option
(ERO) functions supported by XML Services are listed in the following tableExhibit 2-11.
COBOL copybook names are also listed for each function. These services are shown here
for completeness; they are documented in the ChangeMan ZMF ERO XML Services User’s

Guide.

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
package service « attach + Attaches a package to a release + XMLCPGPM
* detach + Detaches a package from a release * XMLCPGPM
rlsmappl promote o list + Lists release management promotion data * XMLCRPRM
service o list + Lists application release status * XMLCRAPL
* release + Lists release data for each release to which an application | « XMLCRARL
is joined
syslib * list + Lists SYSLIB data for release applications + XMLCRASY
rlsmappr area * list + Lists release area approver data + XMLCRAAP
ascapprv | e list + Lists the items that are associated with an approval entity | « XMLCRASC
global * list + Lists global release approval entity data * XMLCRGAP
release * list + Lists data for install approval entities + XMLCRAAP
rlsmarea all_chk * syslib + Lists the COPYLIB, LOADLIB, and source concatenation |+ XMLCRSYL
lists for libraries that are allocated
all_noc * syslib + Lists all of the COPYLIB, LOADLIB, and source concate- |+ XMLCRSYL
nation lists, including libraries that are not yet allocated
cim * list + Lists release area component in motion (CIM) information | « XMLCRCIM
from the ERO DB2 CIM table
cmp_lock |- list + Lists the holder of a release component lock * XMLCRCLK
cpy * syslib « Lists the COPYLIB concatenation for a release application | «+ XMLCRSYL
detail » cmp_rise |+ Lists all components in a release concatenation and shows | «+ XMLCRCML
all locations where each component resides
* integrty + Checks the integrity of the component-in-motion (CIM) * XMLCRCHK
table against physical members in area libraries. Checks
all versions of all components in the release concatena-
tion.
* test + Tests the contents of a release area against all of the pack- | « XMLCRTST
ages that may place a component in that area. Lists infor-
mation for failing components and packages.
hst * list + Lists history from the ERO component history table * XMLCRHST
imp * list + Lists impact data from the ERO DB2 impact table * XMLCRIMP
load * syslib + Lists the LOADLIB concatenation for a release application | « XMLCRSYL

47

Chapter 2: XML Syntax Basics

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
scan » cmp_rise |+ Scans the latest version of components in a release con- |+ XMLCRCML
catenation to find those with content matching a search
string
scanall » cmp_rise |+ Scans all components in a release concatenation to find | «+ XMLCRCML
those with content matching a search string
service o list * Lists release area definitions + XMLCRARE
* test + Tests the contents of a release against all of the packages | * XMLCRTST
that may place a component in that release. Displays a
message describing the status of packages and compo-
nents in the release.
source * syslib + Lists the source SYSLIB information for a library type + XMLCRSYL
start * list + Lists the release area definitions for a starting area + XMLCRARE
summary |+ cmp_rise | Lists information for the latest version of each component |+ XMLCRCML
in a release concatenation
* integrty + Checks integrity of the component-in-motion (CIM) table « XMLCRCHK
against physical members in area libraries.
syslib * list + Lists SYSLIB data for an application + XMLCRASL
ver_regr o list + Performs a version regression check on components. Ifa | « XMLCRVER
version regression situation exists between the current
release and a prior release, lists information for the current
and prior versions.
rismityp bun * list + Lists information from the release BUN library-type table |« XMLCRBUN
service * list « Lists library security and format information * XMLCRLTP
rlsmrise cim * list + Lists release area component in motion (CIM) information | « XMLCRLCM
from the ERO DB2 CIM table
detail * test + Tests the contents of a release against all of the packages | * XMLCRTSC
that may place a component in that release
hst o list + Lists release component history from the ERO component | « XMLCRLHT
history table
imp o list + Lists impact data from the ERO DB2 impact table * XMLCRLMP
library o list * Lists release area libraries * XMLCRLLT
prior o list + Lists prior release information * XMLCRLPR
reasons * list » List Backout and Revert reasons for a release + XMLCRRBR
rls_link o list + Lists release management data across a TCP/IP link * XMLCRLLK
service * list « Lists scheduler dates, times, and status for a release * XMLCRLSM
* search + Searches for releases and lists information *+ XMLCRSRC
* test + Tests the contents of a release against all of the packages | « XMLCRTSC
that may place a component in that release. Displays a
status message.

48

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 2-11 . ERO XML Service, Scope, and Message Names with COBOL Copybooks

Service Scope Message COBOL
Name Name Name Description of Function Copybook
sites o list + Lists release/site dates and contacts * XMLCRSTE

49

Chapter 2: XML Syntax Basics

50

PACKAGE MANAGEMENT

Package management messages in Serena XML fall into four user task categories:

* Package Lifecycle Tasks — Tasks that comprise a major step in the lifecycle of a
change package as a whole. These include package commands such as package create,
delete, freeze, promote, and approve.

* Package-Level Component Change Management — Tasks related to the component
lifecycle but which apply to one or more components of a package as a group. Package-
level component groups include source and load modules, non-source modules, and
scratch/rename records. Commands include unfreeze, refreeze, and list.

* Package Validation Tasks — Tasks that identify dependencies among package
components, verify the integrity of package components, or check for versioning
differences across components in different stages of development. These include
package commands such as list, check component integrity and audit.

* Package Information Management Tasks— Tasks that retrieve or manage descriptive
metadata or control information about a package. Such information includes the package
description, general package parameters, working component descriptions for the
package, participating package records, affected application records, package-level site
records, the package approver list, package promotion history, user-defined variables for
a package, and similar records. Supported commands include list.

PACKAGE MESSAGE SYNTAX

Identifying Package Messages

Serena XML package messages contain syntax that tells ChangeMan ZMF to perform a task
against a package rather than some other object. This occurs in one of two ways. Most
commonly, the name attribute in the <service> takes the value “PACKAGE”, as follows:

<service name="PACKAGE">

However, some non-package services — such as the approver maintenance service and the
site maintenance service — support a package-level scope of action. These identify a
package-level task by the name attribute of the <scope> tag, which takes the value “pkg”
or something similar (e.g., “pkg comp”, “pkg lod”, and so on). For example:

<service name="SITE”>
<scope name="PKG">

51

Chapter 3: Package Management

52

Finally, some services are only implicitly allied to package management; there is no explicit
syntax to make that relationship clear. For example, the package installation scheduler
service works with install schedules one package at a time. It does not identify its scope as
package-specific, though, because its present design gives the scheduler no other scope
options.

Where explicit syntax exists, the same attributes appear in both request and reply messages.
In requests, they tell ChangeMan ZMF to execute a package-level function. In replies, they
tell your XML message processing software to parse the returned message for package data.

Package Naming Conventions

Package Name Tags

Two methods exist in Serena XML to identify a package to ChangeMan ZMF. The first uses
the <package> tag to supply a complete package name. The second concatenates the
<applName> tag, which identifies the application to which a package belongs, with the
<packageId> tag, which contains the unique number of the package within its application.
Together, the <applName> and <packageId> tags yield the same package identifier as that
supplied in the <package> tag. Either method is acceptable to ChangeMan ZMF.

Embedded Blanks in the <package> Tag

The <package> tag appears as a subordinate data element in nearly all package
management data structures. For ChangeMan ZMF, this tag takes a 10-byte fixed-format
value, as follows:

<package>aaaannnnnn</package>, where:

aaaa = application name. If less than 4 characters, right-fill with blanks.
nnnnnn = package ID number. If less than 6 digits, left-fill with zeroes.

For example, a package name for ChangeMan ZMF that uses a 3-byte application name
must include an embedded blank to fill out the application name portion of the <package>
tag data, as follows:

<package>TST 123456</package>

Special Tag Syntax for Package Management

Serena XML supports up to 72 user-defined package variables that are established by users
when customizing ChangeMan ZMF on the mainframe. These variables are stored in the
package master.

The Serena XML tag names for these user-defined package variables use the following
naming convention:

<userVarLenXXyy>
where:

* xx = length of variable data in bytes, formatted as 1-digit or 2-digit integer

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

* yy = unique 2-digit integer identifier for this particular variable of length xx

For example, <uservVarLen103> represents the third user-defined variable with a length of
one byte. Similarly, <uservarLen4405> is the fifth variable with a length of 44 bytes.

Serena XML provides 16 such tags for variables of 1 byte each in length, 11 tags of 2 bytes
each, 10 tags of 3 bytes each, 10 tags of 4 bytes, 10 tags of 8 bytes, 5 tags of 16 bytes, 5
tags of 44 bytes, and 5 tags of 72 bytes.

PACKAGE LIFECYCLE TASKS

Serena XML supports the following package lifecycle tasks for general use:

* Create a Package - PACKAGE SERVICE » Demote a Package with Cleanup -

CREATE PACKAGE CLEANUP DEMOTE

» Delete a Package - PACKAGE SERVICE » Approve a Package - PACKAGE SER-
DELETE VICE APPROVE

* Freeze a Package - PACKAGE SERVICE * List Package Installation Schedule -
FREEZE SCHEDULE SERVICE LIST

» Submit a Package for JCL Build - PACKAGE -+ Hold Package Install Job - SCHEDULE
SERVICE SUBMIT SERVICE HOLD

* Check a Package for Promotion Readiness - + Release Package Install Job - SCHED-
PACKAGE CHECK PROMOTE ULE SERVICE RELEASE

* Promote a Package - PACKAGE SERVICE -+ Back Out a Package - PACKAGE SER-
PROMOTE VICE BACKOUT

» Lock Promotion Site for Package - PACKAGE -+ Revert a Package - PACKAGE SER-
PROMOTE LOCK VICE REVERT

» Demote a Package - PACKAGE SERVICE .
DEMOTE

Create a Package - PACKAGE SERVICE CREATE

The package create message in Serena XML creates an empty change package in the
staging area. A parent application must already exist to provide default settings for the new
package.

The Serena XML service/scope/message tags and attributes for a package creation
message are:

<service name="PACKAGE">
<scope name="SERVICE”>
<message name="CREATE”>

These tags appear in both requests and replies.

53

Chapter 3: Package Management

54

PACKAGE SERVICE CREATE Requests

The Serena XML syntax for a package creation request varies with the creation method you
select. Three creation methods exist:

Short Method — Supplies only the minimum information required by the package master
database. Complete information is supplied later via package updates using the
ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

Copy Forward (or Clone) Method — Copies values from a preexisting model package
into the new package master entry. Changes are made later via package updates using
the ChangeMan ZMF ISPF interface. (Serena XML does not support updates to package
master records for general use.)

Long Method — Supplies all package master information in a single step. No
subsequent updates are required. If you want to set the values of any user-defined
variables for a package, you must use this method of package creation.

Choose a creation method using the <createMethod> subtag of the <request> message.

Example XML — PACKAGE SERVICE CREATE Request.

<?xml version="1.0"?>
<service name="PACKAGE'">

<scope name="SERVICE">

<message name="CREATE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<applName>ACTP</applName>
<createMethod>0</createMethod>
<packageLevel>1</packagelevel>
<packageType>1</packageType>
<reasonCode>000</reasonCode>
<requestorDept>IDD</requestorDept>
<requestorName>USER24</requestorName>
<requestorPhone>555 5555</requestorPhone>
<packageTitle> TEST XML PACKAGE SERVICE CREATE</packageTitle>
<packageDesc>TEST XML PACKAGE SERVICE CREATE</packageDesc>
<packageImplInst>TEST XML PACKAGE SERVICE CREATE</packageImplInst>
<siteInfo>
<siteName>SERT8</siteName>
<installDate>20091231</installDate>
<fromInstallTime>0100</fromInstallTime>
<toInstallTime>0200</toInstallTime>
<contactName>USER24</contactName>
<contactPhone>555 5555</contactPhone>
<alternateContactName>USER24</alternateContactName>
<alternateContactPhone>555 5555</alternateContactPhone>
</siteInfo>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

</request>
</message>
</scope>
</service>

The foregoing example requests the creation of a simple, planned, permanent package using
the “short” method. The package is part of the “ACTP” application. Installation is scheduled
for one production sites.

As the example illustrates, the <siteInfo> tag represents a complex data element A
complex data element consists of other XML tags, rather than simple data. Such markup
syntax, which potentially nests tags within tags within tags to any depth, is how XML
implements its hierarchical tree data structure in a text data stream.

In addition, <siteInfo>is a repeatable tag. A repeatable tag allows a variable number of
consecutive repetitions to accommodate multiple instances of similarly structured
information. For example, <siteInfo> can be repeated for each site where the newly
created package will be installed. Repeatable tags enhance scalability in XML data
structures.

Note that the XML data structures for package request and reply messages do not specify
any particular order for the occurrence of tags. You must rely on tag name rather than tag
ordinal position in a sequence to convey information to ChangeMan ZMF. Sequence within a
data structure is not preserved.

