
Cobwood: Enhancing Forest Economics Model
Reusability Through Labeled Panel Data

Structures

2025

Summary
Managing forest ecosystems effectively requires long-term foresight into global
wood markets. This planning relies on macroeconomic panel data spanning mul-
tiple countries over extended time periods. The cobwood package introduces
a data structure to manipulate panel data for forecasting and scenario analy-
sis. By implementing country and time indexes, the package improves model
readability, as the source code closely mirrors mathematical equations used in re-
search publications. To demonstrate cobwood’s practical application, we present
a reimplementation of the Global Forest Products Model (GFPMx). Our data
structure leverages the Xarray package, which provides labeled N-dimensional
arrays and robust capabilities including NetCDF file storage for model outputs.
This approach offers two key advantages: enhanced source code clarity that
facilitates model inspection, and comprehensive metadata for country, product,
and time coordinates along with units metadata in the dataset attributes. These
features position cobwood as an ideal component for integration into broader
modeling toolchains.

Statement of need
Forest management requires a long-term perspective, as trees mature over
decades or centuries, while wood markets operate on a global scale. Decision
makers in the forestry sector need reliable long-term forecasts of global
consumption and trade patterns for forest products to manage ecosystems
effectively. They particularly value the ability to explore potential future
wood harvest developments under various demand and supply scenarios. This
need has prompted forest economists to develop macroeconomic models of the
forest sector. Several global forest sector models currently exist, including
the Global Forest Products Model (GFPM)[@buongiorno2003global], the

1

European Forest Institute Global Trade Model (EFI-GTM)[@kallio2004global],
the Global Forest and Agriculture Model (G4M)[@gusti2020g4m], and the
Global Forest Trade Model (GFTM) [@jonsson2015global]. Variants such as
Timba (a GFPM adaptation) [@tifsm2025] complement numerous regional
and national models. Model transparency is crucial for determining whether
a particular model is suitable for analyzing specific policy questions or can be
appropriately modified for new purposes. While research papers provide the
conceptual foundation for these models, reading the source code of the model
implementation offers a more comprehensive understanding of the modeling
system. Detailed knowledge on the source code implementation of a model
becomes essential when extending a model to address novel research questions.

Macroeconomic forest sector models typically organize market datasets along
two key dimensions: country and time. In econometrics, this structure is known
as panel data. These market datasets contain information on production, con-
sumption, and trade for specific forest products such as roundwood, sawnwood,
wood panels, pulp, and paper products. Current modeling software often lacks
a consistent, well-labeled panel data structure. Instead, these programs use
partial labeling approaches—such as matrices names or vector names within
data frames, or simple column names in spreadsheets. While this approach can
make programs more concise, it creates challenges for newcomers trying to un-
derstand the models. Variable names are often unclear, and the limited data
labeling makes the code difficult to interpret for those unfamiliar with the spe-
cific implementation. Examples of readability issue can be found in the source
code of models like GFTM, GFPM, and Timba. That source code for other
forest sector models, such as EFI-GTM and G4M-GLOBIOM-Forest, is not yet
publicly available for review.

The cobwood model has been used to produce scenario analysis for technical re-
ports @mubareka2025 and @rougieux2024. The first model programmed inside
cobwood is only a reimplementation of an existing model, the main value of this
python package doesn’t lie in the model itself, but in the panel data structure
that can be used to implement many models.

The next sections describe input output data and the data structure.

Input, output
Cobwood can process input data from any tabular source that Python supports.
For instance, the GFPMx model uses a single Excel spreadsheet containing
separate sheets for consumption, production, import, export, and prices of major
forest products from FAOSTAT. The implementation first converts these sheets
to CSV files, which the gfpmx_data.py module then transforms into an Xarray
data structure. Remember that Xarray datasets can be converted to pandas
data frame very easily.

Output data is saved in NetCDF format, which serves as Xarray’s disk

2

representation. While not commonly used in economics, this format is
standard in earth systems modeling, making it ideal for integrated model-
ing systems where economic and biophysical models exchange data. The
write_datasets_to_netcdf method adds a third dimension coordinate called
“product” before saving datasets to NetCDF files. These files include metadata
labels for units, establishing a foundation for reproducible analysis across
research teams.

