Tutorial: Environment for Tree
Exploration
Release 3.0.0b30

Jaime Huerta-Cepas

February 11, 2016

Contents

1 Changelog history 3
1.1 What'snewinETE2.3 e 3
1.2 What'snewinETE2.2 5
1.3 What'snewinETE2.1 9
2 The ETE tutorial 13
2.1 Working With Tree Data Structures 13
2.2 The Programmable Tree Drawing Engine 43
2.3 PhylogeneticTrees oL e e e 64
24 Clustering Trees v v i i e e e e e e e e e e e e e e e 80
2.5 Phylogenetic XML standards o 85
2.6 Interactive web tree visualization Lo 93
2.7 Testing Evolutionary Hypothesis 95
2.8 Dealing with the NCBI Taxonomy database 105
2.9 SCRIPTS:orthoXML s e 108
3 ETE’s Reference Guide 115
3.1 Master Treeclass o . o o e e e e 115
32 Treeviewmodule 127
3.3 PhyloTreeclass e 138
34 Clusteringmodule 141
3.5 Nexmlmodule0 e 142
3.6 Phyloxml Module 158
3.7 Seqgroupclass e e 161
3.8 WebTreeApplication object i 161
3.9 EvolTreeclass e 162
3.10 NCBITaxaclass oo it e e e e e s e e e 166
Bibliography 167
Python Module Index 169
Index 171

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

[Download PDF documentation]

Contents 1

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2 Contents

CHAPTER 1

Changelog history

1.1

What’s new in ETE 2.3

1.1.1 Update 2.3.2

added NCBITaxa.get_descendant_taxa ()
added NCBITaxa.get_common_names ()

ete ncbiquery: dump descendant taxa given a taxid or taxa name. new option ‘~descendants®_;
renamed ‘—taxonomy‘_ by ‘—tree‘_

fixes <misaligned branches <https://github.com/jhcepas/ete/issues/113>‘_ in ultrametric tree im-
ages using vt_line_width > 0

fixes <windows installation problem <https://github.com/jhcepas/ete/issues/114>°_

1.1.2 New Modules

tools

A collection of command line tools, implementing common tree operations has been added to the ETE
core package. All tools are wrapped by the ete command, which should become available in your path
after installation.

ete build: Build phylogenetic trees using a using a number of predefined built-in gene-tree and
species-tree workflows. Watch example

ete view: visualize and generate tree images directly form the command line.

ete compare: compare tree topologies based on any node feature (i.e. name, species name, etc)
using the Robinson-Foulds distance and edge compatibility scores.

ete ncbiquery: query the ncbi taxonomy tree directly from the database.

ete mod: modify tree topologies directly from the command line. Allows rooting, sorting leaves,
pruning and more

ete annotate: add features to the tree nodes by combining newick and text files.

ete generate: generate random trees, mostly for teaching and testing

http://etetoolkit.org/documentation/ete-ncbiquery/
https://github.com/jhcepas/ete/issues/113
https://github.com/jhcepas/ete/issues/114
http://etetoolkit.org/documentation/tools/
http://etetoolkit.org/documentation/ete-build/
http://etetoolkit.org/static/img/etebuild.gif
http://etetoolkit.org/documentation/ete-view/
http://etetoolkit.org/documentation/ete-compare/
http://etetoolkit.org/documentation/ete-ncbiquery/

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

ncbi taxonomy

The new ncbi_taxonomy module provides the class NCBI Taxa, which allows to query a locally parsed
NCBI taxonomy database. It provides taxid-name translations, tree annotation tools and other handy
functions. A brief tutorial and examples on how to use it is available here

1.1.3 New features

News in Tree instances

added TreeNode.iter_edges () and TreeNode.get_edges ()
added TreeNode.compare () function

added TreeNode.standardize () utility function to quickly get rid of multifurcations,
single-child nodes in a tree.

added TreeNode.get_topology_id () utility function to get an unique identifier of a tree
based on their content and topology.

added TreeNode .expand_polytomies ()

improved TreeNode.robinson_foulds () function to auto expand polytomies, filter by
branch support, and auto prune.

improved TreeNode.check_monophyly () function now accepts unrooted trees as input

Default node is set to blank instead of the “NoName” string, which saves memory in very large
trees.

The branch length distance of root nodes is set to 0.0 by default.
newick export allows to control the format of branch distance and support values.

Tree and SeqGroup instances allow now to open gzipped files transparently.

News in the treeview module

improved SVG tree rendering

improved random_color () function (a list of colors can be fetch with a single call)
improved SegMotifFace

Added RectFace

Added StackedBarFace

1.1.4 Highlighted Bug Fixes

Newick parser is now more strict when reading node names and branch distances, avoiding silent
errors when parsing node names containing illegal symbols (i.e.][)(,:)

fixes several minor bugs when retrieving extra attributes in
PhyloNode.get_speciation_trees().

Tree viewer crashes when redrawing after changing node properties.

fixed installation problem using pip.

Chapter 1. Changelog history

https://github.com/jhcepas/ete/issues/97
https://github.com/jhcepas/ete/issues/94
https://github.com/jhcepas/ete/issues/82

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* visualizing internal tree nodes as a circular tree produce crashes
* math domain error in SequencePlotFace.

* Fix likelihood calculation bug in EvolTree

* Fix BarChartFace problem with negative numbers

* Fix problem that produced TreeStyle attributes to be ignored in PhyloTree instances.

1.2 What’s new in ETE 2.2

1.2.1 BUGFIXES

* Fixes in NeXML parser and exporting functions
* Fixed ‘paste newick’ functionality on the GUI

¢ Fixed PhyloNode.is_monophyletic () and moved to
TreeNode.check _monophyly ().

* Fixed consistency issued in TreeNode. sort_descendants () function.

1.2.2 SCRIPTS

* Improvements in the standalone visualization script (a.k.a. ete3)

* Added the etree2orthoxml script, which provides conversion between phylogenetic tree and the
orthoXML format

1.2.3 NEW MODULES

* New EvolNode tree object type is available as a part of adaptation-test extension recently devel-
oped by Francois Serra (see Testing Evolutionary Hypothesis in the tutorial).

C oo | EHERE U IR N | .

gonillal 1, c| E C] B C| Hilcc

'an._togloeytes 111, c| C HilicC &

apio_cynocophalus MA| C | c H 3
DImag wka 157 5823 GRS M2 massl ‘\
R I R Y 4 3
,L I I ff ";_'_:_f\ 1 '_'r""/"\' e ."n'_ i | '-\'_,:_'f'__'_L'_ +1t Jﬂ_I I l;_,';—=

) = ET F) [[(3] [] & (3])) om

iRk

1.2.4 NEW FEATURES

¢ News in core Tree instances:

— Added TreeNode. robinson_foulds () distance to compare the topology of two trees
(i.e. tree.robinson_foulds(tree2)). It includes automatic pruning to compare trees of different
sizes. See tutorial and examples

— Added new options to TreeNode . copy () function, allowing faster methods to duplicate
tree node instances. See tutorial and examples

1.2. What’s new in ETE 2.2 5

https://github.com/jhcepas/ete/issues/84
https://github.com/jhcepas/ete/issues/98
https://github.com/jhcepas/ete/issues/109
https://github.com/jhcepas/ete/issues/75

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

— Added preserve_branch_length argument to TreeNode.prune () and
TreeNode.delete (), which allows to remove nodes from a tree while keeping
original branch length distances among the remaining nodes.

— Added TreeNode. resolve _polytomy () function to convert multifurcated nodes into
an arbitrary structure of binary split nodes with distance. See tutorial and examples

— Added TreeNode. get_cached_content () function, which returns a dictionary link-
ing each node instance with its leaf content. Such a dictionary might be used as a cache to
speed up functions that require intensive use of node traversing. See tutorial and examples

— Improved TreeNode.get_ascii () function for text-based visualization of trees. A
new attributes argument can be passed to display node attributes within the ASCII tree rep-

resentation.

from ete3 import Tree

t = Tree(" ((A, B)Internal 1:0.7, (C, D)Internal_2:0.5)root:1.3;", format=1)
t.add_features (size=4)

print t.get_ascii(attributes=["name", "dist", "size"])
#

/=4, 0.0

/Internal_1, 0.7

/ \-B, 0.0

-root, 1.3, 4

/ /-C, 0.0

\Internal 2, 0.5

\-D, 0.0

#

— Random branch length and support values generation is now available for the
TreeNode.populate () function.

— anew argument is_leaf_fn is available for a number of traversing functions, thus allow-
ing to provide custom stopping criteria when browsing a tree. This is, any node matching the
function provided through the is_leaf_fn argument will be temporarily considered as a
terminal/leaf node by the traversing function (tree will look as a pruned version of itself).
See tutorial and examples

— Added TreeNode.iter ancestors () and TreeNode.get_ancestors () func-
tions.

— Added TreeNode.iter prepostorder () tree node iterator.

— Newick parser accepts now the creation of single node trees. For example, a text string such
as "nodel; " will be parsed as a single tree node whose name is nodel. By contrast, the
newick string (nodel) ; will be interpreted as an unnamed root node plus a single child
named namel.

— TreeNode.write () acceptsnow a format_root_node argument to export root node
features as a part of the newick string.

— The new TreeNode.check_monophyly () method allows to check if a node is mono,
poly or paraphyletic for a given attribute and values (i.e. grouped species). Although mono-
phyly is actually a phylogenetic concept, the idea can be applied to any tree, so any topology
could be queried for the monophyly of certain attribute values. If not monophyletic, the
method will return also the type of relationship connecting the provided values (para- or
poly-phyletic). See tutorial and examples

6 Chapter 1. Changelog history

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

— New TreeNode.get_monophyletic () method that returns a list of nodes in a tree
matching a custom monophyly criteria.

* News PhyloTree instances:

— Added PhyloNode.get_speciation_trees () method, which returns all possible
species topologies present in a gene family tree as described in Treeko. See tutorial and
examples

See also:

TreeKO: a duplication-aware algorithm for the comparison of phylogenetic trees.
Marcet-Houben M, Gabaldon T.
Nucleic Acids Res. 2011 May;39(10):e¢66. doi: 10.1093/nar/gkr087.

— Added PhyloNode.split_by_dups () method, which returns a list of partial subtrees
resulting from splitting a tree at duplication nodes. See tutorial and examples

— Added PhyloNode.collapse_lineage specific_expansions () method,
which returns a pruned version of a tree, where nodes representing lineage specific
expansions are converted into a single leaf node. See tutorial and examples

* News on sequence and multiple sequence alignment parsing:

— added the option to disable the automatic correction of duplicated names when loading
SegGroup data from phylip and fasta files.

* News on tree visualization and image rendering:

— node style attributes can now be modified without the need of initialization by directly ac-
cessing the TreeNode . img_style attribute.

— Multiple layout functions can now be provided to combine their functionality. This way, you
can keep separate styling templates and combine them as necessary.

from ete3 import TreeStyle

def color_ leaves (node) :
if node.is_leaf () :
node.img_style["fgcolor"] = "red"

def size_internal (node) :
if not node.is_leaf () :
node.img_style["size"] = 15

ts = TreeStyle()
provide a list of layout functions, instead of a single one
ts.layout_fn = [color_leaves, size_internal]

— COLOR_SCHEMES and SVG_COLORS dictionaries are provided for easy access to color
codes and several predefined color schemes. In addition, a random_color () function is
also available as a generator of RGB colors (where saturation and lightness can be fixed).

1.2. What’s new in ETE 2.2 7

http://treeko.cgenomics.org
http://www.ncbi.nlm.nih.gov/pubmed/21335609

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

from ete3 import random_color, COLOR_SCHEMES, SVG_COLORS

generate 20 random colors
node_colors = [random_color(s=0.4, 1=4) for i in xrange (20)]

¢ News on node faces:

— New face.rotation attribute, that allows to rotate individual faces even when a global
treestyle.rotation is used.

— Improved SequenceFace: Sequence sites are now rendered one by one, allowing inter-
action with each of them and getting rid of the previous pixmap size limitation. Site image
dimensions and colours are now configurable.

— Added new SegMotifFace class, which represent an enriched version of the former
SequenceFace instance. This new face type allows to represent sequences as a succes-
sion of domain/motif elements or to represent sequence positions as color points. Gaps can
also be taken into account and therefore shown as as a black space or a flat line.

N——BESSSSASEENG c 2 EREmEE<>N) nm
W BESSSSASE SN0 c 2 BEEEEE<>N0) wm
N———EEssss2sSesMocr PIIIII()I (U E LM
M—ANsSss S SES NG c 2 EEEEEE<-R 0w

[Dy | EEELINI] [N
Ni—HEEsSsssAsSesHoc 2 B
W———ENssssasEsmac el
N EEssss:SEsSHgcaE
N——ENssss:SEsMac 2 Bl
s | EEEEITE] RPN

<> W 00
<> 00
<> W0
<> W01 00
<> I 00
<> 0

— Added PieChartFace and BarChartFace face types for built-in representation of
statistics attached to nodes.

— Improved ImgFace class, now accepting on the fly image scaling.

8 Chapter 1. Changelog history

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

100.00

[100.00

100.00

100.00

* News on the GUI

Allows image region selection.

Allows zooming on selected regions or specific nodes (Z - zoomlIn, X - zoomOut, R - focus
region).

C—-c will now interrupt the GUI application when started from a terminal.

Added keyboard-based node navigation (click on a node and play the arrow keys).

1.3 What’s new in ETE 2.1

* A basic standalone tree visualization program called “ete3” is now installed along with the pack-
age.

* The drawing engine has been completely rewritten to provide the following new features:
— Added TreeStyle class allowing to set the following
+ Added circular tree drawing mode
+ Added tree title face block (Text or images that rendered on top of the tree)
+ Added tree legend face block (Text or images that rendered as image legend)

+ Added support for tree rotation and orientation

1.3. What’s new in ETE 2.1 9

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

+ Possibility of drawing aligned faces as a table
* Added header and footer regions for aligned faces.
+ And more! Check TreeSt yle documentation

— Added new face positions float, branch-top and branch-bottom. See tutorial (Node faces)
for more details.

— Added several Face attributes:
* face border
* face background color
x left, right, top and bottom margins
+ face opacity
+ horizontal and vertical alignment (useful when faces are rendered as table)

— Added support for predefined NodeSt y1e, which can be set outside the layout function
(allows to save and export image rendering info)

— Added new face types:
* CircleFace (basic circle/sphere forms)
% TreeFace (trees within trees)

% StaticItemFace and DynamicItemFace (create custom and interactive Qt-
Graphicsltems)

— Improved faces:

* AttrFace accepts prefix and suffix text, as well as a text formatter function.
fstyle argument can be setto italic

* TextFace: £style argument can be setto italic
— Save and export images
* Added full support for SVG image rendering

* Added more options to the TreeNode. render () function to control image size
and resolution

— Added support for SVG_COLORS names in faces and node styles
* Core methods:

— Added TreeNode. copy (): returns an exact and independent copy of node and all
its attributes

— Added TreeNode.convert_to_ultrametric (): converts all branch lengths to
allow leaves to be equidistant to root

— Added TreeNode. sort_descendants (): sort tree branches according to node
names.