For example, a package may be installed across multiple sites in any order. This is not
necessarily the order you list your <sitelnfo> data elements. Similarly, if you schedule multiple
predecessor jobs to occur before package install, they may execute in any order so long as
they precede package installation. You cannot assume that predecessor jobs will execute in
the order you list them in your XML request.

& Caution

Tag sequence is not preserved in package request and reply messages
using Serena XML. Use tag names rather than tag ordinal position in a
sequence to convey information to ChangeMan ZMF.

55

Chapter 3: Package Management

56

Data structure specifications for the package creation <request> tag appear in Exhibit 3-1.

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<affectedAppIName> Optional 0-00 | String (4), Name of application affected by one or
variable more participating packages in this
complex/super package. Repeatable for
multiple applications.
NOTE: Valid only for complex or super
packages.
NOTE: If <partPackageName> used, at
least one instance of this tag is required.
<appIName> Required 1 String (4), Parent application name for new change
variable package.
<complexSuperPackage> Optional 0-1 String (10), | Name of complex/super package to which
variable a participating package belongs.
NOTE: Valid only when creating a
participating package.
NOTE: Required if <packageLevel>
value is 4.
<complexSuperPackageAppl> | Optional 0-1 String (4), Application name of model package. Same
variable as <complexSuperPackage> tag’s first
4 bytes.
<complexSuperPackage- Optional 0-1 Integer(6) Package ID of model package. Same as
Number> <complexSuperPackage> tag’s last
6 bytes.
<createMethod> Required 1 Integer (1) | Package creation method code. Values:

0 = Short creation method
1 = Copy forward (clone) method
2 = Long creation method

NOTE: If <createMethod> value is 0, the
following additional tags are required:
<packageTitle>, <packageLevel>,
<packageType>, <schedulerType>,
<requestorPhone>,<requestorName>,
<problemActionCode>, <sitelInfo>.

NOTE: If <createMethod> valueis 1, you
must name the package to copy from in
<packageModel>.

NOTE: If <createMethod> valueis 2, you
must supply all the tags needed when
<createMethod> is 0, plus the following:
<packageDesc>, <packageImplInst>,
<problemActionCode>.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<otherProblemAction> Optional 0-1 String (44), | Text of “Other” instructions if installation
variable problem occurs.
NOTE: Required when value of
<problemActionCode> = 3.
<packageApplModel> Optional 0-1 String (4), Application name of model package. Same
variable as first 4 bytes of <packageModel>.
<packageDesc> Optional 0-46 | String (72), | Description of package contents. Multiple
variable entries of 72 bytes each.
<packagelmplinst> Optional 0-46 | String (72), | Package install & implementation
variable instructions. Multiple tags of 72 bytes each.
NOTE: Order of repeated tags is not
preserved. Add sequence numbers to text
if steps must be performed in order.
<packagelevel> Optional 0-1 Integer (1) | Code for package complexity or level in
hierarchy. Values:
1 = Simple package
2 = Complex package
3 = Super package
4 = Participating package
NOTE: If value = 2 or 3, the names of
participating packages are required in the
<partPackageName> tag.
NOTE: If value = 4, you must supply name
of complex/super package in tag
<complexSuperPackage>.
<packageModel> Optional 0-1 String (10), | Name of source package from which
variable entries are copied forward (“cloned”) to
new package.
NOTE: This tag is required if value in
<createMethod> = 1.
<packageNumberModel> Optional 0-1 Integer(6) Package ID of model package. Same as
last 6 bytes of <packageModel>.
<packageTitle> Optional 0-1 String Working title for package. Appears on most
(255), listings & reports.
variable

57

Chapter 3: Package Management

58

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Subtag

Use

Occurs

Data Type
& Length

Values & Dependencies

<packageType>

Optional

0-1

String (1)

Package install type code. Values:

1 = Planned permanent

2 = Planned temporary

3 = Unplanned permanent

4 = Unplanned temporary
NOTE: For code values = 2 or 4, the
duration of change is required in
<tempChangeDuration> tag.
NOTE: For values = 3 or 4, a reason for the

unplanned change is required in the
<reasonCode> tag.

<partPackageName>

Optional

String (10),
variable

Name of a participating package pointed to
by this complex/super package record.
Repeatable for multiple participating
packages.

NOTE: Valid only when creating a complex
or super package.

NOTE: Required if <packageLevel>
value is 2 or 3.

NOTE: Tag <affectedApplName> is also
required if this tag is used.

<problemActionCode>

Optional

Integer (1)

Code for action to take if problem occurs in
package install. Values:

1 = Hold production & contact
developer for instructions

2 = Back out change, then proceed
with production

3 = Other instructions

NOTE: If value = 3, you must supply
instructions in <otherProblemAction>.

<reasonCode>

Optional

String (3),
variable

Customer-defined reason code for
unplanned package installation.

NOTE: Required if <packageType> value
is 3 or 4.

NOTE: Reason codes defined separately
by ZMF administrator.

<release>

Optional,
for ERO

0-1

String (8)

Name of ERO release with which package
is associated.

<releaseArea>

Optional,
for ERO

0-1

String (8)

Name of starting release area for ERO
release package check-in.

<requestorDept>

Optional

0-1

String (4),
variable

Workgroup or department code for package
creator.

<requestorName>

Optional
|

String (25),
variable

Name of developer or contact person
responsible for package.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<requestorPhone> Optional 1 String (15), | Phone of developer or contact person
variable responsible for package.
<schedulerType> Optional 1 Integer (1) | Code for type of installation scheduler used
with package. Values:
1 = ChangeMan scheduler
2 = Manual install
3 = Other automated scheduler
<schedulingInfo> Optional 0-00 | Complex See <schedulingInfo> subtag.
<sitelnfo> Optional 0-00 | Complex See <siteInfo> subtag.
<tempChangeDuration> Optional 0-1 Integer (3) | Number of days for temporary package to
stay installed before automatic backout.
NOTE: Required if <packageType> value
is 2 or 4.
<userVarLen101> Optional 0-1 String (1) User-defined variables in ZMF. Total of 15
. each individually named, 1-byte tags supported.
) NOTE: See topic “Package User
<userVarLen115> Information” in the ChangeMan ZMF
Customization Guide.
<userVarLen201> Optional 0-1 String (2), User-defined variables in ZMF. Total of 11
. each variable individually named, 2-byte tags supported.
<userVarLen211>
<userVarLen301> Optional 0-1 String (3), User-defined variables in ZMF. Total of 10
. each variable individually named, 3-byte tags supported.
<userVarLen310>
<userVarLen401> Optional 0-1 String (4), User-defined variables in ZMF. Total of 10
. each variable individually named, 4-byte tags supported.
<userVarLen410>
<userVarLen801> Optional 0-1 String (8), User-defined variables in ZMF. Total of 10
. each variable individually named, 8-byte tags supported.
<userVarLen810>
<userVarLen1601> Optional 0-1 String (16), | User-defined variables in ZMF. Total of 5
each variable individually named, 16-byte tags supported.
<userVarLen1605>

59

Chapter 3: Package Management

60

Exhibit 3-1. PACKAGE SERVICE CREATE <request> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<userVarLen4401> Optional 0-1 String (44), | User-defined variables in ZMF. Total of 5
each variable individually named, 44-byte tags supported.
<userVarLen4405>
<userVarLen7201> Options 0-1 String (72), | User-defined variables in ZMF. Total of 5
each variable individually named, 72-byte tags supported.
<userVarLen7205>
<workChangeRequest> Optional 0-1 String (12), | Work order ID or change request number
variable for package.
LT .
=@ Tip

Tags: <userVarLen101> to <userVarLen7205>. See topic “Package User Information”
in the ChangeMan ZMF Customization Guide.

The <schedulingInfo> and <siteInfo> tags both represent complex data elements —
that is, they contain tags within tags. Their subordinate data structures are described below.

<schedulinginfo> Subtag

The <schedulingInfo> tag captures installation scheduling dependencies for a package.
Each instance of the tag names a predecessor job and/or a successor job to run before and/
or after the installation of the newly created package. The <schedulingInfo> tag may be
repeated as many times as needed to ensure that all installation prerequisites and follow-up
tasks occur. Data structure details for the <schedulingInfo> tag appear in the following

exhibit.

Exhibit 3-2. <schedulingIinfo> Subtag Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<successorJobName> Optional 0-1 String (8), Must be valid job name for system where
variable install takes place.
<predecessorJobName> Optional 0-1 String (8), Must be valid job name for system where
variable install takes place.

<sitelnfo> Subtag

The <siteInfo> tag provides the site name, contact information, and scheduled package
installation date for a remote production site. The tag may be repeated as many times as
needed to cover all sites where the newly created package will be installed. At least one
instance of the tag is required in a package creation request that uses either the “short” or

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

“long” create method. Data structure details for the <siteInfo> tag appear in the following
exhibit:

Exhibit 3-3. <sitelnfo> Subtag Data Structure

Data Type

Subtag Use Occurs | & Length Values & Dependencies

<siteName> Optional 0-1 String (8), Name of site where package will be
variable installed.

<installDate> Optional 0-1 Date, Planned site install date for package. No

yyyymmdd punctuation.

<frominstallTime> Optional 0-1 Time, Start time for period during which site
hhmmss installation of package is planned. 24-hour
format, no punctuation.

<tolnstallTime> Optional 0-1 Time, End time for period during which site
hhmmss installation of package is planned. 24-hour
format, no punctuation.

<contactName> Optional 0-1 String (25), | Name of contact person at remote site to
variable assist with install.

<contactPhone> Optional 0-1 String (15), | Phone of contact person at remote site to
variable assist with install.

<alternateContactName> | Optional 0-1 String (25), | Name of alternate contact person at
variable remote site to assist with install.

<alternateContactPhone> | Optional 0-1 String (15), | Phone of alternate contact person at
variable remote site to assist with install.

PACKAGE SERVICE CREATE Replies

The Serena XML reply message returns, at most, one <result> data structure, which
reports basic information about the newly created package. Most importantly, the <result>
supplies a unique package name assigned to the package by ChangeMan ZMF.

Following the <result> data structure is the standard <response> data structure, which
indicates the success or failure of the XML request and provides a status message.
Successful requests have a return code of 00. Unsuccessful requests have a return code of
04 or higher.

An example Serena XML package creation reply for a simple, planned, permanent package
follows. Tags in bold always occur in a reply. Repeatable tags appear twice for illustration.
Data structure details for the package creation <result> tag appear in Exhibit 3-4.

Example XML — PACKAGE SERVICE CREATE Reply

<?xml version="1.0"?>

<service name="PACKAGE">

<scope name="SERVICE">
<message name="CREATE'">
<result>

61

Chapter 3: Package Management

<package>ACTP000012</package>
<applName>ACTP</applName>
<packageId>000012</packageId>
<packageLevel>1l</packageLevel>
<packageType>1</packageType>
<packageStatus>6</packageStatus>
<installDate>20091231</installDate>
</result>
<response>
<statusMessage>CMN2100I - ACTP000012 change package has been created.</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>2100</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-4. PACKAGE SERVICE CREATE <result> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<applName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<installDate> Optional 0-1 Date, Planned install date for package, or

yyyymmdd | start date of range.

<package> Optional 0-1 String (10), | Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), | New package ID number generated
variable by ZMF. Same as last 6 bytes of
package name.
<packagelevel> Optional 0-1 Integer (1) | Code for package complexity level.
Values:

1 = Simple package

2 = Complex package

3 = Super package

4 = Participating package

62

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-4. PACKAGE SERVICE CREATE <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies

<packageStatus> Optional 0-1 String (1) Code for status of package in
lifecycle. Values:

1 = Approved

2 = Backed out

3 = Baselined

4 = Complex/super pkg closed

5 = Deleted (memo delete)

6 = Development

7 = Distributed

8 = Frozen

9 = Installed

A = Complex/super pkg open

B = Rejected

C = Temporary change cycle
completed

NOTE: Only values 6 or A should
be returned for package create.

<packageType> Optional 0-1 String (1) Package install type code. Values:

1 = Planned permanent
2 = Planned temporary
3 = Unplanned permanent
4 = Unplanned temporary

Delete a Package - PACKAGE SERVICE DELETE

The package deletion function in Serena XML flags or unflags an entire package for deletion.
Deletion (or undeletion) is logical rather than physical. Physical deletion of flagged packages
occurs at a later time under ChangeMan ZMF control.

The Serena XML service/scope/message tags for a package deletion message are:

<service name="PACKAGE">
<scope name="SERVICE">
<message name="DELETE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DELETE Requests
Serena XML supports two kinds of delete requests against a package:

* Logical (“Memo”) Delete — Flags a package for physical deletion at a future time.
Package must be in development status prior to memo deletion. To choose this option,
enter “1” in the <processingOption> tag.