Data structure and implementation
Cobwood leverages Xarray’s labeled data arrays to represent panel data, en-
abling a more intuitive approach to economic modeling. This design allows
developers to write Python functions that closely mirror the mathematical equa-
tions found in academic literature, with explicit time and country dimensions.
The package is designed for extensibility across different models, though the
initial release focuses on implementing the Global Forest Products Model (GF-
PMx) [@buongiorno2021gfpmx]. The core of cobwood is the GFPMX object,
which organizes global forest product data including consumption, production,
trade flows, and prices.

Data organization follows a logical hierarchy:

• Each forest product is stored as a separate Xarray dataset (e.g.,
gfpmx[“sawn”] for sawnwood)

• Within each product dataset, specific variables are accessible as two-
dimensional arrays (e.g., gfpmx[“sawn”][“cons”] for consumption)

• These arrays maintain panel data structure with clear country and year
dimensions

• Some variables, like demand elasticities, use only the country dimension

To explore available variables and their units for any product, users can access
the variables property (e.g., gfpmxb2021["sawn"].variables). For example
this prints the unit used by the roundwood product for the production variable:

gfpmxb2021["indround"]["prod"].unit
'1000m3'

A key advantage of Xarray’s approach is the automatic dimension alignment
when performing operations between arrays, which simplifies mathematical op-
erations across different data elements. As Figure 1 illustrates, the labeled
panel data structure creates a clean, organized data representation that makes
the modeling system more accessible to new users.

Model run
Load the input data into a GFPMX model object. The rerun=True argument
gives the instruction to erase previous model runs of this scenario. When run-

3

19
95

19
96

20
99

21
00

...

Algeria
Angola

...
Ukraine

Uzbekistan

gfmpx[“sawn”][“cons”] is a
2 dimensional variable

The dataset gfmpx[“sawn”] contains many data arrays

cons
imp

exp
prod

Two dimensional variables with
countries and time coordinates

One dimensional variables
with country coordinates

cons_price_elasticity

cons_gdp_elasticity

cons_constant

...
imp_price_elascticity

imp_constant

...

gfmpx[“sawn”][“cons_price_elasticity”]
is a one dimensional variable

Algeria
Angola

...
Ukraine

Uzbekistan

`gfmpx.all_products_ds` contains 34 variables along 3 coordinates

time

country

product

Figure 1: Data structure

4

ning the model, compare=True argument makes it compare the model output
with a reference model run from the external model that we use as a reference
in this case the Excel implementation of GFPMx:

from cobwood.gfpmx import GFPMX
gfpmxb2021 = GFPMX(scenario="base_2021", rerun=True)
gfpmxb2021.run(compare=True, strict=False)

After a model run, the scenario output data is automatically saved inside the
model’s output_dir directory. When re-loading the model later, specify the
argument rerun="False" (default) to load both input and output data without
the need to run the model.

Visualisation
The following python code draws a faceted plot of industrial roundwood con-
sumption, import, export, production and price. We don’t need to re-run the
model this time since we can simply reload the model’s output data from the
previous run above.

from cobwood.gfpmx import GFPMX
gfpmxb2021 = GFPMX(scenario="base_2021", rerun=False)

The first plot draws coloured lines by continents. It is the default plot.

gfpmxb2021.facet_plot_by_var("indround")

Figure 2: Industrial roundwood variables by continent

The country argument can specify one coloured line by country:

gfpmxb2021.facet_plot_by_var("indround", countries=["Canada", "France", "Japan"])

Figure 3: Industrial roundwood variables by country

5

Plots are visible in the model’s output directory gfpmxb2021.output_dir.
Since the method returns a plot object, the output of the facet_plot_by_var()
method can also be displayed in a Jupyter notebook directly.

The following code draws a plot of Forest area and forest stock.

gfpmxb2021.facet_plot_by_var("indround", countries=["Canada", "France", "Japan"])

Xarray objects also have a plot method which provides built-in visualisation
capabilities.

Conclusion
The cobwood package introduces a new way to represent macroeconomic forest
products market data using N-dimensional labeled data arrays. This data struc-
ture, built on Xarray, improves source code readability by allowing equations
with time and country coordinates to be easily identified in the code. Units
are stored as metadata attributes within the data structure. Model outputs
are saved to NetCDF files, which preserve Xarray’s data model, including di-
mensions and attributes. We believe this new structure makes Cobwood an
excellent foundation for implementing various forest sector models. Addition-
ally, the scenario configuration file enables easy comparison of multiple model
implementations across a wide range of configuration parameters. # References

6

	Summary
	Statement of need
	Input, output
	Data structure and implementation
	Model run
	Visualisation
	Conclusion