— Added TreeNode. ladderize (): sort tree branches according to partition size

— Added TreeNode.get_partitions (): return the set of all possible partitions
grouping leaf nodes

10 Chapter 1. Changelog history

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

— Tree nodes can now be fully exported using cPickle

— Newick parser can read and export branch distances and support values using scientific
notation

— TreeNode.swap_childs () method has changed to
TreeNode.swap_children ()

¢ Added ete3. nexml module (read and write nexml format)

* Added ete3.phyloxml module (read and write phyloxml format)

* Added ete3.webplugin module: Allows to create interactive web tree applications
* Tree visualization GUI checks now for newer version of the ETE package.

* Added PhylomeDB3Connector

* Added PhyloNode.get_farthest_oldest_node () function, which allows to find the
best outgroup node in a tree, even if it is an internal node.

* Bug Fixes and improvements:

— Fix: TreeNode.get_common_ancestor () accepts a single argument (node or
list of nodes) instead of a succession or nodes. It can also return the path of each node
to the parent.

— Fix: Fast scroll based zoom-in was producing tree image inversions
— Fix: Phylip parser does not truncate long names by default

— Fix: “if not node” syntax was using a len(node) test, which made it totally inefficient.
Now, the same expression returns always True

— Improvement: Traversing methods are now much faster (specially preorder and level-
order)

— Improvement: Faster populate function (added possibility of random and non-random
branch lengths)

— Improvement: Faster prune function

— Improvement: unicode support for tree files

— Improvement: Added newick support for scientific notation in branch lengths
* Improved documentation and examples:

— Online and PDF tutorial

— Better library reference

— A set of examples is now provided with the installation package and here

1.3. What’s new in ETE 2.1 11

http://etetoolkit.org/releases/ete3/examples-ete3.tar.gz

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

12 Chapter 1. Changelog history

CHAPTER 2

The ETE tutorial

Contents:

2.1 Working With Tree Data Structures

13

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Contents

» Working With Tree Data Structures
— Trees
Reading and Writing Newick Trees
* Reading newick trees
x Writing newick trees
Understanding ETE Trees
Basic tree attributes

% Root node on unrooted trees?

Browsing trees (traversing)
* Getting Leaves, Descendants and Node’s Relatives
* Traversing (browsing) trees
* Advanced traversing (stopping criteria)
- Collapsing nodes while traversing (custom is_leaf definition)
* [terating instead of Getting
* Finding nodes by their attributes
- Search_all nodes matching a given criteria
- Search nodes matching a given criteria (iteration)
- Find the first common ancestor
- Custom searching functions
- Shortcuts
Checking the monophyly of attributes within a tree
Caching tree content for faster lookup operations
Node annotation
Comparing Trees
* Calculate distances between trees
* Robinson-foulds distance
Modifying Tree Topology
* Creating Trees from Scratch
x Deleting (eliminating) and Removing (detaching) nodes
Pruning trees
Concatenating trees
Copying (duplicating) trees
Solving multifurcations
Tree Rooting
Working with branch distances
* Getting distances between nodes
* getting midpoint outgroup

2.1.1 Trees

Trees are a widely-used type of data structure that emulates a tree design with a set of linked nodes.
Formally, a tree is considered an acyclic and connected graph. Each node in a tree has zero or more
child nodes, which are below it in the tree (by convention, trees grow down, not up as they do in nature).
A node that has a child is called the child’s parent node (or ancestor node, or superior). A node has at
most one parent.

The height of a node is the length of the longest downward path to a leaf from that node. The height of
the root is the height of the tree. The depth of a node is the length of the path to its root (i.e., its root
path).

14 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* The topmost node in a tree is called the root node. Being the topmost node, the root node will
not have parents. It is the node at which operations on the tree commonly begin (although some
algorithms begin with the leaf nodes and work up ending at the root). All other nodes can be
reached from it by following edges or links. Every node in a tree can be seen as the root node of
the subtree rooted at that node.

* Nodes at the bottommost level of the tree are called leaf nodes. Since they are at the bottommost
level, they do not have any children.

* An internal node or inner node is any node of a tree that has child nodes and is thus not a leaf
node.

* A subtree is a portion of a tree data structure that can be viewed as a complete tree in itself.
Any node in a tree T, together with all the nodes below it, comprise a subtree of T. The subtree
corresponding to the root node is the entire tree; the subtree corresponding to any other node is
called a proper subtree (in analogy to the term proper subset).

In bioinformatics, trees are the result of many analyses, such as phylogenetics or clustering. Although
each case entails specific considerations, many properties remains constant among them. In this respect,
ETE is a python toolkit that assists in the automated manipulation, analysis and visualization of any
type of hierarchical trees. It provides general methods to handle and visualize tree topologies, as well as
specific modules to deal with phylogenetic and clustering trees.

2.1.2 Reading and Writing Newick Trees

The Newick format is one of the most widely used standard representation of trees in bioinformatics.
It uses nested parentheses to represent hierarchical data structures as text strings. The original newick
standard is able to encode information about the tree topology, branch distances and node names. Nev-
ertheless, it is not uncommon to find slightly different formats using the newick standard.

ETE can read and write many of them:

1:0.756049)1.00(

49)B:0.807788)

1:0.756049)1.00(

49)B:0.807788)

9):0.807788);

FOR- | DESCRIPTION SAMPLE

MAT

0 flexible with support values | ((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,H

1 flexible with internal node ((D:0.723274,F:0.567784)E:0.067192,(B:0.279326,H:0.756(
names

2 all branches + leaf names + | ((D:0.723274,F:0.567784)1.000000:0.067192,(B:0.279326,k
internal supports

3 all branches + all names ((D:0.723274,F:0.567784)E:0.067192,(B:0.279326,H:0.756(

4 leaf branches + leaf names ((D:0.723274,F:0.567784),(B:0.279326,H:0.756049));

5 internal and leaf branches + | ((D:0.723274,F:0.567784):0.067192,(B:0.279326,H:0.75604
leaf names

6 internal branches + leaf ((D,F):0.067192,(B,H):0.807788);
names

7 leaf branches + all names ((D:0.723274,F:0.567784)E,(B:0.279326,H:0.756049)B);

8 all names (D,F)E,(B,H)B);

9 leaf names (D,F),(B,H));

100 topology only (),

Formats labeled as flexible allow for missing information. For instance, format 0 will be able to load a
newick tree even if it does not contain branch support information (it will be initialized with the default
value). However, format 2 would raise an exception. In other words, if you want to control that your
newick files strictly follow a given pattern you should use strict format definitions.

2.1. Working With Tree Data Structures 15

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Reading newick trees

In order to load a tree from a newick text string you can use the constructor TreeNode or its Tree
alias, provided by the main module et e 3. You will only need to pass a text string containing the newick
structure and the format that should be used to parse it (0 by default). Alternatively, you can pass the
path to a text file containing the newick string.

from ete3 import Tree

Loads a tree structure from a newick string. The returned variable ’t’ 1is

t = Tree("(A:1, (B:1,(E:1,D:1):0.5):0.5);")

Load a tree structure from a newick file.

t = Tree("genes_tree.nh")

You can also specify the newick format. For instance, for named internal n

-

= Tree("(A:1, (B:1, (E:1,D:1)Internal 1:0.5)Internal_2:0.5)Root;", format=1)

Writing newick trees

Any ETE tree instance can be exported using newick notation using the Tree.write () method,
which is available in any tree node instance. It also allows for format selection (Reading and Writing
Newick Trees), so you can use the same function to convert between newick formats.

from ete3 import Tree

Loads a tree with internal node names
t = Tree("(A:1, (B:1, (E:1,D:1)Internal_1:0.5)Internal_2:0.5)Root;", format=1)

And prints its newick using the default format

print t.write() # (A:1.000000, (B:1.000000, (E:1.000000,D:1.000000)1.000000:0.
To print the internal node names you need to change the format:

print t.write(format=1) # (A:1.000000, (B:1.000000, (E:1.000000,D:1.000000) Int

We can also write into a file
t.write (format=1, outfile="new_ tree.nw")

2.1.3 Understanding ETE Trees

Any tree topology can be represented as a succession of nodes connected in a hierarchical way. Thus,
for practical reasons, ETE makes no distinction between tree and node concepts, as any tree can be
represented by its root node. This allows to use any internal node within a tree as another sub-tree
instance.

Once trees are loaded, they can be manipulated as normal python objects. Given that a tree is actually a
collection of nodes connected in a hierarchical way, what you usually see as a tree will be the root node
instance from which the tree structure is hanging. However, every node within a ETE’s tree structure
can be also considered a subtree. This means, for example, that all the operational methods that we will
review in the following sections are available at any possible level within a tree. Moreover, this feature
will allow you to separate large trees into smaller partitions, or concatenate several trees into a single
structure. For this reason, you will find that the TreeNode and Tree classes are synonymous.

16 Chapter 2. The ETE tutorial

the root noc

odes we wil.

500000) 1.00

ernal_1:0.5(

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.1.4 Basic tree attributes

Each tree node has two basic attributes used to establish its position in the tree: TreeNode. up and
TreeNode.children. The first is a pointer to parent’s node, while the later is a list of children
nodes. Although it is possible to modify the structure of a tree by changing these attributes, it is strongly
recommend not to do it. Several methods are provided to manipulate each node’s connections in a safe

way (see Comparing Trees).

In addition, three other basic attributes are always present in any tree node instance:

Default value = 1.0

Method Description Default
value
TreeNode.dist| stores the distance from the node to its parent (branch length). 1.0

TreeNode . supploinforms about the reliability of the partition defined by the node 1.0
(i.e. bootstrap support)

TreeNode.name| Custom node’s name. NoName

In addition, several methods are provided to perform basic operations on tree node instances:

Method

Description

TreeNode.is_leaf ()

returns True if node has no children

TreeNode.1is_root ()

returns True if node has no parent

TreeNode.get_tree_root ()

returns the top-most node within the same tree structure as
node

len (TreeNode)

returns the number of leaves under node

print node

prints a text-based representation of the tree topology under
node

if node in tree

returns true if node is a leaf under tree

for leaf in node

iterates over all leaves under node

TreeNode.show ()

Explore node graphically using a GUI.

This is an example on how to access such attributes:

from ete3 import Tree
t = Tree()

We create a random tree topology

t.populate(15)

print t

print t.children

print t.get_children()

print t.up

print t.name

print t.dist

print t.is_leaf ()

print t.get_tree_root ()

print t.children[0].get_tree_root ()
print t

.children[0] .children[0].get_tree_root ()

You can also iterate over tree leaves using a simple syntax

for leaf in t:
print leaf.name

2.1. Working With Tree Data Structures

17

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Root node on unrooted trees?

When a tree is loaded from external sources, a pointer to the top-most node is returned. This is called
the tree root, and it will exist even if the tree is conceptually considered as unrooted. This is, the root
node can be considered as the master node, since it represents the whole tree structure. Unrooted trees
can be identified as trees in which master root node has more than two children.

from ete3 import Tree

unrooted_tree = Tree("(A,B, (C,D));")
print unrooted_tree

#

/—A

/

#-————|——B

/

/ /=C

\———/

\-D

rooted_tree = Tree("((A,B).(C,D));")
print rooted_tree

#

/-A

/===

/ \-B

#—

/ /=C

\ -1

\-D

2.1.5 Browsing trees (traversing)
One of the most basic operations for tree analysis is tree browsing. This is, essentially, visiting nodes

within a tree. ETE provides a number of methods to search for specific nodes or to navigate over the
hierarchical structure of a tree.

Getting Leaves, Descendants and Node’s Relatives

TreeNode instances contain several functions to access their descendants. Available methods are self
explanatory:

Traversing (browsing) trees

Often, when processing trees, all nodes need to be visited. This is called tree traversing. There are
different ways to traverse a tree structure depending on the order in which children nodes are visited.
ETE implements the three most common strategies: preorder, levelorder and postorder. The following
scheme shows the differences in the strategy for visiting nodes (note that in both cases the whole tree is
browsed):

 preorder: 1)Visit the root, 2) Traverse the left subtree , 3) Traverse the right subtree.

 postorder: 1) Traverse the left subtree , 2) Traverse the right subtree, 3) Visit the root

18 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* levelorder (default): every node on a level before is visited going to a lower level

Note:
* Preorder traversal sequence: F, B, A, D, C, E, G, I, H (root, left, right)

* Inorder traversal sequence: A, B, C, D, E, F, G, H, I (left, root, right); note how this produces a
sorted sequence

* Postorder traversal sequence: A, C, E, D, B, H, I, G, F (left, right, root)
* Level-order traversal sequence: F, B, G, A, D, I, C,E, H

Every node in a tree includes a TreeNode.traverse () method, which can be used
to visit, one by one, every node node under the current partition. In addition, the
TreeNode.iter descendants () method can be set to use either a post- or a preorder strategy.
The only different between TreeNode. t raverse () and TreeNode. iter_descendants () is
that the first will include the root node in the iteration.

strategy can take one of the following values: "postorder", "preorder" or "levelorder"

we load a tree
t = Tree(' ((((H,K)D, (F,I)G)B,E)A, ((L, (N,0)0)J, (P,S)M)C); ", format=1)

for node in t.traverse ("postorder"):
Do some analysis on node
print node.name

If we want to iterate over a tree excluding the root node, we can
use the iter_descendant method
for node in t.iter_descendants ("postorder") :

Do some analysis on node

print node.name

Additionally, you can implement your own traversing function using the structural attributes of nodes.
In the following example, only nodes between a given leaf and the tree root are visited.

from ete3 import Tree
tree = Tree("(A:1, (B:1, (C:1,D:1):0.5):0.5);")

Browse the tree from a specific leaf to the root
node = t.search_nodes (name="C") [0]
while node:

print node

node = node.up

Advanced traversing (stopping criteria)

Collapsing nodes while traversing (custom is_leaf definition)

From version 2.2, ETE supports the use of the is_leaf_fn argument in most of its traversing func-
tions. The value of is_leaf_fn is expected to be a pointer to any python function that accepts a node
instance as its first argument and returns a boolean value (True if node should be considered a leaf node).

2.1. Working With Tree Data Structures 19

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

By doing so, all traversing methods will use such a custom function to decide if a node is a leaf. This
becomes specially useful when dynamic collapsing of nodes is needed, thus avoiding to prune the same
tree in many different ways.

For instance, given a large tree structure, the following code will export the newick of the pruned version
of the topology, where nodes grouping the same tip labels are collapsed.

from ete3 import Tree
def collapsed_leaf (node):
if len (node2labels[node]) == 1:
return True
else:
return False

t = Tree("((((a,a,a)a,a)aa, (b,b)b)ab, (c, (d,d)d)cd);", format=1)
print t

We create a cache with every node content
node2labels = t.get_cached_content (store_attr="name")
print t.write(is_leaf_fn=collapsed_leaf)

/-a

/

/=|--a

/ /

/= \-a

I

/=1 \-a

/ /

/ / /~b

- \—/

/ \-b

/

/ /-c

\—/

/ /~d

\—/

\-d

We can even load the collapsed version as a new tree

t2 = Tree(t.write(is_leaf_ fn=collapsed_leaf))
print t2

/—aa

/=1

/ \-b

=

/ /—-c

\—/

\—-d

Another interesting use of this approach is to find the first matching nodes in a given tree that match a
custom set of criteria, without browsing the whole tree structure.