* Logical Undelete — Removes deletion flag from a memo-deleted package. Assumes the
package has not been aged past the scheduled, physical delete date and time. To choose
this option, enter “2” in the <processingOption> tag.

63

Chapter 3: Package Management

64

The following example shows how you might code a logical delete request in Serena XML.
Data structure details for the package deletion <request> tag appear in Exhibit 3-5.

Example XML — PACKAGE SERVICE DELETE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="DELETE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<processingOption>1</processingOption>
<package>ACTP000015</package>
</request>
</message>
</scope>
</service>

Exhibit 3-5. PACKAGE SERVICE DELETE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<processingOption> Required 1 Integer (1), 1 = Logical delete
fixed 2 = Logical undelete

PACKAGE SERVICE DELETE Replies

No <result> data structure is returned in the package deletion reply message. However,
the standard <response> data structure is returned to indicate the success or failure of the

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

package deletion request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

Freeze a Package - PACKAGE SERVICE FREEZE

On ChangeMan ZMF servers, a Serena XML package freeze request does two things:

» It freezes the package against changes.
» It builds the “.X node” staging library containing file-tailored JCL installation code.

For a freeze request to execute successfully, all of the following conditions must be met:

* The package is in development status.
» All components are active and are at the same promotion level.
* Any online forms in the package have been approved.

In addition, ChangeMan ZMF normally requires that a package pass the audit process before
a freeze request can execute successfully.

The Serena XML service/scope/message tags for a package freeze message are:

<service name="PACKAGE">
<scope name="SERVICE”>
<message name="FREEZE"”>

These tags appear in both requests and replies.

PACKAGE SERVICE FREEZE Requests

Serena XML allows you to freeze a package with or without prior validation of the staging
library. Unless you are completely certain that all components in the package are ready to be
frozen, you should validate the staging library as part of your package freeze request.

i

iy
Fin

Tip
To validate the staging library as part of a package freeze request, enter “1” in the
<validationParm> tag.

The example below shows how you might code a package freeze request in Serena XML.
Data structure details for the package freeze <request> tag follow in Exhibit 3-6.

Example XML — PACKAGE SERVICE FREEZE Request

<?xml version="1.0"7?>

<service name="PACKAGE">

<scope name='"SERVICE'">

<message name="FREEZE">

<header>
<subsys>8</subsys>
<product>CMN</product>
</header>

65

Chapter 3: Package Management

<request>
<package>ACTP000012</package>
</request>
</message>
</scope>
</service>

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
userVariable01 Optional 0-8 String (8), User variable 01
variable
userVariable02 Optional 0-8 String (8), User variable 02
variable
userVariable03 Optional 0-8 String (8), User variable 03
variable
userVariable04 Optional 0-8 String (8), User variable 04
variable
userVariable05 Optional 0-8 String (8), User variable 05
variable
userVariable06 Optional 0-72 | String (72), User variable 06
variable
userVariable07 Optional 0-72 | String (72), User variable 07
variable
userVariable08 Optional 0-72 | String (72), User variable 08
variable
userVariable09 Optional 0-72 | String (72), User variable 09
variable

66

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-6. PACKAGE SERVICE FREEZE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
userVariable10 Optional 0-72 | String (72), User variable 10
variable
<validationParm> Optional 0-1 Integer (1) 1 = Validate package readiness
prior to freeze operation

i

i
i

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables’
in the ChangeMan ZMF Customization Guide.

PACKAGE SERVICE FREEZE Replies

No <result> data structure is returned in the reply message for a package freeze request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Occasionally, a package may freeze successfully but the subsequent file tailoring and JCL
build step may not complete. If this occurs, Serena XML provides a way of finishing the file
tailoring step on its own.

i

iy
S

Tip

Use Serena XML to submit a package for JCL build if the package freeze step is
successful, but the subsequent file tailoring and JCL build step does not complete.
(See Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT.)

Submit a Package for JCL Build - PACKAGE SERVICE SUBMIT

The package service submit request submits a previously frozen package for stage file
tailoring — that is, it builds (or rebuilds) the “.X node” staging library containing file-tailored
JCL installation and backout code. It performs this task at the package level rather than the
component level.

The Serena XML service/scope/message tags for a package submit message are:

<service name="PACKAGE">
<scope name="SERVICE”>
<message name="SUBMIT”>

These tags appear in both requests and replies.

67

Chapter 3: Package Management

When successful, this service submits a JOB with output similar to the following:

SDSEF OUTPUT DISPLAY CMN8ADSP 50786765 DSID 4 LINE 71 CO

COMMAND INPUT ===> SCR

IEF2851I ZMFA .CMN8ADSP.S0786765.D0000106.7 SYSOUT

IEF2851I ZMFA .CMN8ADSP.S0786765.D0000107.7? SYSOUT

IEF3731I STEP/ /START 2009065.0630

IEF3741 STEP/ /STOP 2009065.0630 CPU OMIN 00.47SEC SRB

IEF375I JOB/CMN8ADSP/START 2009065.0630

IEF376I JOB/CMNSADSP/STOP 2009065.0630 CPU OMIN 00.47SEC SRB
PROG=CMNASPFT, PARMS=PGMCMNVPIJB

0032ACTPOO00138USER35 Y

READY

END

ChangeMan (R) CMNVPIJB - 6.1.0 File Tailoring

Function : Package install JCL build
Subsystem: 8

Userid : USER24

Package : ACTP000013

Schedule : Y

Date/Time: 2009/03/06 06:30:10

CMN8700I - ACTP000013 Installation JCL Build service completed

PACKAGE SERVICE SUBMIT Request

The following example shows how you might code a package service submit request using
Serena XML. Data structure details for the packageservice submit <request> tags appear
in Exhibit 3-7.

Example XML — PACKAGE SERVICE SUBMIT Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="SUBMIT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000013</package>
<cmnSubSystemId>8</cmnSubSystemId>
<requestor>USER24</requestor>
<addSchedulerOption>Y</addSchedulerOption>
</request>
</message>

68

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

</scope>
</service>

Exhibit 3-7. PACKAGE SERVICE SUBMIT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<addSchedulerOption> Optional 0-1 String (1) Code to add installation scheduler
record for automated scheduling
system. Values:
Y = Yes, add scheduler record
N = No, don’t add record
C = Conditional, add scheduler
record only if build succeeds
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<cmnSubSystemld> Optional 1 String (1) ZMF subsystem ID where package
resides (for batch execution).
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<requestor> Optional 1 String (8), Must be valid TSO user ID on
variable mainframe LPAR where ZMF
subsystem resides.

PACKAGE SERVICE SUBMIT Replies

No <result> data structure is returned in the reply message to a package submit request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

69

Chapter 3: Package Management

70

Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE

The promotion check function determines whether a promote request is valid without
performing the actual promotion. It ensures that the components to be promoted are active,
the requested promotion library is a valid one for the requestor, and the package complies
with administrator-defined promotion business rules.

The Serena XML service/scope/message tags for a promotion check message are:

<service name="PACKAGE”>
<scope name="CHECK">
<message name="PROMOTE”>

These tags appear in both requests and replies.

PACKAGE CHECK PROMOTE Requests

The syntax of a promotion check message is similar to that of the PACKAGE SERVICE
PROMOTE request, with the following exceptions:

* the name attribute in the <scope> tag has a value of “CHECK”

* the <applName>, <packageId>, <scheduledate>, and <scheduletime> tags are
not used

A code example appears in this chapter under Promote a Package - PACKAGE SERVICE
PROMOTE. Data structure details for the promotion check <request> tag are discussed in
Exhibit 3-8.

PACKAGE CHECK PROMOTE Replies

No <result> data structure is returned in the reply message to a promotion check request.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Promote a Package - PACKAGE SERVICE PROMOTE

Package promotion applies the changes in a package to libraries used for testing and other
purposes. All components to be promoted must be active, and business rules for promotion
level transitions, promotion to remote sites, and package freeze must also be met.

The Serena XML service/scope/message tags for a package promotion message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="PROMOTE”">

These tags appear in both requests and replies.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The package promote function validates the promotion readiness of a package prior to
executing the promote. It necessarily file-tailors the package for application to the target
promotion library, as well — a step that can take some time.

i

iy
S

Tip

To check the promotion readiness of a package in Serena XML without file
tailoring for promotion or actually executing the promote, use package/check/
promote. (See Check a Package for Promotion Readiness - PACKAGE CHECK
PROMOTE.)

PACKAGE SERVICE PROMOTE Request

Serena XML supports all three types of promotion: full promote, selective promote, and “first
promote. No special XML attribute or tag is required to choose a promotion type.
ChangeMan ZMF determines the appropriate promotion type based on whether or not you
supply an explicit component name (which indicates a selective promote), and on the
business rules defined for promotion by your administrator (which may or may not allow a
“first” promote).

The example below shows how you might code a selective promotion request in Serena
XML. Data structure details for the packageservice promote <request> tag appear in
Exhibit 3-8.

Example XML — PACKAGE SERVICE PROMOTE Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="PROMOTE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000012</package>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>C001AUT</promotionName>
<jobCards01>//XMLX130 JOB (AMW,000), 'DEFINE UCAT', MSGCLASS=Y,</jobCards01>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

4l

Chapter 3: Package Management

72

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<component> Optional 0-800 | Complex See <component> subtag,
Exhibit 3-9.
NOTE: Required for selective
promote. If used, <listCount>
tag is also required.
<jobCards01> Required 1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<listCount> Optional 0-1 Integer (3), Number of components to
variable selectively promote. Must match
number of <component> tags.
Value range: 1 - 800
NOTE: Required for selective
promote. If used, <component>
tag is also required.
<overlayTargetComponents> Optional 0-1 String (1) Option to automatically overlay
package components already in
target library. Values:
Y = Yes, overlay components
N = No, don'’t overlay
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-8. PACKAGE SERVICE PROMOTE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<promotionLevel> Required 1 Integer (2), Sequence number of target
variable promotion library in promotion
hierarchy.
<promotionName> Required 1 String (8), Promotion/demotion nickname.
variable
<promotionSiteName> Required 1 String (8), Name of site where target
variable promotion library resides.
<scheduledate> Optional 0-1 String (8) A date with no time (yyyyMMdd)
<scheduletime> Optional 0-1 String (4) A time (HHmm)
<suppressNotify> Optional 0-1 String (1) Y = Yes, suppress notify
N = No, don’t suppress
<userVariable01> Optional 0-1 String (8), Up to five user-defined variables of
each variable 8 bytes each, used to pass
parameters to JCL interpreter.
<userVariable05>
<userVariable06> Optional 0-1 String (72), Up to five user-defined variables of
. each variable 72 bytes each, used to pass
parameters to JCL interpreter.
<userVariable10>

iy
S

Tip
Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

<component> Subtag

In a selective or a “first” package promotion request, you explicitly name each component to
promote. The <component> subtag serves this purpose. It delimits a complex data structure
containing the name and library type of each component to be promoted, and is repeatable
as many times as needed to accommodate the components selected for promotion.

This <component> tag does not stand alone. When used, it requires a <1istCount>tagto
precede the first instance of the <component> tag in the message. The <1istCount> tag

73

Chapter 3: Package Management

74

contains a count of components to be promoted. That number must match the actual number
of <component> tags that immediately follow.

Data structure details for the complex <component> subtag appear in Exhibit 3-9.

Exhibit 3-9. <component> Subtag Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Required 1 String (256), * If PDS member, the member name (max
variable 8 bytes, no qualifiers).

« If HFS file, the Unix-style long file name
optionally prefixed by path from installation
root.

<componentType> Required 1 String (3), Library type of component in
fixed <componentName>.

Package Service Promote Reply

No <result> data structure is returned in package promotion reply message. However, the
standard <response> data structure is returned to indicate the success or failure of the
promotion request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Lock Promotion Site for Package - PACKAGE PROMOTE LOCK

The Package Promote Lock service locks the promotion site for a requested package.
The Serena XML service/scope/message tags for a promotion site lock message are:

<service name="PACKAGE">
<scope name="PROMOTE" >
<message name="LOCK”>

These tags appear in both requests and replies.

PACKAGE PROMOTE LOCK Request

The example below shows how you might code a Package Promote Lock request in Serena
XML. Data structure details for the <request> tag appear in Exhibit 3-10.

Example XML — PACKAGE PROMOTE LOCK Request

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="PROMOTE">
<message name="LOCK">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

<package>ACTP000012</package>
<promotionSiteName>SERT8</promotionSiteName>
</request>
</message>
</scope>
</service>

Exhibit 3-10. PACKAGE PROMOTE LOCK <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<promotionSiteName> Required 1 String (8), Name of site where target
variable promotion library resides.

Package Promote Lock Reply

No <result> data structure is returned in a Package Promote Lock reply message.
However, the standard <response> data structure is returned to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher.