Let’s say we want get all deepest nodes in a tree whose branch length is larger than one:

from ete3 import Tree
t = Tree("(((a,b)ab:2, (c, d)cd:2)abcd:2, ((e, f):2, g)efg:2);", format=1)
def processable_node (node) :
if node.dist > 1:
return True

20 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

else:
return False

for leaf in t.iter_leaves(is_leaf_fn=processable_node) :

print leaf
/-a
/=
/ \-b
-
/ /-c
\ =/
\-d
#
/—e
/=
- \-f
/
\-g

Iterating instead of Getting

As commented previously, methods starting with get_ are all prepared to return results as a closed list
of items. This means, for instance, that if you want to process all tree leaves and you ask for them using
the TreeNode.get_leaves () method, the whole tree structure will be browsed before returning
the final list of terminal nodes. This is not a problem in most of the cases, but in large trees, you can
speed up the browsing process by using iterators.

Most get_ methods have their homologous iterator functions. Thus, TreeNode.get_leaves ()
could be substituted by TreeNode.iter leaves/(). The same occurs with
TreeNode.iter descendants () and TreeNode.iter search nodes ().

When iterators are used (note that is only applicable for looping), only one step is processed at a time. For
instance, TreeNode. iter _search_nodes () will return one match in each iteration. In practice,
this makes no differences in the final result, but it may increase the performance of loop functions (i.e.
in case of finding a match which interrupts the loop).

Finding nodes by their attributes

Both terminal and internal nodes can be located by searching along the tree structure. Several methods
are available:

method Description

t.search_nodes(attr=value) Returns a list of nodes in which attr is equal to value, i.e. name=A
t.iter_search_nodes(attr=value) | Iterates over all matching nodes matching attr=value. Faster when
you only need to get the first occurrence
t.get_leaves_by_name(name) | Returns a list of leaf nodes matching a given name. Only leaves are
browsed.

t.get_common_ancestor([nodel}, Return the first internal node grouping nodel, node2 and node3
node2, node3])
t&7A” Shortcut for t.search_nodes(name="A")[0]

2.1. Working With Tree Data Structures 21

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Search_all nodes matching a given criteria

A custom list of nodes matching a given name can be easily obtain through the
TreeNode.search node () function.

from ete3 import Tree
t = Tree('"((H:1,I:1):0.5, A:1, (B:1,(C:1,D:1):0.5):0.5);")
print t

H
~

get D
t.search_nodes (name="D") [0]

)
Il

I get all nodes with distance=0.5
nodes = t.search_nodes (dist=0.5)
print len(nodes), "nodes have distance=0.5"

We can 1limit the search to leaves and node names (faster method).
D = t.get_leaves_by_name (name="D")
print D

Search nodes matching a given criteria (iteration)

A limitation of the TreeNode . search_nodes () method is that you cannot use complex conditional
statements to find specific nodes. When search criteria is too complex, you may need to create your own
search function.

from ete3 import Tree

def search_by_size(node, size):
"Finds nodes with a given number of leaves"

matches = []
for n in node.traverse () :
if len(n) == size:

matches.append (n)
return matches

t = Tree()

t.populate (40)

returns nodes containing 6 leaves
search_by_size(t, size=6)

22 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Find the first common ancestor

Searching for the first common ancestor of a given set of nodes it is a handy way of finding internal
nodes.

from ete3 import Tree

t = Tree("((H:0.3,1:0.1):0.5, A:1, (B:0.4,(C:0.5,(J:1.3, (F:1.2, D:0.1):0.5):0.5):0.5)
print t

ancestor = t.get_common_ancestor ("Cc", "J", "B")

Custom searching functions

A limitation of the previous methods is that you cannot use complex conditional statements to find
specific nodes. However you can user traversing methods to meet your custom filters. A possible
general strategy would look like this:

from ete3 import Tree
t = Tree("((H:0.3,1:0.1):0.5, A:1, (B:0.4, (C:1,D:1):0.5):0.5);™)
Create a small function to filter your nodes
def conditional_ function (node) :
if node.dist > 0.3:
return True
else:
return False

Use previous function to find matches. Note that we use the traverse
method in the filter function. This will iterate over all nodes to
assess 1f they meet our custom conditions and will return a list of

B S S

matches.
matches = filter (conditional_function, t.traverse())
print len (matches), "nodes have ditance >0.3"

depending on the complexity of your conditions you can do the same
in just one line with the help of lambda functions:

matches = filter (lambda n: n.dist>0.3 and n.is_leaf (), t.traverse())
print len (matches), "nodes have ditance >0.3 and are leaves"

Shortcuts

Finally, ETE implements a built-in method to find the first node matching a given name, which is one of
the most common tasks needed for tree analysis. This can be done through the operator & (AND). Thus,
TreeNode&”A” will always return the first node whose name is “A” and that is under the tree “MyTree”.
The syntaxis may seem confusing, but it can be very useful in some situations.

from ete3 import Tree

t = Tree("((H:0.3,1:0.1):0.5, A:1, (B:0.4, (C:1,(J:1, (F:1, D:1):0.5):0.5):0.5):0.5);")
Get the node D in a very simple way

D = t&"D"

Get the path from B to the root

node = D

path = T[]

while node.up:
path.append (node)
node = node.up

2.1. Working With Tree Data Structures 23

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

print t

I substract D node from the total number of visited nodes

print "There are", len(path)-1, "nodes between D and the root"

Using parentheses you can use by-operand search syntax as a node

instance itself

Dsparent= (t&"C") .up

Bsparent= (t&"B") .up

Jsparent= (t&"J") .up

I check if nodes belong to certain partitions

print "It is", Dsparent in Bsparent, "that C's parent is under B's ancestor"
print "It is", Dsparent in Jsparent, "that C's parent is under J's ancestor"

2.1.6 Checking the monophyly of attributes within a tree

Although monophyly is actually a phylogenetic concept used to refer to a set of species that group
exclusively together within a tree partition, the idea can be easily exported to any type of trees.

Therefore, we could consider that a set of values for a given node attribute present in our tree is mono-
phyletic, if such values group exclusively together as a single tree partition. If not, the corresponding
relationship connecting such values (para or poly-phyletic) could be also be inferred.

The TreeNode.check_monophyly () method will do so when a given tree is queried for any cus-
tom attribute.

from ete3 import Tree

t = Tree("((((((a,), 1), o),h), w), ((£, g), 3));")
print t

/-a
/=1

/=1 \-e
I

/=1 \ -1

I

/=1 \-o

I

/= \-h

[

/ \—u

-1

/ /-f

/ /=1

\—/ \-g

/

\—7

We can check how, indeed, all vowels are not monophyletic in the
previous tree, but polyphyletic (a foreign label breaks its monophyly)
print t.check_monophyly(values=["a", "e", "i", "o", "u"l, target_attr="name"

however, the following set of vowels are monophyletic
print t.check_monophyly (values=["a", "e", "i", "o"], target_attr="name")

A special case of polyphyly, called paraphyly, is also used to
define certain type of grouping. See this wikipedia article for

24 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

disambiguation: http://en.wikipedia.org/wiki/Paraphyly
print t.check_monophyly (values=["1", "o"], target_attr="name")

Finally, the TreeNode . get_monophyletic () method is also provided, which allows to return a
list of nodes within a tree where a given set of attribute values are monophyletic. Note that, although a
set of values are not monophyletic regarding the whole tree, several independent monophyletic partitions
could be found within the same topology.

For instance, in the following example, all clusters within the same tree exclusively grouping a custom
set of annotations are obtained.

from ete3 import Tree
t = Tree("((((((4, e), 1), o),h),), ((3, 4), (i, June)));")
we annotate the tree using external data

colors = {"a":"red", "e":"green", "i":"yellow",
"o":"black", "u":"purple", "4":"green",
"3I":"yellow", "1":"white", "5":"red",
"june":"yellow"}

for leaf in t:
leaf.add_features(color=colors.get (leaf.name, "none"))
print t.get_ascii(attributes=["name", "color"], show_internal=False)
/-4, green
/=1 \-e, green
/= \-i, vellow
/=1 \-o0, black
/
/= \-h, none
/ /
/ \-u, purple
/
/ /-3, yellow
/
/ / \-4, green

/ /-1, yellow

S R R HR R R R R R R R R W W R R R h

\-june, yellow

print "Green-yellow clusters:"
And obtain clusters exclusively green and yellow

for node in t.get_monophyletic (values=["green", "yellow"], target_attr="colo
print node.get_ascii(attributes=["color", "name"], show_internal=False)

Green-yellow clusters:

#

/—-green, 4

/=1

1 \-green, e

/

\-yellow, 1

#

/-yellow, 3

/=1

2.1. Working With Tree Data Structures 25

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ \-green, 4
#

/ /-yellow, 1
#

#

\-yellow, june

Note: When the target attribute is set to the “species” feature name, associated to any PhyloTree
node, this method will accomplish with the standard phylogenetic definition of monophyly, polyphyly

and paraphyly.

2.1.7 Caching tree content for faster lookup operations

If your program needs to access to the content of different nodes very frequently, traversing the tree to
get the leaves of each node over and over will produce significant slowdowns in your algorithm. From
version 2.2 ETE provides a convenient methods to cache frequent data.

The method TreeNode.get_cached content () returns a dictionary in which keys are node
instances and values represent the content of such nodes. By default, content is understood as a list
of leave nodes, so looking up size or tip names under a given node will be instant. However, specific
attributes can be cached by setting a custom store_attr value.

from ete3 import Tree
t = Tree()
t.populate (50)

node2leaves = t.get_cached_content ()

lets now print the size of each node without the need of
recursively traverse
for n in t.traverse():
print "node contains tips" % (n.name, len(node2leaves[n]))

2.1.8 Node annotation

Every node contains three basic attributes: name (TreeNode.name), branch length
(TreeNode.dist) and branch support (TreeNode.support). These three values are en-
coded in the newick format. However, any extra data could be linked to trees. This is called tree
annotation.

The TreeNode.add feature () and TreeNode.add features () methods allow to add extra
attributes (features) to any node. The first allows to add one one feature at a time, while the second can
be used to add many features with the same call.

Once extra features are added, you can access their values at any time during the analysis of a tree. To
do so, you only need to access to the TreeNode . feature_name attributes.

Similarly, TreeNode.del_ feature () can be used to delete an attribute.

import random

from ete3 import Tree

Creates a tree

t = Tree('((H:0.3,I:0.1):0.5, A:1, (B:0.4,(C:0.5,(J:1.3, (F:1.2, D:0.1):0.5

26 Chapter 2. The ETE tutorial

):0.5):0.5) :

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Let's locate some nodes using the get common ancestor method
ancestor=t.get_common_ancestor ("J", "g", "C")

the search_nodes method (I take only the first match)

A = t.search_nodes (name="A") [0]

and using the shorcut to finding nodes by name

C= t&"C"
H= t&"H"
I= t&"I"

Let's now add some custom features to our nodes. add_features can be
used to add many features at the same time.

C.add_features (vowel=False, confidence=1.0)

A.add_features (vowel=True, confidence=0.5)

ancestor.add_features (nodetype="internal")

Or, using the oneliner notation
(t&"H") .add_features (vowel=False, confidence=0.2)

But we can automatize this. (note that i will overwrite the previous
values)
for leaf in t.traverse():
if leaf.name in "AEIOU":
leaf.add_features (vowel=True, confidence=random.random())
else:
leaf.add_features (vowel=False, confidence=random.random())

Now we use these information to analyze the tree.
print "This tree has", len(t.search_nodes(vowel=True)), "vowel nodes"
print "Which are", [leaf.name for leaf in t.iter_ leaves() if leaf.vowel==Tru

But features may refer to any kind of data, not only simple
values. For example, we can calculate some values and store them
within nodes.

Let's detect leaf nodes under "ancestor" with distance higher thatn
1. Note that I'm traversing a subtree which starts from "ancestor"
matches = [leaf for leaf in ancestor.traverse () if leaf.dist>1.0]

#
#
#
#
#
#

And save this pre-computed information into the ancestor node
ancestor.add_feature("long branch nodes", matches)

Prints the precomputed nodes
print "These are nodes under ancestor with long branches", \

[n.name for n in ancestor.long_branch_nodes]

We can also use the add _feature () method to dynamically add new features.

label = raw_input ("custom label:")

value = raw_input ("custom label value:")

ancestor.add_feature (label, wvalue)

print "Ancestor has now the [", label, "] attribute with value [", wvalue, "]

n

Unfortunately, newick format does not support adding extra features to a tree. Because of
this drawback, several improved formats haven been (or are being) developed to read and write
tree based information. Some of these new formats are based in a completely new standard
(Phylogenetic XML standards), while others are extensions of the original newick format (NHX
http://phylosoft.org/NHX/http://phylosoft.org/NHX/).

2.1. Working With Tree Data Structures 27

http://phylosoft.org/NHX/http://phylosoft.org/NHX/

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Currently, ETE includes support for the New Hampshire eXtended format (NHX), which uses the orig-
inal newick standard and adds the possibility of saving additional date related to each tree node. Here is
an example of a extended newick representation in which extra information is added to an internal node:

(A:O.35,(B:0.72,(D:O.60,G:O.12):0.64[&&NHX:conf=0.0l:name=INTERNAL]):0.56);‘

As you can notice, extra node features in the NHX format are enclosed between brackets. ETE is able to
read and write features using such format, however, the encoded information is expected to be exportable
as plain text.

The NHX format is automatically detected when reading a newick file, and the detected node features are
added using the TreeNode. add_feature () method. Consequently, you can access the information
by using the normal ETE’s feature notation: node.feature_name. Similarly, features added to a
tree can be included within the normal newick representation using the NHX notation. For this, you can
call the TreeNode.write () method using the features argument, which is expected to be a list
with the features names that you want to include in the newick string. Note that all nodes containing the
suplied features will be exposed into the newick string. Use an empty features list (features=[])to
include all node’s data into the newick string.

import random
from ete3 import Tree
Creates a normal tree
t = Tree('((H:0.3,I1:0.1):0.5, A:1,(B:0.4,(C:0.5,(J:1.3,(F:1.2, D:0.1):0.5):0
print t
Let's locate some nodes using the get common ancestor method
ancestor=t.get_common_ancestor ("J", "g", "C")
Let's label leaf nodes
for leaf in t.traverse():
if leaf.name in "AEIOU":
leaf.add_features (vowel=True, confidence=random.random())
else:
leaf.add_features (vowel=False, confidence=random.random/())

Let's detect leaf nodes under "ancestor" with distance higher thatn
1. Note that I'm traversing a subtree which starts from "ancestor"
matches = [leaf for leaf in ancestor.traverse() if leaf.dist>1.0]

And save this pre-computed information into the ancestor node
ancestor.add_feature ("long_branch_nodes", matches)

print

print "NHX notation including vowel and confidence attributes”
print

print t.write (features=["vowel", "confidence"])

print

print "NHX notation including all node's data"

print

Note that when all features are requested, only those with values

equal to text-strings or numbers are considered. "long branch_nodes”
1s not included into the newick string.

print t.write (features=[])

print

print "basic newick formats are still available"
print

print t.write(format=9, features=["vowel"])

You don't need to do anything speciall to read NHX notation. Just
specify the newick format and the NHX tags will be automatically

28 Chapter 2. The ETE tutorial

.5)

:0.5):

0.