Demote a Package - PACKAGE SERVICE DEMOTE

The standard package demotion function resets the desired components previously
promoted to a specific promotion site and level to promotion level 00 in the staging library. In
a full demote, it also resets the package master to development status. Copies of previously
promoted components are deleted.

75

Chapter 3: Package Management

The Serena XML service/scope/message tags for a message to demote a package:

<service name="PACKAGE">
<scope name="SERVICE"”>
<message name="DEMOTE”>

These tags appear in both requests and replies.

PACKAGE SERVICE DEMOTE Request

Serena XML supports both full demotion and selective demotion. No special XML attribute or
tag is required to choose a demotion type. ChangeMan ZMF determines the appropriate
demotion type based on whether or not you supply an explicit component name (which
indicates a selective demote).

Except for the name attribute in the <scope> tag, the syntax of a request to demote a
package is identical to that of a promotion request. A code example appears in this chapter
under Promote a Package - PACKAGE SERVICE PROMOTE. Data structure details for the
promotion check <request> tag are discussed in Exhibit 3-8, also in Promote a Package -
PACKAGE SERVICE PROMOTE.

PACKAGE SERVICE DEMOTE Reply

Serena XML reply messages for a package demotion request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Demote a Package with Cleanup - PACKAGE CLEANUP DEMOTE

The package cleanup demote function performs a full package demotion for all package
components previously promoted to any promotion level at a named site. The promotion
libraries that were last promoted to are cleaned up. It then resets the package master to
development status.

The Serena XML service/scope/message tags for a message to demote a package with
cleanup are:

<service name="PACKAGE">
<scope name="CLEANUP”>
<message name="DEMOTE”>

These tags appear in both requests and replies.

PACKAGE CLEANUP DEMOTE Requests

The example below shows how you might code a request for demotion with cleanup in
Serena XML. Data structure details for the <request> tag appear in Exhibit 3-11.

76

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Example XML — PACKAGE CLEANUP DEMOTE Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CLEANUP">
<message name="DEMOTE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000004</package>
<promotionSiteName>SERT8</promotionSiteName>
</request>
</message>
</scope>
</service>

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<promotionSiteName> Required 1 String (8), Name of site where promotion
variable library resides.
<suppressNotify> Optional 0-1 String (1), Suppress batch messages,Y or N.
<userVariable01> Optional 0-1 String (8), Up to five user-defined variables of
each variable 8 bytes each, used to pass
parameters to JCL interpreter.
<userVariable05>

77

Chapter 3: Package Management

78

Exhibit 3-11. PACKAGE CLEANUP DEMOTE <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<userVariable06> Optional 0-1 String (72), Up to five user-defined variables of
each variable 72 bytes each, used to pass

parameters to JCL interpreter.

<userVariable10>

iz
Pty

Tip

Tags: <userVariable01> to <userVariable10>: See topic “Custom V01-V10 Variables”
in the ChangeMan ZMF Customization Guide.

PACKAGE CLEANUP DEMOTE Replies

Serena XML reply messages for a package demotion with cleanup do not return a <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the demotion request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE CLEANUP DEMOTE Reply

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CLEANUP">
<message name="DEMOTE">
<response>
<statusMessage>CMN3261I - request submitted for demotion from
SERT8,CO001AUT.</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>3261</statusReasonCode>
</response>
</message>
</scope>
</service>

A successful PACKAGE CLEANUP DEMOTE request will generate a JOB with output similar
to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB SRB
-DEL1CPY 00 37 18 .00 .00
-SUCCESS 00 572 303 .00 .00
—CHKCOND 00 15 6 .00 .00
-FAILURE FLUSH 0 0 .00 .00

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

—-PRINT 00 64 24 .00 .00
-CLNLCL 00 30 64 .00 .00
-SERTS8 ENDED. NAME-ACTP TOTAL TCB
SHASP395 SERTS ENDED

DELETE ACPCPYO0O
ACPCPYO0 WAS DELETED FROM TARGET DATA SET

R R i I I S b b I b b b I b b I b b b Ih b b I b b I a2 b b b b b b e b b I dh b b b b 2 4

* DDNAME: SUCCESS.SYSPRINT

R R i I I b A I b b b I b S I b b b b b b b b b b b b b b b b b b b e b b I db b b b A b S

ChangeMan (R) CMNBATCH - 6.1.0 2009/02/17 11:55:22
ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK
SESSION ESTABLISHED WITH CHANGE MAN SUBTASK

SYSIN: TES5000004 85 FUN=DEMOTE,NOD=SERTS3

SYSIN: TES5000004 85 LVL=10,LNM=CO01AUT,CID=USER24
SYSIN: TES5000004 85 SUP=YES, SSI=5C6A9D1F

SYSIN: TES5000004 85 TYP=CPY

SYSIN: TES5000004 85 CMP=ACPCPYO0O0

Component History has been updated.

Component Promotion History has been updated

Demotion logged TES5000004

SYSIN: TES5000004 85 FUN=END

Package Promotion history has been updated

Package TES5000004 DEMOTE

Package General record has been updated.

END OF DATA ON SYSIN - TERMINATING

SESSION TERMINATED WITH CHANGE MAN STARTED TASK

<SIZE: RECS=25 BYTES=967>

Approve a Package - PACKAGE SERVICE APPROVE

The package approval function logs package approval actions such “approve” and “reject”
and issues appropriate notifications. Approval entities may also override their previously
defined notification addresses (e.g., to substitute a TCP/IP email address for a TSO “Send”
message). Authorized approvers must be defined by approver list maintenance before they
can approve a package.

Note

Approver list maintenance is a function of the approver maintenance service,
not the package management service. This task is normally performed via ISPF.

79

Chapter 3: Package Management

80

The Serena XML service/scope/message tags for a package approval message are:

<service name="PACKAGE”>
<scope name="SERVICE”>
<message name="APPROVE”>

These tags appear in both requests and replies.

PACKAGE SERVICE APPROVE Requests

The following example shows how you might code a package approval request using Serena
XML. Data structure details for the package approval <request> tag appear in Exhibit 3-12.

Example XML — PACKAGE SERVICE APPROVE Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name='"SERVICE'">
<message name="APPROVE'">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<approverAction>1</approverAction>
<package>ACTP000009</package>
<approverEntity>ACTPLEAD</approverEntity>
<reasons>PACKAGE SERVICE APPROVE TEST</reasons>
</request>
</message>
</scope>
</service>

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.

Exhibit 3-12. PACKAGE SERVICE APPROVE <request> Data Structure (Continued)

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<approverAction> Required 1 Integer (1), 1 = Approve package
fixed 2 = Checkoff
3 = Approval decision pending
4 = Reject package
5 = Under review
6 = Final approval for linked
packages
NOTE: If value is 2 or 4,
<reasons> tag required.
<approverEntity> Required 1 String (8), Security system entity ID of
variable authorized application approver.
<notifierAgentlpAddress> | Optional 0-1 String (32), Network IP address for E-mail
variable notifications. Overrides user record.
NOTE: If used, also requires
<notifierAgentPortid> tag.
<notifierAgentPortid> Optional 0-1 Integer (5), Network port ID of E-mail server for
variable notifications. Overrides user record.
NOTE: Required with tag
<notifierAgentIpAddress>.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<reasons> Optional 0-14 | String (72), Reject (or checkoff) reasons. May
variable be repeated for multiple comments.
NOTE: If <approverAction>
value = 2 or 4, this tag is required.

PACKAGE SERVICE APPROVE Replies

Serena XML reply messages to a package approval request do not return a <result> data
structure. They do, however, return a standard <response> data structure to indicate the
success or failure of the approval action. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

81

Chapter 3: Package Management

List Package Installation Schedule - SCHEDULE SERVICE LIST

This function lists installation scheduler records defined for a named package. Information
returned includes planned installation dates, install job status if held or released, install job
participation in a multi-package release, temporary change duration, and package backout
status. If no installation information has been defined, no results are returned.

The Serena XML service/scope/message tags and attributes for messages that list
installation schedule information for a package are:

<service name="SCHEDULE”>

<scope name="SERVICE”>
<message name="LIST”>

These tags appear in both requests and replies.

SCHEDULE SERVICE LIST — Requests

Request messages for this function require only a package name. A date range may also be
supplied.

Example XML — SCHEDULE SERVICE LIST Request

<?xml version="1.0"?>
<service name="SCHEDULE">
<scope name="SERVICE">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000009</package>
</request>
</message>
</scope>
</service>

Data structure details for the <request> tag appear in Exhibit 3-13.

82

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-13. SCHEDULE SERVICE LIST<request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIlName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.
NOTE: OK to omit trailing blanks.
<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted
<installDate> Optional 0-1 Date, Planned install date for package, or start
yyyymmdd | date of range.
<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held
<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted
<isReasonslnserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID. Same as last 6 bytes
fixed of <package>.
NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.
NOTE: Leading zeroes required.
<releaselnstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install
<tolnstallDate> Optional 0-1 Date, End date of planned installed date
yyyymmdd | range.
<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote

SCHEDULE SERVICE LIST — Replies

The Serena XML reply message for this function returns one <result> tag, which contains
installation scheduler information for a named package. It is followed by the standard
<response> data element, which indicates the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.

83

Chapter 3: Package Management

Example XML — SCHEDULE SERVICE LIST Reply

<?xml version="1.0"?>
<service name="SCHEDULE">
<scope name="SERVICE">
<message name="LIST">
<result>
<package>ACTP000009</package>
<applName>ACTP</applName>
<packageId>000009</packageId>
<type>I</type>
<installDate>20091231</installDate>
<installTime>0100</installTime>
<installJobSubmitted>Y¥</installJobSubmitted>
<installJobHeld>Y</installJobHeld>
<isReasonsInserted>Y</isReasonsInserted>
<backoutJobSubmitted>Y</backoutJobSubmitted>
<releaseInstallation>Y</releaseInstallation>
<tempChangeDuration>000</tempChangeDuration>
<updateToken>5C7529CB</updateToken>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Data structure details for the <result> tag appear in Exhibit 3-14.

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure

84

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.
<backoutJobSubmitted> Optional 1 String (1) Y = Yes, backout job submitted
N = Backout job not submitted
<installDate> Optional 0-1 Date, Planned installation date, or first date in
yyyymmdd | range of install dates.
<installJobHeld> Optional 1 String (1) Y = Yes, install job held
N = No, install job not held
<installJobSubmitted> Optional 1 String (1) Y = Yes, install job submitted
N = No, install job not submitted
<installTime> Optional 0-1 Time, Planned install time in 24-hour format.
hhmmss

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-14. SCHEDULE SERVICE LIST <result> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<isReasonsInserted> Optional 1 String (1) Y = Yes, reason codes present
N = No, reason codes absent
<package> Optional 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), |ZMF package ID. Same as last 6 bytes
fixed of <package>.
<reasonCode> Optional 0-1 String (3), Reject reason code if package rejected
variable or backed out.
<releaselnstallation> Optional 1 String (1) Y = Yes, install with release
N = No, not a release install
<tempChangeDuration> Optional 0-1 String (3), Life of temporary change package
variable before automatic backout.
<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote
<updateToken> Optional 0-1 String (8), Binary hash token for updated
variable package.

Hold Package Install Job - SCHEDULE SERVICE HOLD

This function holds a package installation job in the scheduling queue until it is explicitly

released. The Serena XML service/scope/message tags and attributes for messages to hold
a package install job are:

<service name="SCHEDULE”>
<scope name="SERVICE”>
<message name="HOLD”>

These tags appear in both requests and replies.

SCHEDULE SERVICE HOLD — Requests

The request message for this function requires a package name. No filtering options are
supported. Data structure details for the <request> tag appear in Exhibit 3-15.

85

Chapter 3: Package Management

86

Exhibit 3-15. SCHEDULE SERVICE HOLD <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: OK to omit trailing blanks.

<package> Required 1 String (10), | Fixed-format ZMF package name.
variable

<packageld> Optional 0-1 Integer (6), |ZMF package ID. Same as last 6 bytes
fixed of <package>.

NOTE: Not recommended. Use
<package> instead of separately
specifying <applName> and
<packageId>.

NOTE: Leading zeroes required.

<type> Optional 0-1 1 Type of job scheduled, | = Install, P =
Promote

SCHEDULE SERVICE HOLD — Replies

No <result> tagis returned in the Serena XML reply message for a package install job hold
request. However, the reply message does return a standard <response> data element to

indicate the success or failure of the request. Successful requests have a return code of 00.

Unsuccessful requests have a return code of 04 or higher.

Release Package Install Job - SCHEDULE SERVICE RELEASE

This function releases a previously held package installation job in the scheduling queue. The
Serena XML service/scope/message tags and attributes for messages to release a package
install job are:

<service name="”SCHEDULE”>

<scope name="SERVICE”>

<message name="RELEASE”>

These tags appear in both requests and replies.

SCHEDULE SERVICE RELEASE — Requests

The request message syntax to release a package install job is different from that to hold an
install job only in the name attribute of the <message> tag, as shown above. Data structure

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

details for the <request> tag are identical in both messages. They appeared previously in
Exhibit 3-15.

SCHEDULE SERVICE RELEASE — Replies

No <result> tags are returned in the Serena XML reply message for a package install job
release request. However, the reply message does return a standard <response> data
element to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

Back Out a Package - PACKAGE SERVICE BACKOUT

The package service backout function reverses a package baseline ripple. Serena XML does
not back out changes to production libraries.

Note

If a package resides in remote production libraries as well as the baseline
library, you must back out each installed instance of the package from the
production libraries via the ISPF interface before you issue a Serena XML
backout request.

The Serena XML service/scope/message tags for a package backout message are:

<service name="PACKAGE”>
<scope name="SERVICE">
<message name="BACKOUT”>

These tags appear in both requests and replies.

PACKAGE SERVICE BACKOUT Requests

Serena XML allows you to back out a package with or without validating the integrity of your
baseline libraries afterward. This flexibility saves time when backing out minor or temporary
changes. However, unless you are completely certain that the changes to be backed out are
minor, you should validate baseline integrity as part of the backout process.

An example of how you might code a Serena XML request to back out a package from
baseline appears below. Data structure details for the package backout <request> tag
appear in Exhibit 3-16.

Example XML — PACKAGE SERVICE BACKOUT Request

<?xml version="1.0" encoding="UTF-8"7?>
<service name="PACKAGE">
<scope name="SERVICE">
<message name="BACKOUT">
<header>
<subsys>8</subsys>
<product>CMN</product>

87

Chapter 3: Package Management

</header>
<request>
<package>ACTP000012</package>
<siteName>SERT8</siteName>
<backoutReason01>TEST XML PACKAGE SERVICE BACKOUT</backoutReason01>
<jobCards01>//XMLX127 JOB (AMW,000),'DEFINE UCAT',KMSGCLASS=Y,</jobCards0l>
<jobCards02>// TIME=(,10) ,NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
backoutReason01 Optional 0-1 String (72), Backout reasons line - 1
variable
backoutReason02 Optional 0-1 String (72), Backout reasons line - 2
variable
backoutReason03 Optional 0-1 String (72), Backout reasons line - 3
variable
backoutReason04 Optional 0-1 String (72), Backout reasons line - 4
variable
backoutReason05 Optional 0-1 String (72), Backout reasons line - 5
variable
backoutReason06 Optional 0-1 String (72), Backout reasons line - 6
variable
backoutReason07 Optional 0-1 String (72), Backout reasons line - 7
variable

88

Exhibit 3-16. PACKAGE SERVICE BACKOUT <request> Data Structure (Continued)

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Data Type &
Subtag Use Occurs | Length Values & Dependencies
backoutReason08 Optional 0-1 String (72), Backout reasons line - 8
variable
backoutReason09 Optional 0-1 String (72), Backout reasons line - 9
variable
<jobCards01> Optional 0-1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<siteName> Optional 1 String (8), Name of site where target demotion
variable library resides.
<validateBackout> Optional 0-1 String (1) Y = Yes, validatebackout only.

N = No, perform backout.

PACKAGE SERVICE BACKOUT Replies

The Serena XML reply messages to a package backout request do not return a <result>
data structure. They do, however, return a standard <response> data structure to indicate
the success or failure of the revert request. Successful requests have a return code of 00.

Unsuccessful requests have a return code of 04 or higher.

89

Chapter 3: Package Management

Successful requests will send messages like the following to the user who initiated the
backout:

CMN406I - ACTP000012 BACKED OUT 2009/02/18 @ 08:36:08 AT SERT8, CN(INTERNAL)
CMN410I - ACTP000012 BASELINE REVERSE RIPPLED 2009/02/18 @ 08:36:08.
CN (INTERNAL)

Successful requests will submit a BACKOUT JOB with output similar to the following:

-STEPNAME PROCSTEP RC EXCP CONN TCB
—-CMNOO 00 554 301 .00
—-RESTCPY 00 133 245 .00
-DSPTM 00 611 323 .00
-RRIPPIA FLUSH 0 0 .00
—-CMNOO 00 552 299 .00
-CMN99 00 14 5 .00
-FAILURE FLUSH 0 0 .00
—-PRINT 00 33 16 .00
-ACTP5512 ENDED. NAME-ACTP T

SHASP395 ACTP5512 ENDED

//* IMS OPTION: JOB TO PERFORM REVERSE RIPPLE OF PACKAGE ACTP000012
ChangeMan (R) CMNBATCH - 6.1.0 2009/02/18 08:36:08

ATTEMPTING TO INITIATE DIALOG WITH CHANGE MAN SUBTASK

SESSION ESTABLISHED WITH CHANGE MAN SUBTASK

SYSIN: ACTP000012 55 NOD=SERTS

PACKAGE BACKED OUT AT DEV. ACTP000012
BACKOUT AT DEV LOGGED. ACTP000012
BASELINE REVERSE RIPPLE LOGGED ACTP000012

END OF DATA ON SYSIN - TERMINATING
SESSION TERMINATED WITH CHANGE MAN STARTED TASK

Revert a Package - PACKAGE SERVICE REVERT

The package revert function reverts a package to development status after it has been
backed out from baseline.

The Serena XML service/scope/message names for a package revert message are:

<service name="PACKAGE">
<scope name="SERVICE"”>
<message name="REVERT">

These tags appear in both requests and replies.

90

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

PACKAGE SERVICE REVERT Requests

You have the option to revert a package with or without concurrent validation of the staging
library. However, validation is recommended.

i

iy
Fin

Tip

To validate the staging library as part of your package revert request, enter “2” in
the <validationParm> tag.

The following example shows how you might code a package revert request using Serena
XML. Data structure details for the package revert <request> tag appear in Exhibit 3-17.

Example XML —PACKAGE SERVICE REVERT Request

<?xml version="1.0"
<service name="PACKAGE">
<scope name="SERVICE">
<message name="REVERT">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000012</package>
<siteName>SERT8</siteName>
<revertReason01>TEST XML PACKAGE SERVICE REVERT</revertReason01>
<jobCards01>//XMLX134 JOB (AMW,000), 'DEFINE UCAT',MSGCLASS=Y,</
jobCards01>
<jobCards02>// TIME=(,10),NOTIFY=USER24</jobCards02>
</request>
</message>
</scope>
</service>

91

Chapter 3: Package Management

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<jobCards01> Optional 0-1 String (72), First of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards02> Optional 0-1 String (72), Second of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards03> Optional 0-1 String (72), Third of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<jobCards04> Optional 0-1 String (72), Fourth of up to 4 JCL statements
fixed length | needed to execute the promote in
batch mode.
<package> Required 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.
<revertReason01> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason02> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason03> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason04> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason05> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason06> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason07> Optional 1 String (72), Free format text of reason for
variable reverting package to development.

92

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-17. PACKAGE SERVICE REVERT <request> Data Structure (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<revertReason08> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<revertReason09> Optional 1 String (72), Free format text of reason for
variable reverting package to development.
<siteName> Required 1 String (8), Name of site where target revert
variable library resides.
<validationParm> Optional 0-1 Integer (1) 2 = Determine whether package is
eligible for revert. Revert is not
actually performed.

PACKAGE SERVICE REVERT Replies

Serena XML replies to a package revert request do not return a <result> data structure.
They do, however, return a standard <response> data structure to indicate the success or
failure of the revert request. Successful requests have a return code of 00. Unsuccessful
requests have a return code of 04 or higher.

PACKAGE-LEVEL COMPONENT CHANGE MANAGEMENT

Package-level component change tasks apply to one or more components within a particular
change package. For example, you can work with the source and load components in a
package, the non-source components (such as copybooks) in a package, or scratch/rename
records in a package. Typical operations on components at the package level are list,
unfreeze and refreeze.

Package-level component change management tasks include:

» Component Change Description List- » Unfreeze Non-Source Components - PACK-
CMPONENT CHG_DESC LIST AGE NON_SRC UNFREEZE

* List Staged Components - CMPONENT » Refreeze Non-Source Components - PACK-
PKG_COMP LIST AGE NON_SRC REFREEZE

» Component Description List- PACKAGE -« List Scratch and Rename Ulility Records -
CMP_DESC LIST CMPONENT PKG_UTIL LIST

* List Components With Promotion Overlays « Unfreeze Scratch/Rename Records - PACK-
- PACKAGE PRM_OVLY LIST AGE SCR_REN UNFREEZE

» Unfreeze Source/Load Components - * Refreeze Scratch/Rename Records - PACK-
PACKAGE SRC_LOD UNFREEZE AGE SCR_REN REFREEZE

* Refreeze Source/Load Components -
PACKAGE SRC_LOD REFREEZE

93

Chapter 3: Package Management

94

Component Change Description List- CMPONENT CHG_DESC LIST

List all or any components in a package, together with their package-specific change
descriptions, using the Serena XML component change description list function. All
component types are included in the scope of this function, including source code members,
load members, copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component change description list at
the package level are:

<service name="CMPONENT”>
<scope name="CHG_DESC”>
<message name="LIST"”>

These tags appear in both requests and replies.

CMPONENT CHG_DESC LIST — Request
Three common uses for component change description lists in Serena XML are:

» List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags, or omit these tags altogether. All components in the package
will be returned, together with their package-level change descriptions.

« List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“‘match-all” (asterisk) wildcard character in the <component> tag or omit it altogether. All
package components of the desired library type will be returned, together with their
change descriptions, if a change description exists.

* Get Package-Level Change Description for Named Component — Name the desired
package in the <package> tag and the desired component name in the <component>
tag. Enter the library type of the component in the <componentType> tag if known;
otherwise, enter a “match-all” (asterisk) wildcard character. The desired component and
its change description are returned if the component exists in the package.

The following example shows how you might code a request to list all components for
package ACTP000001 and any existing change descriptions using Serena XML. Data
structure details follow the example in Exhibit 3-18.

Example XML — CMPONENT CHG_DESC LIST Request

<?xml version="1.0"72>
<service name="CMPONENT">
<scope name="CHG DESC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

<package>ACTP000007</package>
</request>
</message>
</scope>
</service>

Exhibit 3-18. CMPONENT CHG_DESC LIST <request>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag
Use <package> instead of
<applName> & <packageId>.
<component> Optional 0-1 String (256), | ZMF name of desired component.
variable « If component is PDS member,
this is member name (max
8 bytes, no qualifiers).
« If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.
Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<componentType> Optional 0-1 String (3), Library type for component.
variable Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

CMPONENT CHG_DESC LIST — Reply

The XML reply to a component change description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and change
description of a component in the named package if a change description exists.

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>
tag also serves as an end-of-list marker.

95

Chapter 3: Package Management

An example XML reply to a component change description list request appears on the next
page. Data structure details for the <result> tag follow the example in Exhibit 3-19.

Example XML — CMPONENT CHG_DESC LIST Reply

<?xml version="1.0"7?>
<service name="CMPONENT">
<scope name="CHG_DESC">
<message name="LIST">
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY00</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1A</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1B</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1C</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1X</component>
<componentType>CPY</componentType>
<changeDesc>SER5904E</changeDesc>
</result>

96

<response>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>

</message>
</scope>
</service>

Exhibit 3-19. CMPONENT CHG_DESC LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<changeDesc> Optional 0-1 String (35), Description of changes in progress
variable with component in this package.
<component> Optional 0-1 String (256), | ZMF name of component.
variable » If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentType> Optional 0-1 String (3), Library type for component.
variable
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List Staged Components - CMPONENT PKG_COMP LIST

List staged components for a package using the Serena XML function to list staged “source-
and-load” (ISAL and ICPY) components. These include “like-source”, “like-load”, “like-
copybook”, and “like-PDS” components staged from baseline or staged from development.

The Serena XML service/scope/message names for a staged component list at the package
level are:

<service name="CMPONENT”>
<scope name="PKG_COMP">
<message name="LIST"”>

These tags appear in both requests and replies.

97

Chapter 3: Package Management

CMPONENT PKG_COMP LIST — Request
The primary uses for a request to list staged components are:

+ List All Staged Components in a Package — Name the desired package in the
<package> tag. Submit a blank in <recordType> or omit this tag altogether.
Component name, library type, and status are returned for each staged component in the
named package.

» List Staged Source and Load Components — Name the desired package in the
<package> tag. Enter an “A” in the <recordType> tag to request staged source-and-
load (ISAL) records. For each staged “like-source” and “like-load” component in the
package, this function returns the component name, library type, and status. If a staged
like-source component has been compiled while staged, its record will also include a
pointer to the primary “like-load” component generated by the compile. “Like-copybook”
and “like-PDS” components are not listed.