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

detected.
nw = mnmn
(((ADH2:0.1[&&NHX:S=human:E=1.1.1.1], ADH1:0.11[&&NHX:S=human:E=1.1.1.117)
:0.05[&&NHX:S=Primates:E=1.1.1.1:D=Y:B=100], ADHY:0.1[&&NHX:S=nematode:
E=1.1.1.1],ADHX:0.12[&&NHX:S=insect:E=1.1.1.1]):0.1[&&NHX:S=Metazoa:

E=1.1.1.1:D=N], (ADH4:0.09[&&NHX:S=yeast:E=1.1.1.1],ADH3:0.13[&&NHX:S=yeast:

E=1.1.1.1], ADH2:0.12[&&NHX:S=yeast:E=1.1.1.1],ADH1:0.11[&&NHX:S=yeast:E=1.1].

[&&NHX:S=Fungi]) [&&NHX:E=1.1.1.1:D=N];
Loads the NHX example found at http://www.phylosoft.org/NHX/
t = Tree (nw)
And access node's attributes.
for n in t.traverse():
if hasattr(n,"S"):
print n.name, n.S

2.1.9 Comparing Trees

Calculate distances between trees

The :Tree:‘compare‘ function allows to calculate distances between two trees based on any node feature
(i.e. name, species, other tags) using robinson-foulds and edge compatibility distances. It automatically
handles differences in tree sizes, shared nodes and duplicated feature names.

* result[’rf”’] = robinson-foulds distance between the two trees. (average of robinson-foulds dis-
tances if target tree contained duplication and was split in several subtrees)

* result[”max_rf”’] = Maximum robinson-foulds distance expected for this comparison
e result[”’norm_rf”’] = normalized robinson-foulds distance (from O to 1)

* result[’effective_tree_size”] = the size of the compared trees, which are pruned to the common
shared nodes.

* result[’ref_edges_in_source”] = compatibility score of the target tree with respect to the source
tree (how many edges in reference are found in the source)

* result[’source_edges_in_ref”’] = compatibility score of the source tree with respect to the refer-
ence tree (how many edges in source are found in the reference)

* result[’source_subtrees”’] = number of subtrees in the source tree (1 if do not contain duplications)
* result[’common_edges”’] = a set of common edges between source tree and reference

* result[’source_edges”] = the set of edges found in the source tree

* result[’ref_edges”] = the set of edges found in the reference tree

* result[’treeko_dist”] = TreeKO speciation distance for comparisons including duplication nodes.

Robinson-foulds distance
Two tree topologies can be compared using ETE and the Robinson-Foulds (RF) metric. The method
TreeNode.robinson_foulds () available for any ETE tree node allows to:

e compare two tree topologies by their name labels (default) or any other annotated feature in the
tree.

2.1. Working With Tree Data Structures 29

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* compare topologies of different size and content. When two trees contain a different set of labels,
only shared leaves will be used.

* examine size and content of matching and missing partitions. Since the method return the list of
partitions found in both trees, details about matching partitions can be obtained easily.

In the following example, several of above mentioned features are shown:

from ete3 import Tree

tl = Tree('(((a,b),c), ((e, £), 9));")

t2 = Tree('(((a,c),b), ((e, £), 9));")

rf, max_rf, common_leaves, parts_tl, parts_t2 = tl.robinson_foulds (t2)
print tl, t2

print "RF distance is %s over a total of %s" % (rf, max_rf)

print "Partitions in tree2 that were not found in treel:", parts_tl - parts_t2
print "Partitions in treel that were not found in tree2:", parts_t2 - parts_itl

We can also compare trees sharing only part of their labels

tl = Tree('(((a,b),c), ((e,), g));")
t2 = Tree('(((a,c),b), (g, H);")
rf, max_rf, common_leaves, parts_tl, parts_t2 = tl.robinson_foulds (t2)

print tl, t2
print "Same distance holds even for partially overlapping trees"
print "RF distance is $%s over a total of $%s" %$(rf, max_rf)

print "Partitions in tree2 that were not found in treel:", parts_tl - parts_t2
print "Partitions in treel that were not found in tree2:", parts_t2 - parts_tl

2.1.10 Modifying Tree Topology
Creating Trees from Scratch

If no arguments are passed to the TreeNode class constructor, an empty tree node will be returned.
Such an orphan node can be used to populate a tree from scratch. For this, the TreeNode. up, and
TreeNode. children attributes should never be used (unless it is strictly necessary). Instead, several
methods exist to manipulate the topology of a tree:

from ete3 import Tree

t = Tree() # Creates an empty tree

A = t.add_child(name="A") # Adds a new child to the current tree root
and returns it

B = t.add_child(name="B") # Adds a second child to the current tree
root and returns it

C = A.add_child(name="C") # Adds a new child to one of the branches

D = C.add_sister (name="D") # Adds a second child to same branch as
before, but using a sister as the starting
point

R = A.add_child (name="R") # Adds a third child to the

branch. Multifurcations are supported
Next, I add 6 random leaves to the R branch names_library 1is an
optional argument. If no names are provided, they will be generated
randomly.
.populate (6, names_library=["r1","r2","r3","r4", "r5", "re"])

PO N)

30 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Prints the tree topology

print t

/-C

/

| —=D

/

Y / /-r4
/ / [/

/ / f—m—————= / \-r3
/ / / /

/ / / \-r5

/ \ - /

- / / /-ré
/ / f———————= /

/ \m—— / \-r2
/ /

/ \-rl

/

\-B

a common use of the populate method is to quickly create example
trees from scratch. Here we create a random tree with 100 leaves.
t = Tree()

t.populate (100)

Deleting (eliminating) and Removing (detaching) nodes

As currently implemented, there is a difference between detaching and deleting a node. The former
disconnects a complete partition from the tree structure, so all its descendants are also disconnected
from the tree. There are two methods to perform this action: TreeNode.remove child() and
TreeNode.detach (). In contrast, deleting a node means eliminating such node without affecting
its descendants. Children from the deleted node are automatically connected to the next possible parent.
This is better understood with the following example:

from ete3 import Tree
Loads a tree. Note that we use format 1 to read internal node names

t = Tree(' ((((H,K)D, (F,I)G)B,E)A, ((L, (N,0)0)J, (P,S)M)C); "', format=1)
print "original tree looks like this:"
This is an alternative way of using "print t". Thus we have a bit

more of control on how tree is printed. Here i1 print the tree
showing internal node names
print t.get_ascii(show_internal=True)

#

/—H
/D=—————~ /

/ \-K
/B——————= /

/ / /—F
JA——————— / \G——————~ /

/ / \-T
/ /

/ \-E

#-NoName—— |

/ /=L

/ JJ——————= /

/ / / /~N

2.1. Working With Tree Data Structures 31

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

If we remove J from the tree, the whole partition under J node will
be detached from the tree and it will be considered an independent
tree. We can do the same thing using two approaches: J.detach() or
C.remove_child(J)

removed_node = J.detach() # = C.remove child(J)

if we know print the original tree, we will see how J partition 1is
no longer there.

print "Tree after REMOVING the node J"

print t.get_ascii (show_internal=True)

/ / \o-—————- /
\Cm—m———— / \-0
/

/ /=P

\M——————~ /

\-S

Get pointers to specific nodes

G = t.search_nodes (name="G") [0]

J = t.search_nodes (name="J") [0]

C = t.search_nodes (name="C") [0]

#

#

#

/—H

/D——————~ /

/ \-K

/B=—————- /

/ / /~F

JA——————— / \G——————~ /

/ / \-T

/ /

#-NoName——| \-E

/

/ /-P

\C——————~ /M= /

\-S

however, 1f we DELETE the node G, only G will be eliminated from the
tree, and all its descendants will then hang from the next upper

node.

G.delete ()

print "Tree after DELETING the node G"
print t.get_ascii(show_internal=True)

/—H
/D=—————~ /

/ \-K
/B=—————— /

/ | ——F

JA——————— / /

/ / \-T

/ /

#-NoName——| \-E

/

/ /=P

\C—=————~ /M= /

\-S

2.1.11 Pruning trees

Pruning a tree means to obtain the topology that connects a certain group of items by removing the
unnecessary edges. To facilitate this task, ETE implements the TreeNode . prune () method, which

32 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

can be used by providing the list of terminal and/or internal nodes that must be kept in the tree.

From version 2.2, this function includes also the preserve_branch_length flag, which allows to remove
nodes from a tree while keeping original distances among remaining nodes.

from ete3 import Tree
Let's create simple tree

t = Tree(' ((((H,K), (F,I)G),E), ((L, (N,Q)0), (P,S)));")
print "Original tree looks like this:"

print t

#

/—H
[/

/ \-K
fmmmmmmm- [

/ / /—F
Jmmmmmmme / \ - /

/ / \-1
/ /

/ \-E

o /

/ /=L

/ [mmm /

/ / / /=N
/ / \ == /

\ / \-0
/

/ /—P

\ /

\-S

Prune the tree in order to keep only some leaf nodes.
t.prune(["H","F",HE","Q"’ "PH])
print "Pruned tree"

print t

#

/-F
[/

[/ \-H
/ /

o= / \-E

/

/ /=0

\ - /

\-P

Let's re-create the same tree again

2.1.12 Concatenating trees

Given that all tree nodes share the same basic properties, they can be connected freely. In fact, any
node can add a whole subtree as a child, so we can actually cut & paste partitions. To do so, you only
need to call the TreeNode.add child () method using another tree node as a first argument. If
such a node is the root node of a different tree, you will concatenate two structures. But caution!!, this
kind of operations may result into circular tree structures if add an node’s ancestor as a new node’s
child. Some basic checks are internally performed by the ETE topology related methods, however, a
fully qualified check of this issue would affect seriously the performance of the method. For this reason,
users themselves should take care about not creating circular structures by mistake.

2.1. Working With Tree Data Structures 33

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

from ete3 import Tree
Loads 3 independent trees
tl = Tree(' (A, (B,C)); ")

t2 = Tree('((D,E), (F,G));")

t3 = Tree('(H, ((I,J), (K,L)));")

print "Treel:", tl

/A

/

/ /-B

\ - /

\-C

print "Tree2:", t2

/=D

[mm————= /

/ \-E

/

/ /-F

\ - /

\-G

print "Tree3:", t3

/—H

/

/ /=TI

/ Y /

/ / \-J

\ - /

/ /-K

\ - /

\-L

Locates a terminal node in the first tree
A = tl.search_nodes (name="'A"') [0]

and adds the two other trees as children.
A.add_child(t2)

A.add_child(t3)

print "Resulting concatenated tree:", tl

/=D
Y /
/ \-E
Y /

/ / /=F
/ \——— /
[/ \-G
/ /

/ / /-H

/ / /

/ \——— /

/ /

/ / /
/ \ /
/ /
/

/

/

/ /-B

\ - /

\-C

34

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.1.13 Copying (duplicating) trees

ETE provides several strategies to clone tree structures. The method TreeNode. copy () can be used
to produce a new independent tree object with the exact topology and features as the original. However,
as trees may involve many intricate levels of branches and nested features, 4 different methods are
available to create a tree copy:

* “newick”: Tree topology, node names, branch lengths and branch support values will be copied as
represented in the newick string This method is based on newick format serialization works very
fast even for large trees.

* “newick-extended”: Tree topology and all node features will be copied based on the extended
newick format representation. Only node features will be copied, thus excluding other node at-
tributes. As this method is also based on newick serialisation, features will be converted into text
strings when making the copy. Performance will depend on the tree size and the number and type
of features being copied.

» “cpickle”: This is the default method. The whole node structure and its content will be cloned
based on the cPickle object serialization python approach. This method is slower, but recom-
mended for full tree copying.

* “deepcopy”: The whole node structure and its content is copied based on the standard “copy”
Python functionality. This is the slowest method, but it allows to copy very complex objects even
when attributes point to lambda functions.

from ete3 import Tree

t = Tree(" ((A, B)Internal_1:0.7, (C, D)Internal_2:0.5)root:1.3;", format=1)
we add a custom annotation to the node named A

(t & "A").add_features (label="custom Value")

we add a complex feature to the A node, consisting of a list of lists

(t & "A").add_features (complex=[[0,1], [2,3], [1,111, [1,011)

print t.get_ascii(attributes=["name", "dist", "label", "complex"])

/-A, 0.0, custom Value, [[O0, 1], [2, 3], [1, 11],
/Internal_1, 0.7

/ \-B, 0.0

—-root, 1.3

/ /-Cc, 0.0

\Internal 2, 0.5

\-D, 0.0

Newick copy will loose custom node annotations, complex features,
but not names and branch values

print t.copy("newick") .get_ascii(attributes=["name", "dist", "label", "compl
/-A, 0.0
/Internal_1, 0.7
/ \-B, 0.0

-NoName, 0.0
/

SH FHR R HR I W K

/,
\Internal_2, 0.5
\-D, 0.0

Extended newick copy will transfer custom annotations as text
strings, so complex features are lost.

[1, 0]]

2.1. Working With Tree Data Structures 35

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

print t.copy("newick-extended") .get_ascii(attributes=["name", "dist", "label
/-A, 0.0, custom Value, __0_1__ _2 3 _1_
/Internal 1, 0.7

/ \-B, 0.0

—NoName, 0.0

/ /-C, 0.0

\Internal 2, 0.5

\-D, 0.0

The default pickle method will produce a exact clone of the
original tree, where features are duplicated keeping their
python data type.

print t.copy () .get_ascii(attributes=["name", "dist", "label", "complex"])
print "first element in complex feature:", (t & "A").complex[O]

/-A, 0.0, custom Value, [[0, 1], [2, 3], [1, 11],
/Internal_1, 0.7

/ \-B, 0.0

—-root, 1.3

/ /-C, 0.0

\Internal_2, 0.5

\-D, 0.0

first element in complex feature: [0, 1]

2.1.14 Solving multifurcations

When a tree contains a polytomy (a node with more than 2 children), the method
resolve_polytomy () canbe used to convert the node into a randomly bifurcated structure in which
branch lengths are set to 0. This is really not a solution for the polytomy but it allows to export the tree
as a strictly bifurcated newick structure, which is a requirement for some external software.

The method can be used on a very specific node while keeping the rest of the tree intact by disabling the
recursive flag.

from ete3 import Tree
t = Tree("(((a, b, ¢), (d, &, £, 9)), (£, 1, h));")
print t

S o R HR R R R R R R R R R R R ¥

w
=}]

Chapter 2. The ETE tutorial

"complex'
1 0_
01]

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

\——/—1
/
\-h

polynode = t.get_common_ancestor("a", "b")
polynode.resolve_polytomy (recursive=False)

print t

/=b
/==

/== \-c
/ /

/ \-a

/==

/ / /—d

/ / /

/ / |——e

/ \——/

—— |——f

/ /

/ \-g

/

/ /-f

/ /

\——/——1

/

\-h

t.resolve_polytomy (recursive=True)

print t

#

/=b
/==

/== \-c
/ /

/ \-a

/

/== /~f
/ / /==
/ / /== \-g
/ / / /

/ \——/ \-e
——=| /

/ \-d

/

/ /=1

/ /==

\——/ \-h

/

\-f

2.1. Working With Tree Data Structures 37

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.1.15 Tree Rooting

Tree rooting is understood as the technique by with a given tree is conceptually polarized from more
basal to more terminal nodes. In phylogenetics, for instance, this a crucial step prior to the interpretation
of trees, since it will determine the evolutionary relationships among the species involved. The concept
of rooted trees is different than just having a root node, which is always necessary to handle a tree data
structure. Usually, the way in which a tree is differentiated between rooted and unrooted, is by counting
the number of branches of the current root node. Thus, if the root node has more than two child branches,
the tree is considered unrooted. By contrast, when only two main branches exist under the root node,
the tree is considered rooted.

Having an unrooted tree means that any internal branch within the tree could be regarded as the root
node, and there is no conceptual reason to place the root node where it is placed at the moment. There-
fore, in an unrooted tree, there is no information about which internal nodes are more basal than others.
By setting the root node between a given edge/branch of the tree structure the tree is polarized, meaning
that the two branches under the root node are the most basal nodes. In practice, this is usually done by
setting an outgroup node, which would represent one of these main root branches. The second one will
be, obviously, the brother node. When you set an outgroup on unrooted trees, the multifurcations at the
current root node are solved.

In order to root an wunrooted tree or re-root a tree structure, ETE implements the
TreeNode. set_outgroup () method, which is present in any tree node instance. Similarly,
the TreeNode.unroot () method can be used to perform the opposite action.

from ete3 import Tree

Load an unrooted tree. Note that three branches hang from the root
node. This usually means that no information is available about

which of nodes is more basal.

t Tree (' (A, (H,F) (B, (E,D)));")

print "Unrooted tree"

print t

/=A

/

/ /—H

e | === /

/ \-F

/

/ /-B

\ /

/ /-E
\ /

\-D
#

Let's define that the ancestor of E and D as the tree outgroup. Of

course, the definition of an outgroup will depend on user criteria.
ancestor = t.get_common_ancestor ("E","D")

t.set_outgroup (ancestor)

print "Tree rooteda at E and D's ancestor is more basal that the others."
print t

#

B S S S

38 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

=¥ W W W
h
&=

Note that setting a different outgroup, a different interpretation
of the tree 1is possible

t.set_outgroup(t&"A")

print "Tree rooted at a terminal node"

print t

/—H

[mmmmmm— /

/ \-F

[/

/ / /-B

/ \—m—— /

o / / /-E
/ \ /

/ \-D
/

\-A

Note that although rooting is usually regarded as a whole-tree operation, ETE allows to root subparts of
the tree without affecting to its parent tree structure.

from ete3 import Tree

t = Tree(' (((A,C), ((H,F), (L,M))), ((B, (J,K)) (E,D)));")
print "Original tree:"

print t

/—A

J——————= /

/ \-C

/

[mm————= / /—H
/ / f—m—————= /

/ / / \-F
/ \ - /

/ / /=L
/ \ /
o / \-M
/

/ /-B

/ [mm—————= /

/ / / /=J
/ / \ = /

\———— = / \-K
/

/ /-E

\ - /

\-D

#

Each main branch of the tree is independently rooted.
nodel = t.get_common_ancestor ("A","H")

node2 = t.get_common_ancestor ("B","D")

nodel.set_outgroup ("H")
node2.set_outgroup ("E")

2.1. Working With Tree Data Structures 39

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

print "Tree after rooting each node independently:"

print t

#

/~F

/

Y / /=L
/ / [/

/ / / \ -1
/ \ == /

J——————= / / /=A
/ / \ - /

/ / \-C
/ /

/ \-H

o /

/ /=D

/ Y /

/ / / /-B

/ / \———————= /

\ - / / /=J
/ \ - /

/ \-K
/

\-E

2.1.16 Working with branch distances

The branch length between one node an its parent is encoded as the TreeNode. dist attribute. To-
gether with tree topology, branch lengths define the relationships among nodes.

Getting distances between nodes

The TreeNode.get_distance () method can be used to calculate the distance between two con-
nected nodes. There are two ways of using this method: a) by querying the distance between two
descendant nodes (two nodes are passed as arguments) b) by querying the distance between the current
node and any other relative node (parental or descendant).

from ete3 import Tree

Loads a tree with branch lenght information. Note that if no

distance info is provided in the newick, it will be initialized with

the default dist value = 1.0

nw = """(((A:0.1, B:0.01):0.001, C:0.0001):1.0,
(((p:0.00001:0,1:0):0,F:0):0,G:0):0,H:0):0

:0.000001):0.0000001):2.0;"m"""

14

E

t Tree (nw)

print t

/=A

[/

[mm————= / \-B

/ /

/ \-C

/

/ /=D

40 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ [———————= /
#o———— / [/ \-T
/ / /

/ = / \-F

/ / /

/ Y / \-G

/ / /

\ - / \-H

/

\-E

#

Locate some nodes

A = t&"A"

C = tg"C"

Calculate distance from current node

print "The distance between A and C is", A.get_distance("C")

Calculate distance between two descendants of current node

print "The distance between A and C is", t.get_distance ("A","C")

Calculate the toplogical distance (number of nodes in between)

print "The number of nodes between A and D is ", \
t.get_distance ("A","D", topology_only=True)

Additionally to this, ETE incorporates two more methods to calculate the most distant node
from a given point in a tree. You can use the TreeNode.get_ farthest_node () method
to retrieve the most distant point from a node within the whole tree structure. Alternatively,
TreeNode.get_farthest_leaf () will return the most distant descendant (always a leaf). If
more than one node matches the farthest distance, the first occurrence is returned.

Distance between nodes can also be computed as the number of nodes between them (considering all
branch lengths equal to 1.0). To do so, the topology_only argument must be set to True for all the above
mentioned methods.

Calculate the farthest node from E within the whole structure
farthest, dist = (t&"E").get_farthest_node ()
print "The farthest node from E is", farthest.name, "with dist=", dist
Calculate the farthest node from E within the whole structure,
regarding the number of nodes in between as distance value
Note that the result is differnt.
farthest, dist = (t&"E").get_farthest_node (topology_only=True)
print "The farthest (topologically) node from E is", \
farthest.name, "with", dist, "nodes in between"
Calculate farthest node from an internal node
farthest, dist = t.get_farthest_node()
print "The farthest node from root is is", farthest.name, "with dist=", dist

#

The program results in the following information:

#

The distance between A and C is 0.1011

The distance between A and C is 0.1011

The number of nodes between A and D is 8.0

The farthest node from E is A with dist= 1.1010011

The farthest (topologically) node from E is I with 5.0 nodes in between
The farthest node from root is is A with dist= 1.101

2.1. Working With Tree Data Structures 41

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

getting midpoint outgroup

In order to obtain a balanced rooting of the tree, you can set as the tree outgroup that partition which
splits the tree in two equally distant clusters (using branch lengths). This is called the midpoint outgroup.

The TreeNode.get_midpoint_outgroup () method will return the outgroup partition that splits
current node into two balanced branches in terms of node distances.

from ete3 import Tree
generates a random tree

t = Tree();
t.populate (15);
print t
/—qgogjl
Jmmmmmm /
\-vxbgp
/—xyewk

— e e e e e e

Calculate the midpoint node
= t.get_midpoint_outgroup ()
and set it as tree outgroup
.set_outgroup (R)
rint t

SR NI NN T R Ny B N N R O N N T T N N O R N R N N N N N N N T .

e — —

— o . — e — e e e o~ —

—_ e — — — — — —

\—-rkzwd

/-xoryn
Jm—————= /
/ /—wdi
\ - /
\—gxq
\-isngg
/—-negsc
/7777
e /
/ /
\ / \—exm
/
/ /—uds|
\ - /
\—-bux|
/—xoryn
/~wdima
\ == /
\-gxovz

S
N

Chapter 2. The ETE tutorial

iima

S

low

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ /

/ / /—-xyewk

/ \ - /

/ / /-gogjl

/ \——— /

o / \-vxbgp

/

/ /—-neqgsc

/ /

/ / /—waxkv
/ Y / [/

/ / / [/ \-djeoh
/ / / / /

/ / \—mm— = / \—exmsn

\ - / /

/ / /—udspg

/ \————— /

/ \-buxpw

/

\-rkzwd

2.2 The Programmable Tree Drawing Engine

Contents

» The Programmable Tree Drawing Engine
— Overview
— Interactive visualization of trees
— Rendering trees as images
— Customizing the aspect of trees
x Tree style
- Show leaf node names, branch length and branch support
- Change branch length scale (zoom in X)
- Change branch separation between nodes (zoomin'Y)
- Rotate a tree
- circular tree in 180 degrees
- Add legend and title
* Node style
* Node faces
- Faces position
- Face properties
% layout functions
— Combining styles, faces and layouts
Fixed node styles
Node backgrounds
Img Faces
Bubble tree maps
Trees within trees
Phylogenetic trees and sequence domains
Creating your custom interactive Item faces

* %k ¥ X ¥ X ¥

2.2. The Programmable Tree Drawing Engine 43

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.2.1 Overview

ETE’s treeview extension provides a highly programmable drawing system to render any hierarchical
tree structure as PDF, SVG or PNG images. Although several predefined visualization layouts are in-
cluded with the default installation, custom styles can be easily created from scratch.

Image customization is performed through four elements: a) Tree Sty 1e, setting general options about
the image (shape, rotation, etc.), b) NodeSt y1e, which defines the specific aspect of each node (size,
color, background, line type, etc.), ¢) node faces.Face which are small pieces of extra graphical
information that can be added to nodes (text labels, images, graphs, etc.) d) a layout function, a
normal python function that controls how node styles and faces are dynamically added to nodes.

Images can be rendered as PNG, PDF or SVG files using the TreeNode . render () method or inter-
actively visualized using a built-in Graphical User Interface (GUI) invoked by the TreeNode . show ()
method.

2.2.2 Interactive visualization of trees

ETE’s tree drawing engine is fully integrated with a built-in graphical user interface (GUI). Thus, ETE
allows to visualize trees using an interactive interface that allows to explore and manipulate node’s
properties and tree topology. To start the visualization of a node (tree or subtree), you can simply call
the TreeNode. show () method.

One of the advantages of this on-line GUI visualization is that you can use it to interrupt a given pro-
gram/analysis, explore the tree, manipulate them, and continuing with the execution thread. Note that
changes made using the GUI will be kept after quiting the GUI. This feature is specially useful for
using during python sessions, in which analyses are performed interactively.

The GUI allows many operations to be performed graphically, however it does not implement all the
possibilities of the programming toolkit.

from ete3 import Tree
t = Tree("((a,b),c);")
t.show ()

2.2.3 Rendering trees as images

Tree images can be directly written as image files. SVG, PDF and PNG formats are supported. Note
that, while PNG images are raster images, PDF and SVG pictures are rendered as vector graphics, thus
allowing its later modification and scaling.

To generate an image, the TreeNode.render () method should be used instead of
TreeNode. show (). The only required argument is the file name, whose extension will determine
the image format (.PDF, .SVG or .PNG). Several parameters regarding the image size and resolution can
be adjusted:

Argument | Description

units “px”: pixels, “mm”: millimeters, “in”: inches
h height of the image in units.

W width of the image in units.

dpi dots per inches.

Note: If h and w values are both provided, image size will be adjusted even if it requires to break the

44 Chapter 2. The ETE tutorial

http://en.wikipedia.org/wiki/Vector_graphics

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

original aspect ratio of the image. If only one value (h or w) is provided, the other will be estimated to
maintain aspect ratio. If no sizing values are provided, image will be adjusted to A4 dimensions.

from ete3 import Tree
t = Tree("((a,b),c);")
t.render ("mytree.png", w=183, units="mm")

2.2.4 Customizing the aspect of trees

Image customization is performed through four main elements:

Tree style

The TreeStyle class can be used to create a custom set of options that control the general aspect of
the tree image. Tree styles can be passed to the TreeNode. show () and TreeNode.render ()
methods. For instance, TreeStyle allows to modify the scale used to render tree branches or choose
between circular or rectangular tree drawing modes.

from ete3 import Tree, TreeStyle

t = Tree("((a,b),c);")

circular_style = TreeStyle()

circular_style.mode = "c¢" # draw tree in circular mode
circular_style.scale = 20

t.render ("mytree.png", w=183, units="mm", tree_style=circular_style)

Warning: A number of parameters can be controlled through custom tree style objects, check
TreeStyle documentation for a complete list of accepted values.

Some common uses include:

Show leaf node names, branch length and branch support

Change branch length scale (zoom in X)

Change branch separation between nodes (zoom in Y)

Rotate a tree

circular tree in 180 degrees

2.2. The Programmable Tree Drawing Engine 45

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

0.9
023 a2
06 a2

0.37

Jktge

luzjo

a5, lgwdr
1 [.046

1 oss [0 -
' b2 pis bjmdz

03rprT
omn

0.42

018
034 0.1¢
028 [paathynco

0.25 pE3
0.z

cwamao
0.00063

-
HRE] 08
0035 svibm
D24

_ 037
A hprapsz ¥*mag

012 paa hed
0os dche

Fig. 2.1: Automatically adds node names and branch information to the tree image:

from ete3 import Tree, TreeStyle
t = Tree()

t.populate (10, random_dist=True)
ts = TreeStyle ()

ts.show_leaf name = True
ts.show_branch_length = True
ts.show_branch_support = True

t.show(tree_style=ts)

e Inh U

muzm

J—————'uhtqz
1

ikwcn
e
dcelo

———{ a0
quewd

Fig. 2.2: Increases the length of the tree by changing the scale:

Emm— 1L
nkxpm

from ete3 import Tree, TreeStyle

t = Tree()

t.populate (10, random_dist=True)

ts = TreeStyle ()

ts.show_leaf name = True

ts.scale = 120 # 120 pixels per branch length unit
t.show(tree_style=ts)

46 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

_[vubqh
hvflad

———migzd

s 1N X C (]

—r‘t|2fa
bfgiy

gtyas

ugdac

jeflg

—————=hrmug

Fig. 2.3: Increases the separation between leaf branches:

from ete3 import Tree, TreeStyle
t = Tree()

t.populate (10, random_dist=True)
ts = TreeStyle ()
ts.show_leaf name = True

ts.branch_vertical _margin = 10 # 10 pixels between adjacent branches
t.show(tree_style=ts)

(T p—
LALLM

[L=] =
= :.;g
f=y e
= :',—D
= ==}
o = =
Em.ﬂ
2 =
gao T
=
=
=W
[5]
L=}

Fig. 2.4: Draws a rectangular tree from top to bottom:

from ete3 import Tree, TreeStyle
t = Tree()

t.populate (10)

ts = TreeStyle ()
ts.show_leaf_name = True
ts.rotation = 90
t.show(tree_style=ts)

2.2. The Programmable Tree Drawing Engine 47

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

g o
- L o5
= f'j" E 's:? a:’? S ,5@"
s77288) <
= [=
. 23 = F
e
%, %%, % \;ﬁ\
- o
- \?_'Q'
&y 2 % %, ‘l:k':'*‘ﬁt
'+, "
&y ﬂﬁh
er"ll':'rﬂe
194y Aocie
Sipiu, Jadit
I'Iq :‘b_h- : i \ : -bmﬁu
B2IpUe

Fig. 2.5: Draws a circular tree using a semi-circumference:

from ete3 import Tree, TreeStyle
t = Tree()

t.populate (30)

ts = TreeStyle ()

ts.show_leaf name = True

ts.mode = "c"

ts.arc_start = -180 # 0 degrees = 3 o'clock
ts.arc_span = 180

t.show(tree_style=ts)

48

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Add legend and title

from ete3 import Tree, TreeStyle, TextFace

t = Tree("((a,b),c);")
ts = TreeStyle ()
ts.show_leaf name = True

ts.title.add_face (TextFace ("Hello ETE", fsize=20), column=0)
t.show(tree_style=ts)

Node style

Through the NodeStyle class the aspect of each single node can be controlled, including its size,
color, background and branch type.