+ List Other Staged Components — Name the desired package in the <package> tag.
Enter a “6” in the <recordType> tag to request staged copy-and-include (ICPY) records.
The function lists component name, library type, and status information for all staged
“like-copybook” and “like-PDS” components in the named package, including copybooks,
skeletons, JCL procedures, and ISPF panels. Like-source and like-load components are
not listed.

* Verify That a Particular Component Was Staged — Supply the desired component
name in <component>, the component library type in <componentType>, and the
package name in <package>. Submit a blank in <recordType> or omit this tag
altogether. If the component was staged to the package named, a <result> data
structure will return information about the desired component. If the component was not
staged to that package, no results will be returned.

To further customize your query for a staged component list request, specify a library type,
modification date range, updater ID, or component status of interest. Choose component
status options using appropriate yes/no flag tags.

Note

Yes/no flags for component status filtering take default values as a group.

The default changes based on whether or not you enter explicit values in these

tags, as follows:

- If no status flag has an explicitly typed value, the default for all tags is “Y”.

- If any status flag has an explicitly typed value, the default for the remaining
tags is “N”.

Build-Option Reply Tags
The following build-option reply tags are not automatically retrieved:

<compileOptions>
<linkOptions>
<useDb2PreCompileOption>

98

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

<userOption01> thru <userOption20>

<userOption0101> thru <userOption0105>
<userOption0201> thru <userOption0203>
<userOption0301> thru <userOption0303>
<userOption0401> thru <userOption0403>
<userOption0801> thru <userOption0805>
<userOptionl001> thru <userOptionl002>
<userOptionl601> thru <userOptionl602>
<userOption3401> thru <userOption3402>
<userOption4401> thru <userOption4402>
<userOption6401> thru <userOption6405>
<userOption7201> thru <userOption7205>

Displaying these tags causes an increase in run time because the data must be retrieved
from the component history records. Therefore, these tags are not retrieved unless you
request them using the following tag:

<longFormat>Y</longFormat>

The default is “N” (do not retrieve the build-option tags).

The following example shows how you might code a request to list all source and load
components staged to a package. Data structure details for the <request> tag appear in
Exhibit 3-20.

Example XML — CMPONENT PKG_COMP LIST

<?xml version="1.0"7?>
<service name="CMPONENT">
<scope name="PKG_COMP">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>CISQ000030</package>
</request>
</message>
</scope>
</service>

99

Chapter 3: Package Management

100

Exhibit 3-20. CMPONENT PKG_COMP LIST <request>

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<appIlName>

Optional

0-1

String (4),
variable

ZMF application name. Same as first 4
bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag. Use
<package> instead of <applName> &
<packageId>.

<component>

Optional

String (256),
variable

ZMF name of staged component.

« If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

Asterisk (*) wildcard is allowed.

<componentType>

Optional

0-1

String (3),
variable

Library type of staged component.
NOTE: Takes asterisk (*) wildcard.

<filterActiveStatus>

Optional

String (1)

Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterCheckedOutStatus>

Optional

String (1)

Y = Include checked-out components
N = Omit checked-out components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterFrozenStatus>

Optional

String (1)

Y = Include frozen components
N = Omit frozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<filterHfsDirectory> Optional 0-1 String (256), | Name of HFS directory containing
variable components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterlnactiveStatus> Optional 0-1 String (1) Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterincompleteStatus> Optional 0-1 String (1) Y = Include incomplete components
N = Omit incomplete components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus> Optional 0-1 String (1) Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDateLastModified> Optional 0-1 Date, Start date in desired range of staged
yyyymmdd component modification dates.

<lockld> Optional 0-1 String (7) UserlD component locked by (if
locked)

<longFormat> Optional 0-1 String (1) Tag for requesting the build-option tags
from component history data. The
default is N.

Y = Retrieve build-option tags

N = Do not retrieve build-option tags

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
variable 6 bytes of package name.
NOTE: Leading zeroes required.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

101

Chapter 3: Package Management

102

Exhibit 3-20. CMPONENT PKG_COMP LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<recordType> Optional 0-1 String (1) Type of staged component record to list.

Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types

NOTE: Omit tag or enter explicit blank

to list both record types. Null tag returns

no records.

NOTE: Asterisk (*) wildcard not

accepted in this tag.

<targetComponent> Optional 0-1 String (256), | Name of a component, target member
variable name.

« If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

<toDatelLastModified> Optional 0-1 Date, End date in desired range of staged
yyyymmdd component modification dates.

<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable staged component.

CMPONENT PKG_COMP LIST Replies

The Serena XML reply to a staged component list request returns zero to many <result>
data structures. Each <result> element lists one staged component, together with package
name and component status information. If a staged, like-source component has been
compiled after staging, the <result> also names its primary like-load target component.

In addition to any <result> data elements, the reply message returns a standard
<response> data structure to indicate the success or failure of the request. Successful
requests have a return code of 00. Unsuccessful requests have a return code of 04 or higher.
Because the <response> tag follows the last <result> tag, it also serves as an end-of-list

marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-21.

Example XML — CMPONENT PKG_COMP LIST Reply

<?xml version="1.0"?>

<service name="CMPONENT">
<scope name="PKG_COMP">

<message name="LIST">
<result>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

<recordType>6</recordType>
<package>CISQ000030</package>
<applName>CISQ</applName>
<packageId>000030</packageId>
<component>CI2Q101</component>
<targetComponent>CI2Q101</targetComponent>
<componentType>LCT</componentType>
<dateLastModified>20081126</dateLastModified>
<timeLastModified>094237</timeLastModified>
<updater>USER24</updater>
<componentStatus>4</componentStatus>
<sourceLibOrg>PDS</sourceLibOrg>
<sourceLib>CMNTP.SERTS8.BASE.CISQ.LCT</sourceLib>
<chkOutLevel>00</chkOutLevel>
<version>01l</version>
<modLevel>01</modLevel>
<hashToken>C647B43A0000001B</hashToken>
<baseDateLastModified>20080407</baseDateLastModified>
<baseTimeLastModified>095500</baseTimeLastModified>
<dataType>1</dataType>
<chkOutToStageLib>N</chkOutToStageLib>
<chkOutFromBaseLib>N</chkOutFromBaseLib>
<chkOutToSernet>N</chkOutToSernet>
<batchChkOut>N</batchChkOut>
<chkOutComponentDesc>N</chkOutComponentDesc>
<chkOutFromRelease>N</chkOutFromRelease>
<lockComponent>Y</lockComponent>
<checkedOutHashToken>0000000000000000</checkedOutHashToken>
<lockId>USER015</lockId>

</result>

<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-21. CMPONENT PKG_COMP LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
<baseDatelLastModified> Optional 0 -1 Date, Date baseline version of staged
yyyymmdd component was last modified.

103

Chapter 3: Package Management

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<baseSetssi> Optional 0-1 String (8), Baseline component SETSSI date
fixed (seconds since 1/1/1960).
<baseTimelLastModified> Optional 0-1 Time, Time baseline version of staged
hhmmss component was last modified,
24 hr format.
<batchChkOut> Optional 0-1 String (1) Y = Batch checkout mode
N = Not batch checkout mode
<buildProc> Optional 0-1 String (8), Name of required build procedure used
variable with staged component.
NOTE: Applies only to source code
component in ISAL records.
<checkedOutHashToken> Optional 1 String (16), Component hash at checkout.
fixed
<chkOutComponentDesc> Optional 0-1 String (1) Y = Description checked out
N = Description not checked out
<chkOutFromBaselib> Optional 0-1 String (1) Y = Checked out from baseline
N = Not checked out from
baseline library
<chkOutFromRelease> Optional 1 String(1) Y = Checked out from release
N = Not checked out from release
<chkOutLevel> Optional 0-1 Integer (2) Checkout level number for staged
component.
<chkOutToSernet> Optional 0-1 String (1) Y = Checked out to SERNET
N = Not checked out to SERNET
<chkOutToStageLib> Optional 0-1 String (1) Y = Checked out to staging lib
N = Not checked out to staging
<compileOptions> Optional 0-1 String (34) Compile options for component not
stored elsewhere.
NOTE: Displayed only if <longFormat>
request tag = “Y”.
<component> Optional 1 String (256), | ZMF name of staged component.
variable * If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).
* If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

104

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Code for staged component status.
Values:
0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen
<componentType> Optional 0-1 String (3), Library type of staged component.
fixed
<dataType> Optional 0-1 String (1) File type of staged component for data
transfers. Values:
1=Text
2 = Binary
<datelLastModified> Optional 0-1 Date, Date staged component was last
yyyymmdd modified.
<encryption> Optional 0-1 String (8) Staged component encryption key.
<hashtoken> Optional 0-1 String (16), Hash token or “fingerprint” of staged
fixed component.
<language> Optional 0-1 String (8), Language name of component.
variable
<linkOptions> Optional 0-1 String (34) Link options for component not stored
elsewhere.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<lockComponent> Optional 0-1 String (1) Y = Component locked
N = Component not locked
<lockld> Optional 0-1 String (7) UserID component locked by (if
locked)
<modLevel> Optional 0-1 String (2), ISPF modification level of staged
fixed component.
<package> Optional 1 String (10), Fixed-format ZMF package name.
fixed
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.

105

Chapter 3: Package Management

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<recordType> Optional 1 String (1) Type of staged component record listed.

Values:

A = ISAL (like-source & like-load)
6 = ICPY (like-copybook, like-PDS)
Blank = Both record types
<setssi> Optional 0-1 String (8), Staged component SETSSI date
fixed (seconds since 1/1/1960).
<sourcelLib> Optional 0-1 String (44), Data set name of staged component
variable library if PDS.
<sourceLibOrg> Optional 0-1 String (3), Data organization of staged component
fixed library. Values:
HFS = Hierarchical File System
Lib = Librarian
Pan = Panvalet
PDS = PDS or PDS/E
Seq = Sequential
Oth = Other
<targetComponent> Optional 0-1 String (256), | ZMF name of primary like-load
variable component generated from
<component> while staged.

* If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

* If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<targetLoadLibType> Optional 0-1 String (3), Library type of component named in
fixed <targetComponent> (relink).
<timeLastModified> Optional 0-1 Time, Time staged component was last
hhmmss modified, 24 hr format.
<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable staged component.
<useDb2PreCompileOption> | Optional 0-1 String (1) Y = Yes, use DB2 precompile
N = No, don’t precompile for DB2
NOTE: Displayed only if <longFormat>
request tag = “Y”.
<userOption01> Optional 0-1 String (1) Set of up to 20 one-byte, custom,
administrator-defined variables. Values:
Y = Yes
. Option20 N =No
< >
useription NOTE: Displayed only if <longFormat>
request tag = “Y”.

106

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<userOption0101>

<userOption0105>

Optional

0-1
each

String (1),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0101 to
0105 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0201>

<userOption0203>

Optional

0-1
each

String (2),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0201 to
0203 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0301>

<userOption0303>

Optional

0-1
each

String (3),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0301 to
0303 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0401>

<userOption0403>

Optional

0-1
each

String (4),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0401 to
0403 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption0801>

<userOption0805>

Optional

0-1
each

String (8),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 0801 to
0805 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption1001>

<userOption1002>

Optional

0-1
each

String (10),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1001 to
1002 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

107

Chapter 3: Package Management

108

Exhibit 3-21. CMPONENT PKG_COMP LIST <result> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<userOption1601>

<userOption1602>

Optional

0-1
each

String (16),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 1601 to
1603 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption3401>

<userOption3402>

Optional

0-1
each

String (34),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 3401 to
3402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption4401>

<userOption4402>

Optional

0-1
each

String (44),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 4401 to
4402 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption6401>

<userOption6405>

Optional

0-1
each

String (64),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 6401 to
6405 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<userOption7201>

<userOption7205>

Optional

0-1
each

String (72),
variable

Administrator-defined build options
assigned to component. Each tag
corresponds to User Option 7201 to
7205 on the ISPF user options panel for
component build.

NOTE: Displayed only if <longFormat>
request tag = “Y”.

<utilType>

Optional

0-1

String (1),
fixed

Utility type - ‘C’ recompile, ‘L’ relink.

<version>

Optional

0-1

String (2),
fixed

ISPF version number of staged
component.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Component Description List- PACKAGE CMP_DESC LIST

List the component descriptions for specified components and types within a package using
the Serena XML “package component description list” function. All component types are
included in the scope of this function, including source code members, load members,
copybooks, skeletons, ISPF panels, and JCL procedures.

The Serena XML service/scope/message names for a component description list at the
package level are:

<service name="PACKAGE">
<scope name="CMP_DESC">
<message name="LIST”>

These tags appear in both requests and replies.