A node style can be defined statically and attached to several nodes:

o o o

Qc

Fig. 2.6: Simple tree in which the same style is applied to all nodes:

from ete3 import Tree, NodeStyle, TreeStyle
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle ()
ts.show_leaf_name = True

Draws nodes as small red spheres of diameter equal to 10 pixels
nstyle = NodeStyle ()

nstyle["shape"] = "sphere"
nstyle["size"] = 10
nstyle["fgcolor"] = "darkred"

Gray dashed branch lines
nstyle["hz_line_type"] = 1
nstyle["hz line color"] = "f#ccccce"

Applies the same static style to all nodes in the tree. Note that,
if "nstyle" is modified, changes will affect to all nodes
for n in t.traverse():

n.set_style(nstyle)

t.show(tree_style=ts)

If you want to draw nodes with different styles, an independent NodeStyle instance must be
created for each node. Note that node styles can be modified at any moment by accessing the
TreeNode.img st yle attribute.

Static node styles, set through the set_style () method, will be attached to the nodes and exported
as part of their information. For instance, TreeNode. copy () will replicate all node styles in the
replicate tree. Note that node styles can be also modified on the fly through a 1ayout function (see
layout functions)

2.2. The Programmable Tree Drawing Engine 49

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

a
o . $
&:

Fig. 2.7: Simple tree in which the different styles are applied to each node:

from ete3 import Tree, NodeStyle, TreeStyle
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle ()
ts.show_leaf_name = True

Creates an independent node style for each node, which is

initialized with a red foreground color.

for n in t.traverse():
nstyle = NodeStyle ()
nstyle["fgcolor"] =
nstyle["size"] = 15
n.set_style (nstyle)

"red"

Let's now modify the aspect of the root node
.img_style["size"] = 30
t.img_style["fgcolor"] = "blue"

e

t.show(tree_style=ts)

Node faces

Node faces are small pieces of graphical information that can be linked to nodes. For instance, text
labels or external images could be linked to nodes and they will be plotted within the tree image.

Several types of node faces are provided by the main ete3 module, ranging from simple
text (TextFace) and geometric shapes (CircleFace), to molecular sequence representations
(SequenceFace), heatmaps and profile plots (ProfileFace). A complete list of available faces
can be found at the ete3. t reeview reference page..

Faces position

Faces can be added to different areas around the node, namely branch-right, branch-top, branch-
bottom or aligned. Each area represents a table in which faces can be added through the
TreeNode.add_face () method. For instance, if two text labels want to be drawn bellow the branch
line of a given node, a pair of TextFace faces can be created and added to the columns O and 1 of the
branch-bottom area:

from ete3 import Tree, TreeStyle, TextFace
t = Tree("((a,b),c);")

Basic tree style
ts = TreeStyle ()
ts.show_leaf_ name = True

Add two text faces to different columns
t.add_face (TextFace("hola "), column=0, position = "branch-right")

50 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

t.add_face (TextFace ("mundo!"), column=1, position = "branch-right")
t.show(tree_style=ts)

If you add more than one face to the same area and column, they will be piled up. See the following
image as an example of face positions:

llgned_colo_row1] Eligned col1_row
Bllaned_colo_rowd) Bligned col1_rowg

iop_col0_rowd

Tght col1_roud
Fight o0 roud

Toht col1_rou]
Botiom <ol0_rond) * AL colo row

Toht colL_ron? Eligned_coio_rov]) ligned col1_row
otiom_col0 row

ligned_colo_rowd) Bligned col1_row

Fig. 2.8: Source code used to generate the above image.

Note: Once a face object is created, it can be linked to one or more nodes. For instance, the same text
label can be recycled and added to several nodes.

Face properties

Apart from the specific config values of each face type, all face instances contain same basic attributes
that permit to modify general aspects such as margins, background colors, border, etc. A complete list
of face attributes can be found in the general Face class documentation. Here is a very simple example:

layout functions

Layout functions act as pre-drawing hooking functions. This means, when a node is about to be drawn,
it is first sent to a layout function. Node properties, style and faces can be then modified on the fly
and return it to the drawer engine. Thus, layout functions can be understood as a collection of rules
controlling how different nodes should be drawn.

from ete3 import Tree
t = Tree("((((a,b),c), d), e);")

def abc_layout (node) :
vowels = set (["a", "e",
if node.name in vowels:

"i", "O", Hu"])

Note that node style are already initialized with the
default values

node.img_style["size"] = 15
node.img_style["color"] = "red"

Basic tree style
ts = TreeStyle ()

ts.show_leaf name = True

Add two text faces to different columns

t.add_face (TextFace ("hola "), column=0, position = "branch-right")
t.add_face (TextFace ("mundo!"), column=1, position = "branch-right")
t.show(tree_style=ts)

2.2. The Programmable Tree Drawing Engine 51

http://en.wikipedia.org/wiki/Hooking

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

hola

mundo

—_ h

Fig. 2.9: Basic use of face general attributes

from ete3 import Tree, TreeStyle,
t = Tree("(a,b);")

Basic tree style

ts = TreeStyle ()
ts.show_leaf name = True

Creates two faces
hola TextFace ("hola™)
mundo TextFace ("mundo")

Set some attributes

hola.margin_top = 10
hola.margin_right = 10
hola.margin_left = 10
hola.margin_bottom = 10

hola.opacity = 0.5 # from 0 to 1
hola.inner_border.width =
hola.inner_border.type = 1
hola.border.width = 1
hola.background.color = "LightGreen"

t.add_face (hola,
t.add_face (mundo,

column=0,
column=1,

t.show(tree_style=ts)

position =
position

TextFace

1 # 1 pixel border
dashed line

"branch—-top")
"branch-bottom")

52

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.2.5 Combining styles, faces and layouts

Examples are probably the best way to show how ETE works:

Fixed node styles

from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle

def layout (node):

If node is a leaf, add the nodes name and a 1its scientific name

if node.is_leaf():

faces.add_face_to_node (AttrFace ("name"), node, column=0)

def get_example_tree():

t = Tree()
t.populate (8)

can now create fixed node styles and use them many times,

HH FH WK

reproduce an tree image design)

Set bold red branch to the root node
style = NodeStyle()

style["fgcolor"] = "#0f0f0f"

style["size"] = 0

style["vt_line_color"] = "#££0000"
style["hz_line_color"] = "#££0000"
style["vt_line_width"] = 8

style["hz_line_width"] = 8

style["vt_line_type"] = 0 # 0 solid, 1 dashed, 2 dotted
style["hz_line_type"] = 0

t.set_style(style)

#Set dotted red lines to the first two branches
stylel = NodeStyle()

stylel["fgcolor"] = "#0f0f0£"

stylel["size"] = 0

stylel["vt_line_color"] = "#££0000"
stylel["hz_line_color"] "#££0000"
stylel["vt_line_width"] = 2

stylel["hz_line_width"] = 2

stylel["vt_line_type"] = 2 # 0 solid, 1 dashed, 2 dotted
stylel["hz_line_type"] = 2

t.children[0].img_style = stylel
t.children[l].img_style = stylel

Set dashed blue lines in all leaves
style2 = NodeStyle()
style2["fgcolor"] = "#000000"
style2["shape"] = "circle"

Node style handling is no longer limited to layout functions. You

or even add them to nodes before drawing (this allows to save and

save thg

P

2.2. The Programmable Tree Drawing Engine

53

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

style2["vt_line_color"] = "#0000aa"
style2["hz_line_color"] "#0000aa"
style2["vt_line_width"] = 2
style2["hz_line_width"] = 2
style2["vt_line_type"] = 1 # 0 solid, 1 dashed, 2 dotted
style2["hz_line_type"] = 1
for 1 in t.iter_leaves():
l.img_style = style2

ts = TreeStyle ()
ts.layout_fn = layout
ts.show_leaf_name = False
return t, ts

if _ name_ == "_ _main__ ":
t, ts = get_example_tree ()

t.show(tree_style=ts)

#t.render ("node_style.png",

w=400, tree_style=ts)

Node backgrounds

o, ¢y
b v O o
74 C
b3 al
oF %
~ Qo
Q v
—A
3.74
from ete3 import Tree, faces, AttrFace, TreeStyle, NodeStyle
def layout (node) :
if node.is_leaf():
N = AttrFace ("name", fsize=30)
faces.add_face_to_node (N, node, 0, position="aligned")

def get_example_tree():

Set dashed blue lines 1in all leaves

nstl = NodeStyle ()

nstl["bgcolor"] = "LightSteelBlue"

nst2 = NodeStyle()

nst2["bgcolor"] = "Moccasin"

nst3 = NodeStyle ()

nst3["bgcolor"] = "DarkSeaGreen"

nst4 = NodeStyle()

nst4 ["bgcolor"] = "Khaki"

t = Tree("((((al,a2),a3), ((bl,b2), (b3,b4))), ((cl,c2),c3));")
for n in t.traverse():

n.dist = 0

54

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

nl = t.get_common_ancestor("al", "a2", "a3")
nl.set_style(nstl)

n2 = t.get_common_ancestor ("bl", "b2", "b3", "b4")
n2.set_style (nst2)

n3 = t.get_common_ancestor ("cl", "c2", "c3")
n3.set_style (nst3)
n4 = t.get_common_ancestor ("b3", "b4d")

n4.set_style(nst4)

ts = TreeStyle ()
ts.layout_fn = layout
ts.show_leaf name = False

ts.mode = "c"
ts.root_opening_factor =1
return t, ts

if _ name_ == "_main_ ":

t, ts = get_example_tree ()

#t.render ("node_background.png", w=400, tree_style=ts)

t.show(tree_style=ts)

Img Faces

Note that images are attached to terminal and internal nodes.

Import Tree instance and faces module
from ete3 import Tree, faces, TreeStyle

Loads an example tree
nw = """
(((Dre:0.008339,Dme:0.300613)1.000000:0.596401,
(C£fa:0.640858,Hsa:0.753230)1.000000:0.182035)1.000000:0.106234,
((Dre:0.271621,Cfa:0.046042)1.000000:0.953250,

(Hsa:0.061813,Mms:0.110769)1.000000:0.204419)1.000000:0.973467) ;

wnnn

t = Tree (nw)
You can create any random tree containing the same leaf names, and
layout will work equally
#
t = Tree()
Creates a random tree with 8 leaves using a given set of names
t.populate (8, ["Dme", "Dre", "Hsa", "Ptr", "Crfa", "Mms"])
Set the path in which images are located
2.2. The Programmable Tree Drawing Engine 55

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

img_path = "./"

Create faces based on external images
humanFace = faces.ImgFace (img_path+"human.png")
mouseFace = faces.ImgFace (img_path+"mouse.png")

dogFace = faces.ImgFace (img_path+"dog.png")
chimpFace = faces.ImgFace (img_path+"chimp.png")
fishFace = faces.ImgFace (img_path+"fish.png")
flyFace = faces.ImgFace (img_path+"fly.png")

Create a faces ready to read the name attribute of nodes
#nameFace = faces.TextFace (open("text").readline().strip(), fsize=20, f

nameFace = faces.AttrFace("name", fsize=20, fgcolor="#009000")

Create a conversion between leaf names and real names

codeZ2name = {
"Dre":"Drosophila melanogaster",
"Dme" :"Danio rerio",
"Hsa":"Homo sapiens",
"Ptr":"Pan troglodytes",
"Mms" :"Mus musculus",
"Cfa":"Canis familiaris"

}

Creates a dictionary with the descriptions of each leaf name
code2desc = {

"Dre":"""The zebrafish, also known as Danio rerio,
is a tropical freshwater fish belonging to the
minnow family (Cyprinidae).""",
"Dme":"""True flies are insects of the order Diptera,

possessing a single pair of wings on the
mesothorax and a pair of halteres, derived from

the hind wings, on the metathorax""",
"Hsa":"""A human is a member of a species
of bipedal primates in the family Hominidae.""",
"Ptr":"""Chimpanzee, sometimes colloquially
chimp, is the common name for the
two extant species of ape in the genus Pan.""",
"Mms":"""A mouse is a small mammal belonging to the
order of rodents.""",
"Cfa": """The dog (Canis lupus familiaris) is a

domesticated subspecies of the Gray Wolf,
a member of the Canidae family of the
orderCarnivora."""