PACKAGE CMP_DESC LIST — Request
Three common uses for package component description lists in Serena XML are:

« List All Components in Package — Name the desired package in the <package> tag.
Enter a “match-all” (asterisk) wildcard character in both the <component> and
<componentType> tags. All components in the package that have a description will be
returned.

« List All Components of Given Library Type — Name the desired package in the
<package> tag and the desired library type in the <componentType> tag. Enter a
“match-all” (asterisk) wildcard character in the <component> tag. All package
components of the desired library type will be returned, together with their descriptions, if
a description exists.

» Get Description for Named Component — Name the desired package in the
<package> tag and the desired component name in the <component> tag. Enter the
library type of the component in the <componentType> tag if known; otherwise, enter a
“match-all” (asterisk) wildcard character. The desired component and its description are
returned if the component exists in the package and it has a description.

The following example shows how you might code a request to list the description for a
specific component in package ACTP000007. Data structure details follow the example in
Exhibit 3-22.

Example XML — PACKAGE CMP_DESC LIST Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CMP DESC">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>

109

Chapter 3: Package Management

<package>ACTP000007</package>
<component>ACPSRC1A</component>
<componentType>SRC</componentType>
</request>
</message>
</scope>
</service>

Exhibit 3-22. PACKAGE CMP_DESC LIST <request>

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag.
Use <package> instead of
<applName> & <packageId>.
<component> Required 1 String (256), | ZMF name of desired component.
variable + If component is PDS member,
this is member name (max
8 bytes, no qualifiers).
* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.
Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<componentType> Required 1 String (3), Library type for component.
variable Wildcards & patterns with question
mark (?) & asterisk (*) are allowed.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as
fixed last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of
<applName> & <packageId>.

PACKAGE CMP_DESC LIST — Reply

The XML reply to a package component description list request includes zero to many
<result> tags. Each <result> tag contains the name, library type, and description of a
component in the named package if a description exists.

110

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

A standard <response> tag follows the last <result> tag to indicate the success or failure
of the request. Successful requests have a return code of 00. Unsuccessful requests have a
return code of 04 or higher. As the last tag returned in the reply message, the <response>

tag also serves as an end-of-list marker.

An example XML reply appears on the next page. Data structure details for the <result>
tag follow the example in Exhibit 3-23.

Example XML — PACKAGE CMP_DESC LIST Reply

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="CMP_DESC">
<message name="LIST">
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY00</component>
<componentDesc>ACCOUNT REC 00</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1A</component>
<componentDesc>ACCOUNT REC 1A</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1B</component>
<componentDesc>ACCOUNT REC 1B</componentDesc>
<componentType>CPY</componentType>
</result>
<result>
<package>ACTP000007</package>
<applName>ACTP</applName>
<packageId>000007</packageId>
<component>ACPCPY1C</component>
<componentDesc>ACCOUNT REC 1C</componentDesc>
<componentType>CPY</componentType>
</result>

<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>

111

Chapter 3: Package Management

<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-23. PACKAGE CMP_DESC LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first
fixed 4 bytes of package name.
<component> Optional 0-1 String (256), | ZMF name of component.
variable » |f component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
* If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentDesc> Optional 0-48 | String (72), Component description.
variable
<componentType> Optional 0-1 String (3), Library type of component.
variable
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
fixed last 6 bytes of package name.

List Components With Promotion Overlays - PACKAGE PRM_OVLY
LIST

If the promotion of a package would potentially cause some components to overwrite others
of the same name — for example, as part of another package already in testing — you can
know in advance using Serena XML. This function includes all component types and all
promotion libraries for the package in its scope.

The Serena XML service/scope/message tags for a message to list package components
with promotion overlays are:

<service name="PACKAGE">
<scope name="PRM OVLY”>
<message name="LIST">

These tags appear in both requests and replies.

112

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

PACKAGE PRM_OVLY LIST — Requests
Serena XML supports two kinds of component overlay lists:

« All Components with Promotion Overlays — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. Omit
the <componentNameAndType> tag. The function returns promotion overlay information
for all staged package components with duplicate component names and library types in
the chosen promotion environment.

* Promotion Overlays for Named Component(s) — Name the desired package in the
<package> tag and specify the promotion level of interest using the
<promotionName>, <promotionLevel>, and <promotionSiteName> tags. ltemize
the components to check for promotion overlays using the <componentNameAndType>
data element. A count of the itemized components is required in the <1istcount> tag.
The function returns overlay information only if an itemized component is duplicated in
the target promotion environment.

The following example shows how you might code a request to check a particular package
component for overlays in a named promotion library. Data structure details for the
<request> tag appear in Exhibit 3-24.

Example XML — PACKAGE PRM_OVLY LIST Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="PRM OVLY">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000002</package>
<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>
<promotionName>C001AUT</promotionName>
</request>
</message>
</scope>
</service>

113

Chapter 3: Package Management

Exhibit 3-24. PACKAGE PRM_OVLY LIST <request> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.
NOTE: OK to omit trailing blanks.
NOTE: Not recommended as replacement
for <package> tag. Use <package>
instead of <applName> & <packageId>.
<componentNameAndType> | Optional 0-o00 | Complex Complex element identifies component(s)
to check selectively. See Exhibit 3-25.
NOTE: If used, <1istCount> required.
NOTE: Omit tag to list all components in
package with promotion overlays.
<listCount> Optional 0-1 Integer (3), | Count of <componentNameAndType>
variable tags included in request.
NOTE: If <componentNameAndType>
used, this tag is required.
<package> Required 1 String (10), | Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), | ZMF package ID number. Same as last 6
fixed bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
<promotionLevel> Required 1 Integer (2), | Numeric code of promotion level to check
variable for potential component overlays.
<promotionName> Required 1 String (8), ZMF name of promotion level to check for
variable potential component overlays.
<promotionSiteName> Required 1 String (8), ZMF name of promotion site to check for
variable potential component overlays.
<recallMigratedLib> Optional 0-1 String (1) Y = Yes, recall migrated shadow library

N = No, don’t recall shadow library

114

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Note that <componentNameAndType> is a complex data element with subtags of its own.
Its data structure appears in Exhibit 3-25.

Exhibit 3-25. <componentNameAndType> Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Optional 0-1 String (256), | ZMF name of desired component.
variable « If component is PDS member,
this is member name (max
8 bytes, no qualifiers).
« If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.
<componentType> Optional 0-1 String (3), Library type for component in
variable <componentName>.

PACKAGE PRM_OVLY LIST — Replies

The Serena XML reply to a component overlay list request returns zero to many <result>
data structures. Each <result> lists one component with potential component overlays in
the named promotion library, together with package and component promotion status.

A package component has potential overlay issues in the target promotion library if:

* A component with the same name and library type already exists in the target.
* A component with the same name and library type exists in the promotion history
records for the target.

If no duplicate components are found in either the target promotion library or its history
records, no results are returned by this function.

In addition to any <result> tags, the reply message returns a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher. Because the
<response> tag follows the last <result> tag, it also serves as an end-of-list marker.

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-26.

Example XML — PACKAGE PRM_OVLY LIST Reply

<?xml version="1.0"7?>

<service name="PACKAGE">

<scope name="PRM OVLY">

<message name="LIST">

<result>
<component>ACPSRS00</component>
<componentType>SRS</componentType>
<isComponentRestaged>N</isComponentRestaged>

115

Chapter 3: Package Management

116

<overlayStatus>C</overlayStatus>
<package>TES5000001</package>

<applName>TES5</applName>

<packageId>000001</packageId>

<promotionSiteName>SERT8</promotionSiteName>
<promotionLevel>10</promotionLevel>

<promotionName>CO001AUT</promotionName>
<packageStatus>6</packageStatus>

<promoter>USER24</promoter>

<promotionDate>20090217</promotionDate>
<promotionTime>105054</promotionTime>

</result>

<response>

<statusMessage>CMN8700I - Overlay service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>

</response>
</message>
</scope>
</service>

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended as

replacement for <package> tag. Use

<package> instead of <applName> &
<packageId>.
<component> Optional 1 String (256), | ZMF name of staged component.
variable « If component is PDS member, this is
member name (max 8 bytes, no qualifi-
ers).

« If component is HFS file, this is Unix-
style long file name, optionally prefixed
by path from installation root.

<componentType> Optional 0-1 String (3), Library type of staged component.
fixed
<isComponentRestaged> Optional 0-1 String (1) Y = Yes, component is restaged

N = No, component not restaged

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<overlayStatus> Optional 0-1 String (1) Code for overlay status of this
component in this promotion library.
Values:
N = Exists in promotion library but has
no history
H = Exists in promotion history but
not in promotion library
C = Common to both promotion library
and history
<package> Optional 0-1 String (10), Fixed-format ZMF package name.
variable
<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last 6
fixed bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.
<packageStatus> Optional 1 String (1) Code for status of package in lifecycle.
Values:
1 = Approved
2 = Backed out
3 = Baselined
4 = Complex/super pkg closed
5 = Deleted (memo delete)
6 = Development
7 = Distributed
8 = Frozen
9 = Installed
A = Complex/super pkg open
B = Rejected
C = Temporary change cycle
completed
<promoter> Optional 0-1 String (8), TSO user ID of latest package promoter.
variable
<promotionDate> Optional 0-1 Date, Latest promotion date for package.
yyyymmdd
<promotionLevel> Optional 0-1 Integer (2), Numeric code of promotion level to check
variable for potential component overlays.
<promotionName> Optional 0-1 String (8), ZMF name of promotion level to check for
variable potential component overlays.
<promotionSiteName> Optional 0-1 String (8), ZMF name of promotion site to check for
variable potential component overlays.

117

Chapter 3: Package Management

118

Exhibit 3-26. PACKAGE PRM_OVLY LIST <result> Data Structure (Continued)

Data Type
Subtag Use Occurs | & Length Values & Dependencies
<promotionTime> Optional 0-1 Time, Latest promotion time for package, 24-
hhmmss hour format.
<release> Optional 0-1 String (8), Name of release to which package is
(ERO only) variable attached.

Unfreeze Source/Load Components - PACKAGE SRC _LOD UNFREEZE

You can use Serena XML to unfreeze one or more “like-source” or “like-load” components in
a package. “Like-copybook” or “like-PDS” components such as copybooks, skeletons, JCL
procedures, or ISPF panels are not included in the scope of this function.

The Serena XML service/scope/message tags for a package-level unfreeze message for
source and load components are:

<service name="PACKAGE”>
<scope name="SRC_LOD">
<message name="UNFREEZE">

These tags appear in both requests and replies.

PACKAGE SRC_LOD UNFREEZE — Requests
Serena XML supports two types of unfreeze requests for source and load components:

* Full Unfreeze — Unfreezes all source and load component in the named package. This
is the default.

» Selective Unfreeze — Unfreezes a subset of individually named source and/or load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <1listcount> tag.

The following example shows how you might code a full unfreeze request for all components
in a package. Data structure details for the <request> tag appear in Exhibit 3-27.

Example XML — PACKAGE SRC_LOD UNFREEZE Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="UNFREEZE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000013</package>

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

</request>
</message>
</scope>
</service>

Exhibit 3-27. PACKAGE SRC_LOD UNFREEZE <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies

<appIName> Optional 0-1 String (4), ZMF application name. Same as first
variable 4 bytes of package name.

NOTE: OK to omit trailing blanks.
NOTE: Not recommended as
replacement for <package> tag. Use

<package> instead of <applName>
& <packageId>.

<component> Optional 0-800 | Complex Complex identifier for each
component to selectively unfreeze or
refreeze. See Exhibit 3-28.

NOTE: If used, <1istCount> tag
also required.

<listCount> Optional 0-1 Integer (3), Number of components to selectively
variable unfreeze or refreeze. Must match
number of <component> tags.
Value range: 1 - 800

NOTE: If <component> tag used,
this tag is required.

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as
variable last 6 bytes of package name.
NOTE: Leading zeroes required.
NOTE: Not recommended. Use

<package> instead of <applName>
& <packageId>.

119

Chapter 3: Package Management

120

The <component> subtag represents a complex data structure that is frequently reused
among the package-level requests in Serena XML. Data structure details for this tag appear
in Exhibit 3-28 below.

Exhibit 3-28. <component> Subtag Data Structure

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentName> Required 0-1 String (256), | ZMF component name.
variable « If component is PDS member, this
is member name (max 8 bytes, no
qualifiers).
« If component is HFS file, this is
Unix-style long file name, optionally
prefixed by path from installation
root.
<componentType> Required 0-1 String (3), Library type of component in
fixed <componentName>.

PACKAGE SRC_LOD UNFREEZE — Replies

The Serena XML reply to a source and load component unfreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

Example XML — PACKAGE SRC_LOD UNFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="UNFREEZE">
<response>
<statusMessage>CMN8700I - UNFREEZE:SRC_LOD service completed</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Refreeze Source/Load Components - PACKAGE SRC_LOD REFREEZE

The inverse of the Serena XML unfreeze function for source and load components is the
refreeze function for these components. Like its inverse, the refreeze function applies to one
or more “like-source” or “like-load” components. Other components — copybooks, skeletons,
JCL procedures, ISPF panels, and the like — are not included in the scope of this function.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

The Serena XML service/scope/message tags for a package-level refreeze message for
source and load components are:

<service name="PACKAGE”>
<scope name="SRC_LOD">
<message name="REFREEZE">

These tags appear in both requests and replies.

Refreeze Source and Load Components — Requests

As with unfreeze requests, Serena XML supports two types of package-level refreeze
requests for source and load components:

* Full Refreeze — Refreezes all source and load components in the named package. This
is the default.

+ Selective Refreeze — Refreezes a subset of individually named source and load
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
refreeze is required in the <1istcount> tag.

The <request> tag syntax for a source-and-load component refreeze request is identical to
that for an source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <message> tag differs in this request, as shown above.

Example XML — PACKAGE SRC_LOD REFREEZE Request

<?xml version="1.0"7?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="REFREEZE">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>ACTP000013</package>
</request>
</message>
</scope>
</service>

PACKAGE SRC_LOD REFREEZE — Replies

The Serena XML reply to a source-and-load component refreeze request does not return a
<result> data structure. It does, however, return a standard <response> data structure to
indicate the success or failure of the request. Successful requests have a return code of 00.
Unsuccessful requests have a return code of 04 or higher.

121

Chapter 3: Package Management

122

Example XML — PACKAGE SRC_LOD REFREEZE Reply

<?xml version="1.0"?>
<service name="PACKAGE">
<scope name="SRC_LOD">
<message name="REFREEZE">
<response>
<statusMessage>CMN8700I - REFREEZE:SRC_LOD service completed</
statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Unfreeze Non-Source Components - PACKAGE NON_SRC UNFREEZE

You can use Serena XML to unfreeze one or more “hon-source” components in a package.
This unfreeze request includes in its scope all “like-load”, “like-copybook”, and “like-PDS”
component library types. “Like-source” components are excluded.

The Serena XML service/scope/message tags for a non-source component unfreeze
message are:

<service name="PACKAGE”>
<scope name="NON_SRC”>
<message name="UNFREEZE">

These tags appear in both requests and replies.

PACKAGE NON_SRC UNFREEZE — Requests
Serena XML supports two types of unfreeze requests for non-source components:

* Full Unfreeze — Unfreezes all non-source components in the named package. This is
the default.

» Selective Unfreeze — Unfreezes a subset of individually named non-source
components in the named package. Desired components are itemized by name and
library type in the <component> data element. A count of the itemized components to
unfreeze is required in the <1istcount> tag.

The <request> tag syntax for a non-source component unfreeze request is identical to that
for a source-and-load component unfreeze request. (See Exhibit 3-27.) Only the name
parameter in the high-level <scope> tag differs in this request, as shown above.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

PACKAGE NON_SRC UNFREEZE — Replies

The Serena XML replies to a unfreeze request for non-source components do not return a
<result> data structure. They do, however, return a standard <response> data structure
to indicate the success or failure of the request. Successful requests have a return code of
00. Unsuccessful requests have a return code of 04 or higher.

Refreeze Non-Source Components - PACKAGE NON_SRC REFREEZE

The inverse of the Serena XML unfreeze function for non-source components is the refreeze
function for these members. Like its inverse, the refreeze function applies to one or more
“non-source” components in a package, such as executable load modules, JCL procedures,
and copybooks. “Like-source” components are excluded. Scratch and rename utility records
are also outside the scope of this function.

The Serena XML service/scope/message tags for a non-source component refreeze
message are:

<service name="PACKAGE">
<scope name="NON_SRC">
<message name="REFREEZE”>

These tags appear in both requests and replies.

PACKAGE NON_SRC REFREEZE — Requests
Serena XML supports two types of refreeze requests for non-source components:

* Full Refreeze — Refreezes all non-source components in the named package. This is
the default.

» Selective Refreeze — Refreezes a subset of individually named non-source components
in the named package. Desired components are itemized by name and library type in the
<component> data element. A count of the itemized components to refreeze is required
in the <1istcount> tag.

The <request> tag syntax for a non-source component refreeze request is identical to that
for a non-source component unfreeze request. (See Exhibit 3-27.) Only the name parameter
in the high-level <message> tag differs in this request, as shown above.

Refreeze Non-Source Components — Replies

The Serena XML reply to a package-level refreeze request for non-source components does
not return a <result> data structure. It does, however, return a standard <response> data
structure to indicate the success or failure of the request. Successful requests have a return
code of 00. Unsuccessful requests have a return code of 04 or higher.

123

Chapter 3: Package Management

124

List Scratch and Rename Utility Records - CMPONENT PKG_UTIL LIST

Serena XML can list the scratch and rename utility requests for all components in a package.
The service/scope/message tags for this /ist message are:

<service name="CMPONENT">
<scope name="PKG_UTIL”>
<message name="LIST">

These tags appear in both requests and replies.

The service name is “cmponent”, not “package”, because XML Services calls the low-
level component service in ChangeMan ZMF to perform most tasks associated with this
function. The scope name, “pkg util”, identifies this message as a package-level
component service.

Note

The spelling of “cmponent” in the service name attribute is condensed to
eight bytes for legacy compatibility on the mainframe.

CMPONENT PKG_UTIL LIST — Requests

Serena XML supports several uses for the scratch and rename request list. For example,
using appropriate selection criteria in your request, you can:

* Find Old Component Name From New Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, new component name (after rename) in the <newComponent>
tag. The function returns any rename records that match that new component name,
together with the old component name prior to the rename action.

* Find New Component Name from Old Component Name — Name the desired
package in the <package> tag. Enter “8” in the <utilityType> tag to select rename
records. Enter the known, old component name (before rename) in the <component>
tag. The function returns any rename records that match that old component name,
together with the new component name after the rename action.

« List All Scratched and Renamed Components — Name the desired package in the
<package> tag. Enter a blank in the <utilityType> tag or omit it entirely to request
both scratch and rename record types. A list of all components with scratch and rename
requests, including old and new component names, will be returned.

» List All Scratched Components — Name the desired package in the <package> tag.
Enter “9” in the <utilityType> tag to request scratch records. The functions lists all
components in the package with outstanding scratch requests.

To further customize your list request, specify a library type, modification date range, updater
ID, or component status of interest. Choose component status options using appropriate
yes/no flag tags.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Note

Yes/no flags for component status filtering take default values as a group.
The default changes based on whether or not you enter explicit values in these
tags, as follows:

« If no status flag has an explicitly typed value, the default for all tags is “Y”.

« If any status flag has an explicitly typed value, the default for the remaining
tags is “N”.

The following example shows how you might code a request to list all renamed components
in a package using Serena XML. The example request includes only components that were
renamed while in unfrozen status; active, inactive, or frozen components are omitted.

Data structure details for the <request> tag appear in Exhibit 3-29.

Example XML — CMPONENT PKG_UTIL LIST Request

<?xml version="1.0"?>
<service name="CMPONENT">
<scope name="PKG_UTIL">
<message name="LIST">
<header>
<subsys>8</subsys>
<product>CMN</product>
</header>
<request>
<package>TES5000001</package>
</request>
</message>
</scope>
</service>

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as first 4
variable bytes of package name.

NOTE: OK to omit trailing blanks.

NOTE: Not recommended. Use
<package> instead of <applName> &
<packageId>.

125

Chapter 3: Package Management

126

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Subtag

Use

Occurs

Data Type &
Length

Values & Dependencies

<component>

Optional

0-1

String (256),
variable

Original component name before
scratch or rename operation.

« If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<componentType>

Optional

String (3),
fixed

Library type of component in
<componentName>.

<filterActiveStatus>

Optional

String (1)

Y = Include active components
N = Omit active components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterHfsDirectory>

Optional

String (256),
variable

Name of HFS directory containing
components to be listed, prefixed by
path from installation root (that is, path
as stored in baseline library). If present,
only files in this directory are listed. If
absent, all HFS files meeting other
criteria are listed.

NOTE: Applies to z/OS Unix HFS
components only. Irrelevant for native
z/OS PDS library members.

<filterInactiveStatus>

Optional

String (1)

Y = Include inactive components
N = Omit inactive components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<filterUnfrozenStatus>

Optional

String (1)

Y = Include unfrozen components
N = Omit unfrozen components

NOTE: Part of component status flag
group. If no tag in group has explicit
value, default is Y. If any tag in group
has explicit value, default is N.

<fromDatelLastModified>

Optional

0-1

Date,
yyyymmdd

Start date in desired range of
component modification dates.

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-29. CMPONENT PKG_UTIL LIST <request> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<newComponent> Optional 0-1 String (256), | New component name after rename
variable operation. Blank for scratch operation.

« If component is PDS member, this is
member name (max 8 bytes, no quali-
fiers).

« If component is HFS file, this is Unix-
style long file name, optionally pre-
fixed by path from installation root.

NOTE: Takes asterisk (*) wildcard.

<package> Required 1 String (10), Fixed-format ZMF package name.
fixed

<packageld> Optional 0-1 Integer (6), ZMF package ID number. Same as last
fixed 6 bytes of package name.

NOTE: Leading zeroes required.

NOTE: Not recommended. Use

<package> instead of <applName> &

<packageId>.
<toDatelLastModified> Optional 0-1 Date, End date in desired range of component

yyyymmdd modification dates.

<updater> Optional 0-1 String (8), TSO user ID of last person to update
variable component.
<utility Type> Optional 0-1 String (1) Selects type of utility record to list.
Values:

8 = Rename record
9 = Scratch record
Blank = Both record types

NOTE: Omit tag or enter explicit blank
to list both record types. Null tag returns
no records.

NOTE: Asterisk (*) wildcard is not
accepted in this tag.

CMPONENT PKG_UTIL LIST — Replies

The Serena XML reply to this request returns zero to many <result> data structures, each
of which lists one component scratch or rename utility record for a package. Scratch records
report the names of components awaiting deletion, along with status information. Rename
records report old and new component names, along with status information for the original
component at the time it was renamed.

The reply message returns a standard <response> data structure to indicate the success or
failure of the request. Successful requests have a return code of 00. Unsuccessful requests
have a return code of 04 or higher. Because the <response> tag follows the last <result>
tag, it also serves as an end-of-list marker.

127

Chapter 3: Package Management

The example below shows how a reply for this function might appear in Serena XML. Data
structure details for the <result> tag appear in Exhibit 3-30.

Example XML — CMPONENT PKG_UTIL LIST Reply

<?xml version="1.0"7?>
<service name="CMPONENT">
<scope name="PKG_UTIL">
<message name="LIST">
<result>
<utilityType>9</utilityType>
<package>TES5000001</package>
<applName>TES5</applName>
<packageId>000001</packageId>
<componentType>CPY</componentType>
<updater>USER24</updater>
<dateLastModified>20090205</dateLastModified>
<timeLastModified>112910</timeLastModified>
<component>ACPCPY00</component>
<componentStatus>0</componentStatus>
<encryption>00000000</encryption>
</result>
<response>
<statusMessage>CMN8700I - LIST service completed</statusMessage>
<statusReturnCode>00</statusReturnCode>
<statusReasonCode>8700</statusReasonCode>
</response>
</message>
</scope>
</service>

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result>

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<appIName> Optional 0-1 String (4), ZMF application name. Same as
variable first 4 bytes of package name.
<component> Optional 1 String (256), | Original ZMF name of scratched or
variable renamed component.

* If component is PDS member,
this is member name (max
8 bytes, no qualifiers).

* If component is HFS file, this is
Unix-style long file name, option-
ally prefixed by path from installa-
tion root.

128

Serena® ChangeMan® ZMF 8.1: XML Services User's Guide

Exhibit 3-30. CMPONENT PKG_UTIL LIST <result> (Continued)

Data Type &
Subtag Use Occurs | Length Values & Dependencies
<componentStatus> Optional 0-1 String (1) Code for original component status.
Values:
0 = Active
1 = Approved
2 = Checked Out
3 = Demoted
4 = Frozen
5 = Inactive
6 = Incomplete
7 = Promoted
8 = Refrozen
9 = Rejected
A = Remote Promoted
B = Submitted
C = Unfrozen
<componentType> Optional 1 String (3), Library type of scratched or
variable renamed component.
<datelLastModified> Optional 0-1 Date, Date original component was last
yyyymmdd modified.
<encryption> Optional 0-1 String (8), Component encryption number
variable
<newComponent> Optional 0-1 String (256), | New ZMF name of renamed
variable component.
<package> Optional 1 String (10), Fixed-format ZMF packa