}

Creates my own layout function. I will use all previously created
faces and will set different node styles depending on the type of
node.
def mylayout (node) :
If node is a leaf, add the nodes name and a 1its scientific
name
if node.is_leaf ():
Add an static face that handles the node name
faces.add_face_to_node (nameFace, node, column=0)
We can also create faces on the fly
longNameFace = faces.TextFace (codeZname[node.name])
faces.add_face_to_node (longNameFace, node, column=0)

ycolor="#009

56

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

text faces support multiline. We add a text face
with the whole description of each leaf.

descFace = faces.TextFace (code2desc[node.name], fsize=10)
descFace.margin_top = 10

descFace.margin_bottom = 10

descFace.border.margin = 1

Note that this faces is added in "aligned" mode
faces.add_face_to_node (descFace, node, column=0, aligned=True)

Sets the style of leaf nodes

node.img_style["size"] = 12
node.img_style["shape"] = "circle"
#If node is an internal node
else:
Sets the style of internal nodes
node.img_style["size"] = 6
node.img_style["shape"] = "circle"
node.img_style["fgcolor"] = "#000000"

If an internal node contains more than 4 leaves, add the
images of the represented species sorted in columns of 2
images max.

if len(node)>=4:

col = 0
for i, name in enumerate (set (node.get_leaf_names())):
if i>0 and i%2 == O0:
col += 1

Add the corresponding face to the node
if name.startswith ("Dme") :

faces.add_face_to_node(flyFace, node, column=col)
elif name.startswith("Dre"):

faces.add_face_to_node (fishFace, node, column=col)
elif name.startswith ("Mms") :

faces.add_face_to_node (mouseFace, node, column=col)
elif name.startswith("Ptr"):

faces.add_face_to_node (chimpFace, node, column=col)
elif name.startswith ("Hsa"):

faces.add_face_to_node (humanFace, node, column=col)
elif name.startswith("Cfa"):

faces.add_face_to_node (dogFace, node, column=col)

Modifies this node's style

node.img_style["size"] = 16
node.img_style["shape"] = "sphere"
node.img_style["fgcolor"] = "#AA0000"

If leaf is "Hsa" (homo sapiens), highlight it using a

different background.

if node.is_leaf () and node.name.startswith("Hsa"):
node.img_style["bgcolor"] = "#9db0cf"

And, finally, Visualize the tree using my own layout function

= TreeStyle ()

ts.layout_fn = mylayout
t.render ("img_faces.png", w=600, tree_style = ts)

2.2. The Programmable Tree Drawing Engine 57

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Bubble tree maps

import random
from ete3 import Tree, TreeStyle, NodeStyle, faces, AttrFace, CircleFace

def layout (node) :
if node.is_leaf():
Add node name to laef nodes
N = AttrFace("name", fsize=14, fgcolor="black")
faces.add_face_to_node (N, node, 0)
if "weight" in node.features:
Creates a sphere face whose size 1is proportional to node's
feature "weight"

Let's make the sphere transparent

.opacity = 0.3

And place as a float face over the tree
faces.add_face_to_node(C, node, 0, position="float")

= O H Q H H%

def get_example_tree():
Random tree
t = Tree()
t.populate (20, random_branches=True)

Some random features in all nodes
for n in t.traverse():
n.add_features (weight=random.randint (0, 50))

Create an empty TreeStyle
ts = TreeStyle ()

Set our custom layout function
ts.layout_fn = layout

Draw a tree
ts.mode = "c"

We will add node names manually
ts.show_leaf _name = False

Show branch data
ts.show_branch_length = True
ts.show_branch_support = True

return t, ts

58 Chapter 2. The ETE tutorial

= CircleFace (radius=node.weight, color="RoyalBlue", style="sphere")

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

if _ name_ == "__main_ ":
t, ts = get_example_tree ()

#t.render ("bubble_map.png", w=600, dpi=300, tree_style=ts)
t.show(tree_style=ts)

Trees within trees

import random
from ete3 import Tree, TreeStyle, NodeStyle, faces, AttrFace, TreeFace

Tree Style used to render small trees used as leaf faces
small_ts = TreeStyle ()

small_ts.show_leaf_name = True

small_ts.scale = 10

def layout (node) :
if node.is_leaf () :
Add node name to laef nodes
N = AttrFace("name", fsize=14, fgcolor="black")
faces.add_face_to_node (N, node, 0)

t = Tree()

t.populate (10)

T = TreeFace(t, small_ts)

Let's make the sphere transparent

T.opacity = 0.8

And place as a float face over the tree
faces.add_face_to_node (T, node, 1, position="aligned")

def get_example_tree():
Random tree
t = Tree()
t.populate (20, random_branches=True)

Some random features in all nodes
for n in t.traverse():
n.add_features (weight=random.randint (0, 50))

Create an empty TreeStyle
ts = TreeStyle ()

2.2. The Programmable Tree Drawing Engine 59

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

if name ==

Set our custom layout function
ts.layout_fn = layout

Draw a tree
ts.mode = "c"

We will add node names manually
ts.show_leaf_name = False

Show branch data
ts.show_branch_length =
ts.show_branch_support =
return t, ts

True
True

n

__main__ ":
t, ts = get_example_tree()
#t.render ("tree faces.png"”", w=600, dpi=300

t.show(tree_style=ts)

, tree_style=ts)

Phylogenetic trees and sequence domains

S/

import sys

from ete3 import Tree, SegMotifFace, TreeStyle, add_face_to_node

seq = ("—"——— AQAK——-TIKGSKKAIKY
"APERLQEYGSIFTDA-—-GLQRRPRHRIQSK-—————— ALQEKLKDFPVCVSTKPEPEDDAEEG]
"ISSVSSLLLENTTENLYKKYVFLDPLAG———-THVMLGAETEEKLFDAPLSISKREQLEQQVPEI

"LGOQVPEIDVPSYLPDLPGIANDLMYIADLGPGIAPSAPG
"AHTPSSLDTPHEFVFQTYKMGAPPLPPSTAAPVGQGARQD
"OAGGIGKAKLRSMKERKLEKQQQOKEQEQVRATSQGGHL—
"RVSDSIPPLPPPQQPQAEDED———-")

mixed_motifs = [

seqg.start, seqg.end, shape, width, height, fgcolor, bgcolor
[10, 100, "[]", None, 10, "black", "rgradient:blue", "ariall8|w}
[101, 150, "o", None, 10, "blue", "pink", None]l,

[155, 180, "()", None, 10, "blue", "rgradient:purple", None],
[160, 190, "~", None, 14, "black", "yellow", None],

[191, 200, "<>", None, 12, "black", "rgradient:orange", None],
[201, 250, "o", None, 12, "black", "brown", None],

[351, 370, "v", None, 15, "black", "rgradient:gold", None],
[370, 420, "compactseqg", 2, 10, None, None, Nonel,

simple_motifs = [

TIPELPTFHTEVAEPLKVGELGSGM
DSSSSASPSVQGAPREVVDPSGGWAT
—MSDLEFNKLVMRRKGISGKGPGAGD

VESSA———"
LGGLPSN"
NYEYVPD"
EAGPGTP"
[LLESIR"
EPGGAFA"

rite|long te

60

Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

seq.start, seq.end, shape, width, height, fgcolor, bgcolor

120, 150, "o", None, 10, "blue", "pink", None],

#
[10, 60, "[]", None, 10, "black", "rgradient:blue", "arial|8|white|long tex
[
[

200, 300, "()", None, 10, "blue", "red", "ariall|8|white|hello"

box_motifs = [
seq.start, seq.end, shape, width, height, fgcolor, bgcolor

[o, 5, "[]", None, 10, "black", "rgradient:blue", "arial|8|white]|1l0"],

[10, 25, "[]", None, 10, "black", "rgradient:ref", "arial|8|white|1l0"],
[30, 45, "[]", None, 10, "black", "rgradient:orange", "ariall|8]|whitel|20"],
[50, 65, "[]", None, 10, "black", "rgradient:pink", "arial|8|white|20"],
[70, 85, "[]", None, 10, "black", "rgradient:green", "ariall|8|white|20"],
[90, 105, "[]", None, 10, "black", "rgradient:brown", "ariall|8|white|20"],
[110, 125, "[]", None, 10, "black", "rgradient:yellow", "ariall|8|white]|20"]

def get_example_tree():

Create a random tree and add to each leaf a random set of motjfs

from the original set
t = Tree("((A, B, C, D, E, F, G), H, I);")

seqFace = SegMotifFace (seq, gapcolor="red")
(t & "A").add_face(segFace, 0, "aligned")

seqgFace SeqMotifFace (seq, seq_format="line", gap_format="blan
(t & "B").add_face(segFace, 0, "aligned")

seqgFace SegqMotifFace (seq, seq_format="line")
(t & "C").add_face(segFace, 0, "aligned")

seqFace = SegMotifFace (seq, seq_format="()")
(t & "D").add_face (segFace, 0, "aligned")

seqFace = SegMotifFace(seq, motifs=simple_motifs, seq_format="-
(t & "E").add_face (segFace, 0, "aligned")

seqFace = SegMotifFace (seg=None, motifs=simple_motifs, gap_forma
(t & "F").add_face(segqFace, 0, "aligned")

seqFace SeqMotifFace (seq, motifs=mixed_motifs, seqg_format="-"
(t & "G").add_face (segFace, 0, "aligned")

seqFace = SegMotifFace (seg=None, motifs=box_motifs, gap_format=
(t & "H").add_face(segFace, 0, "aligned")

seqgFace SegMotifFace (seq[30:60], seq_format="seqg")
(t & "I").add_face(segFace, 0, "aligned")

return t
if _ name_ == '_ _main__ ':
t = get_example_tree ()

ts = TreeStyle ()
ts.tree_width = 50

(")

at="blank")

'line™)

2.2.

The Programmable Tree Drawing Engine 61

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

#t.show(tree_style=ts)
t.render ("seq_motif faces.png", tree_style=ts)

Creating your custom interactive Item faces

Drawing your own Qt Faces

4‘:;”?:
cjon
taryg

—
050

Note that item faces shown in this image are not static. When the tree is view using the tree.show()
method, you can interact with items.

We will need to create Qt4 items

from PyQt4 import QtCore

from PyQt4.QtGui import QGraphicsRectItem, QGraphicsSimpleTextItem, \
QGraphicsEllipseItem, QColor, QPen, QBrush

from ete3 import Tree, faces, TreeStyle, NodeStyle

To play with random colors
import colorsys
import random

class InteractiveItem(QGraphicsRectItem) :
def _ init_ (self, =xarg, =xkarg):
QGraphicsRectItem.__init_ (self, =xarg, =*=xkarq)
self.node = None
self.label = None
self.setCursor (QtCore.Qt.PointingHandCursor)
self.setAcceptsHoverEvents (True)

def hoverEnterEvent (self, e):

There are many ways of adding interactive elements. With the

following code, I show/hide a text item over my custom

DynamicItemFace

if not self.label:
self.label = QGraphicsRectItem()
self.label.setParentItem(self)
This is to ensure that the label is rendered over the
rest of item children (default ZValue for items is 0)
self.label.setZValue (1)
self.label.setBrush (OBrush (QColor ("white")))
self.label.text = QGraphicsSimpleTextItem /()
self.label.text.setParentItem(self.label)

self.label.text.setText (self.node.name)
self.label.setRect (self.label.text.boundingRect ())
self.label.setVisible (True)

62 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

def hoverlLeaveEvent (self, e):
if self.label:
self.label.setVisible (False)

def random_color (h=None) :
"""Generates a random color in RGB format."""

if not h:

h = random.random ()
s = 0.5
1 =20.5

return _hls2hex(h, 1, s)

def _hls2hex(h, 1, s):
return '#%02x2%02x%02x" Stuple (map (lambda x: int (x*x255),
colorsys.hls_to_rgb(h, 1, s)))
def ugly_name_face (node, xargs, xxkargs):
""r This is my item generator. It must receive a node object, and

returns a Qt4 graphics item that can be used as a node face.
nmmn

receive an arbitrary number of arguments, 1in this case width and
height of the faces

width = args[0][0]

height = args[0][1]

Creates a main master Item that will contain all other elements
Items can be standard QOGraphicsItem
masterItem = QGraphicsRectItem (0, 0, width, height)

Or your custom Items, in which you can re-implement interactive
functions, etc. Check QGraphicsItem doc for details.
masterItem = InteractivelItem(0, 0, width, height)

Keep a link within the item to access node info
masterItem.node = node

I dont want a border around the masterItem
masterItem.setPen (QPen (QtCore.Qt .NoPen))

Add ellipse around text

ellipse = QGraphicsEllipseltem(masterItem.rect ())
ellipse.setParentItem(masterItem)

Change ellipse color
ellipse.setBrush (QBrush (QColor (random_color())))

Add node name within the ellipse

text = QGraphicsSimpleTextItem(node.name)
text.setParentItem(ellipse)
text.setPen (QPen (QPen (QColor ("white™))))

Center text according to masterItem size
tw = text.boundingRect () .width ()

th = text.boundingRect () .height ()

center = masterItem.boundingRect () .center ()
text.setPos (center.x () -tw/2, center.y()-th/2)

2.2. The Programmable Tree Drawing Engine 63

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

return masterItem

def master_ly(node) :
if node.is_leaf () :
Create an ItemFAce. First argument must be the pointer
the constructor function that returns a QGraphicsItem.

#

will be used to draw the Face. Next arguments are arbitrary,
and they will be forwarded to the constructor Face function.
F

= faces.DynamicItemFace (ugly_name_face, 100, 50)
faces.add_face_to_node(F, node, 0, position="aligned")

def get_example_tree():

t = Tree()
t.populate (8, reuse_names=False)

ts = TreeStyle()
ts.layout_fn = master_ly
ts.title.add_face (faces.TextFace ("Drawing your own Qt Faces",
return t, ts
if name_ == "_ _main_":
t, ts = get_example_tree ()

#t.render ("item faces.png", h=400, tree_style=ts)
The interactive features are only available using the GUI
t.show(tree_style=ts)

to
It

fsize-

2.3 Phylogenetic Trees

Contents

* Phylogenetic Trees
— Overview
— Linking Phylogenetic Trees with Multiple Sequence Alignments
Visualization of phylogenetic trees
Adding taxonomic information
% Automatic control of species info
* Automatic (and custom) control of the species info
* Manual control of the species info
Detecting evolutionary events
* Species Overlap (SO) algorithm
% Tree reconciliation algorithm
* A closer look to the evolutionary event object
Relative dating phylogenetic nodes
* Implementation
Automatic rooting (outgroup detection)
Working with duplicated gene families
x Treeko (splitting gene trees into species trees)
x Splitting gene trees by duplication events
* Collapse species specific duplications

64 Chapter 2. The ETE

tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.3.1 Overview

Phylogenetic trees are the result of most evolutionary analyses. They represent the evolutionary rela-
tionships among a set of species or, in molecular biology, a set of homologous sequences.

The PhyloTree class is an extension of the base Tree object, providing a appropriate way to deal
with phylogenetic trees. Thus, while leaves are considered to represent species (or sequences from a
given species genome), internal nodes are considered ancestral nodes. A direct consequence of this is,
for instance, that every split in the tree will represent a speciation or duplication event.

2.3.2 Linking Phylogenetic Trees with Multiple Sequence Alignments

PhyloTree instances allow molecular phylogenies to be linked to the Multiple Se-
quence Alignments (MSA). To associate a MSA with a phylogenetic tree you can use the
PhyloNode.link to_alignment () method. You can use the alg_format argument to
specify its format (See SegGroup documentation for available formats)

Given that Fasta format are not only applicable for MSA but also for Unaligned Sequences, you may
also associate sequences of different lengths with tree nodes.

from ete3 import PhyloTree

fasta_txt = """

>segA
MAEIPDETIQQFMALT-———-HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>segB
MAETIPDATIQQFMALTNVSHNIAVQY-—EFGDLNEALNSYYAYQTDDQKDRREEAH
>seqC
MAETIPDATIQ-—-—-ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqgD
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL—————————————— REEAH

mmn

Load a tree and link it to an alignment.
t = PhyloTree (" (((seghA, segB),seqC),segD);")
t.link_to_alignment (alignment=fasta_txt, alg_format="fasta")

The same could be done at the same time the tree is being loaded, by using the alignment and
alg_format arguments of PhyloTree.

Load a tree and link it to an alignment.
t = PhyloTree (" (((segh, segB),seqgC),seqgD);", alignment=fasta_txt, alg_format=

As currently implemented, sequence linking process is not strict, which means that a perfect match
between all node names and sequences names is not required. Thus, if only one match is found between
sequences names within the MSA file and tree node names, only one tree node will contain an associated
sequence. Also, it is important to note that sequence linking is not limited to terminal nodes. If internal
nodes are named, and such names find a match within the provided MSA file, their corresponding
sequences will be also loaded into the tree structure. Once a MSA is linked, sequences will be available
for every tree node through its node . sequence attribute.

from ete3 import PhyloTree

fasta_txt = """

>segA
MAEIPDETIQQFMALT-—-HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>segB

2.3. Phylogenetic Trees 65

"fasta")

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

MAEIPDATIQQFMALTNVSHNIAVQY-—-EFGDLNEALNSYYAYQTDDQKDRREEAH

>seqC
MAEIPDATIQ———-ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>seqgD
MAEAPDETIQQOFMALTNVSHNIAVQYLSEFGDLNEAL-—————————————— REEAH

iphylip_txt = """

4 76
seqh MAEIPDETIQ QFMALT---H NIAVQYLSEF GDLNEALNSY YASQTDDIKD RREEAHQF
seqB MAEIPDATIQ QFMALTNVSH NIAVQY--EF GDLNEALNSY YAYQTDDQKD RREEAHQF
seqC MAEIPDATIQ —--ALTNVSH NIAVQYLSEF GDLNEALNSY YASQTDDQPD RREEAHQF
seqD ~ MAEAPDETIQ QFMALTNVSH NIAVQYLSEF GDLNEAL-—- —————————- ~REEAHQ-
LTNVSHQFMA LTNVSH
LTNVSH-——- —————-
LTNVSH--—= —————-

nmmwn

Load a tree and link it to an alignment. As usual, 'alignment' can
be the path to a file or data in text format.
t = PhyloTree (" (((segh, segB),seqC),seqgD);", alignment=fasta_txt, alg_format=

#We can now access the sequence of every leaf node
print "These are the nodes and its sequences:"
for leaf in t.iter_leaves():
print leaf.name, leaf.sequence
#seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL—————————————— REEAH
#seqC MAEIPDATIQ-—-—-ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
#seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
#seqB MAEIPDATIQQFMALTNVSHNIAVQY-—-EFGDLNEALNSYYAYQTDDQOKDRREEAH
#
The associated alignment can be changed at any time
t.link_to_alignment (alignment=iphylip_txt, alg_format="iphylip")
Let's check that sequences have changed
print "These are the nodes and its re-linked sequences:"
for leaf in t.iter_leaves():
print leaf.name, leaf.sequence
#seqD MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL-————————————— REEAHQ—————————— F'MA
#seqC MAEIPDATIQ---ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQOPDRREEAHQFMALTNVSH————
#seqA MAEIPDETIQQFMALT---HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMA
#seqgB MAEIPDATIQQFMALTNVSHNIAVQY-—-EFGDLNEALNSYYAYQTDDQOKDRREEAHQFMALTNVSH———-
#
The sequence attribute is considered as node feature, so you can
even include sequences in your extended newick format!
print t.write (features=["sequence"], format=9)

H

(((seqA[&&NHX:sequence=MAEIPDETIQQFMALT—-—-HNIAVQYLSEFGDLNEALNSYYASQTDDIKDR
MALTNVSHQFMALTNVSH], seqB[&&NHX: sequence=MAEIPDATIQQOFMALTNVSHNIAVQY—-—-EFGDLN
YAYQTDDOKDRREEAHQFMALTNVSH-—————————]),seqC[&&NHX: sequence=MAEIPDATIQ———AL
VOYLSEFGDLNEALNSYYASQTDDOPDRREEAHQFMALTNVSH-—————————]),segD[&&NHX: sequend
ETIQOFMALTNVSHNIAVQYLSEFGDLNEAL—————————————— REEAHQ—————————— FMALTNVSH]) ;

H FHR H KR YR W K

H

And yes, you can save this newick text and reload it into a PhyloTree inst
sametree = PhyloTree(t.write (features=["sequence"]))

print "Recovered tree with sequence features:"

print sametree

#

MA
MA
MA

"fasta")

LTNVSH

\REEAHQF
IEALNSY
TNVSHNIA
e=MAEAPD

ance.

66 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/—segA

Jmmmmmmm /

[/ \-segB

/ /

#ommm / \-seqC

/

\-seqgD

#

print "segA sequence:", (t&"segA").sequence

MAEIPDETIQQFMALT———-HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAHQFMALTNVSHQFMALTNVSH

2.3.3 Visualization of phylogenetic trees
PhyloTree instances can benefit from all the features of the programmable drawing engine. However, a
built-in phylogenetic layout is provided for convenience.

All PhyloTree instances are, by default, attached to such layout for tree visualization, thus allowing for
in-place alignment visualization and evolutionary events labeling.

from ete3 import PhyloTree, TreeStyle

alg = """
>Dme_001
MAEIPDETIQQFMALT———HNIAVQYLSEFGDLNEAL--YYASQTDDIKDRREEAH
>Dme_002
MAEIPDATIQQFMALTNVSHNIAVQY-—-EFGDLNEALNSYYAYQTDDQKDRREEAH
>Cfa_001
MAEIPDATIQ———ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>Mms_001
MAEAPDETIQQFMALTNVSHNIAVQYLSEFGDLNEAL-—————————————— REEAH
>Hsa_001
MAEIPDETIQQFMALT———HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>Ptr_002
MAEIPDATIQ-FMALTNVSHNIAVQY—-—EFGDLNEALNSY-—-YQTDDQKDRREEAH
>Mmu_ 002
MAEIPDATIQ———-ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH
>Hsa_002
MAEAPDETIQQFM-LTNVSHNIAVQYLSEFGDLNEAL-—————————————— REEAH
>Mmu_001
MAEIPDETIQQFMALT———HNIAVQYLSEFGDLNEALNSYYASQTDDIKDRREEAH
>Ptr_001
MAEIPDATIQ-FMALTNVSHNIAVQY-—-EFGDLNEALNSY--YQTDDQKDRREEAH
>Mmu_001

MAEIPDATIQ———-ALTNVSHNIAVQYLSEFGDLNEALNSYYASQTDDQPDRREEAH

mmn

def get_example_tree():

Performs a tree reconciliation analysis
gene_tree_nw = ' ((Dme_001,Dme_002), (((Cfa_001,Mms_001), ((Hsa_001,Ptr_001

2.3. Phylogenetic Trees 67

), Mmu_001)),

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

species_tree_nw = " ((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
genetree = PhyloTree (gene_tree_nw)

sptree = PhyloTree (species_tree_nw)

recon_tree, events = genetree.reconcile (sptree)

recon_tree.link_to_alignment (alg)
return recon_tree, TreeStyle()
if name_ == "_ _main_ ":
Visualize the reconciled tree
t, ts = get_example_tree()
t.show(tree_style=ts)
#recon_tree.render ("phylotree.png"”", w=750)

2.3.4 Adding taxonomic information

PhyloTree instances allow to deal with leaf names and species names separately. This is useful
when working with molecular phylogenies, in which node names usually represent sequence identifiers.
Species names will be stored in the PhyloNode. species attribute of each leaf node. The method
PhyloNode.get_species () can be used obtain the set of species names found under a given
internal node (speciation or duplication event). Often, sequence names do contain species information

as a part of the name, and ETE can parse this information automatically.
There are three ways to establish the species of the different tree nodes:
* Default: The three first letters of node’s name represent the species
* The species code of each node is dynamically created based on node’s name

* The species code of each node is manually set.

Automatic control of species info

from ete3 import PhyloTree
Reads a phylogenetic tree (using default species name encoding)

t = PhyloTree(" (((Hsa_001,Ptr_001), (Cfa_001,Mms_001)), (Dme_001,Dme_002));")
/—Hsa_001
Y /

4 / \-Ptr_001
Jmmmm - /

/ / /—-Cfa_001
/ R /
R / \-Mms_ 001
/

/ /-Dme_ 001

\——— /

\-Dme_ 002

#

Prints current leaf names and species codes
print "Deafult mode:"
for n in t.get_leaves|():
print "node:", n.name, "Species name:", n.species
node: Dme_001 Species name: Dme
node: Dme_002 Species name: Dme
node: Hsa_001 Species name: Hsa
node: Ptr_ 001 Species name: Ptr

HH HHR K K

68 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

node: Cfa_001 Species name: Cfa
node: Mms_001 Species name: Mms

Automatic (and custom) control of the species info

The default behavior can be changed by using the Phy loNode. set__species_naming function ()
method or by using the sp_naming_function argument of the PhyloTree class.
Note that, wusing the sp_naming_function argument, the whole tree structure will

be initialized to use the provided parsing function to obtain species name information.
PhyloNode.set_species_naming_function () (present in all tree nodes) can be used

to change the behavior in a previously loaded tree, or to set different parsing function to different parts

of the tree.

from ete3 import PhyloTree
Reads a phylogenetic tree
t = PhyloTree (" (((Hsa_001,Ptr_001), (Cfa_001,Mms_001)), (Dme_001,Dme_002));")

Let's use our own leaf name parsing function to obtain species
names. All we need to do is create a python function that takes
node's name as argument and return its corresponding species name.
def get_species_name (node_name_string) :
Species code is the first part of leaf name (separated by an
underscore character)

spcode = node_name_string.split ("_") [0]
We could even translate the code to complete names
code2name = {

"Dme":"Drosophila melanogaster",

"Hsa":"Homo sapiens",

"Ptr":"Pan troglodytes",

"Mms":"Mus musculus",

"Cfa":"Canis familiaris"

}

return codeZname [spcode]

Now, let's ask the tree to use our custom species naming function
t.set_species_naming_function (get_species_name)
print "Custom mode:"
for n in t.get_leaves|():
print "node:", n.name, "Species name:", n.species

node: Dme_001 Species name: Drosophila melanogaster
node: Dme_002 Species name: Drosophila melanogaster
node: Hsa_001 Species name: Homo sapiens

node: Ptr. 001 Species name: Pan troglodytes

node: Cfa_ 001 Species name: Canis familiaris

R S R R S

node: Mms_001 Species name: Mus musculus

Manual control of the species info

To disable the automatic generation of species names based on node names, a None value can be passed
to the PhyloNode. set_species_naming_ function () function. From then on, species at-
tribute will not be automatically updated based on the name of nodes and it could be controlled manu-
ally.

2.3. Phylogenetic Trees 69

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

from ete3 import PhyloTree
Reads a phylogenetic tree

t = PhyloTree (" (((Hsa_001,Ptr_001), (Cfa_001,Mms_001)), (Dme_001,Dme_002));")
Of course, you can disable the automatic generation of species

names. To do so, you can set the species naming function to

None. This 1is useful to set the species names manually or for

reading them from a newick file. Other wise, species attribute would

be overwriten

mynewick = """
(((Hsa_001[&&NHX:species=Human],Ptr_001[&&NHX:species=Chimp]),
(Cfa_001[&&NHX:species=Dog],Mms_001[&&NHX:species=Mouse])),
(Dme_001 [&&NHX:species=Fly],Dme_002 [&&NHX:species=Fly]));
t = PhyloTree (mynewick, sp_naming_function=None)
print "Disabled mode (manual set)"
for n in t.get_leaves|():

print "node:", n.name, "Species name:", n.species

node: Dme_001 Species name: Fly
node: Dme_002 Species name: Fly
node: Hsa_001 Species name: Human
node: Ptr 001 Species name: Chimp
node: Cfa_001 Species name: Dog
node: Mms_001 Species name: Mouse

SH Hh R KR IR

Full Example: Species aware trees.

2.3.5 Detecting evolutionary events

There are several ways to automatically detect duplication and speciation nodes. ETE provides two
methodologies: One implements the algorithm described in Huerta-Cepas (2007) and is based on the
species overlap (SO) between partitions and thus does not depend on the availability of a species tree.
The second, which requires the comparison between the gene tree and a previously defined species tree,
implements a strict tree reconciliation algorithm (Page and Charleston, 1997). By detecting evolutionary
events, orthology and paralogy relationships among sequences can also be inferred. Find a comparison
of both methods in Marcet-Houben and Gabaldon (2009).

Species Overlap (SO) algorithm

In order to apply the SO algorithm, you can use the PhyloNode. get_descendant_evol_ events ()
method (it will detect all evolutionary events under the current node) or the
PhyloNode.get_my_evol_events () method (it will detect only the evolutionary events

in which current node, a leaf, is involved).

By default the species overlap score (SOS) threshold is set to 0.0, which means that a single species in
common between two node branches will rise a duplication event. This has been shown to perform the
best with real data, however you can adjust the threshold using the sos_thr argument present in both
methods.

from ete3 import PhyloTree
Loads an example tree
nw = """

((Dme_001,Dme_002), (((Cfa_001,Mms_001), ((Hsa_001,Ptr_001),Mmu_001)),

70 Chapter 2. The ETE tutorial

http://genomebiology.com/2007/8/6/R109
http://www.plosone.org/article/info:doi%2F10.1371%2Fjournal.pone.0004357

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

4

(Ptr_002, (Hsa_002,Mmu_002))))

mmwn

t = PhyloTree (nw)

print t

/—Dme_001

[/

/ \-Dme_002

/

/ /—-Cfa_001
/ [mmmm /
- / / \-Mms_001
/ fmmmmmes /

/ / / /—Hsa_001
/ / / A !
/ / \——————— / \-Ptr_001
R j /

/ \-Mmu_001
/

/ /=Ptr._002

| /

/ /—Hsa_002
\ /

\-Mmu_002
#

To obtain all the evolutionary events involving a given leaf node we

use get_

matches
human_seq
Obtains
events

my_evol_events method
t.search_nodes (name="Hsa_ 001")
matches [0]

its evolutionary events

human_seqg.get_my_evol_events ()

Print its orthology and paralogy relationships
print "Events detected that involve Hsa_001:"
for ev in events:
if ev.etype == "S":
print ' ORTHOLOGY RELATIONSHIP:', ','.join(ev.in_seqgs), "<====>",
elif ev.etype == "D":
print ' PARALOGY RELATIONSHIP:', ','.join(ev.in_seqgs), "<s===>",6 '
Alternatively, you can scan the whole tree topology
events = t.get_descendant_evol_events()
Print its orthology and paralogy relationships
print "Events detected from the root of the tree"
for ev in events:
if ev.etype == "S":
print ' ORTHOLOGY RELATIONSHIP:', ', '.join(ev.in_seqgs), "<====>",
elif ev.etype == "D":
print ' PARALOGY RELATIONSHIP:', ','.join(ev.in_seqgs), "<=s===>",6 '
If we are only interested in the orthology and paralogy relationship
among a given set of species, we can filter the list of sequences
#
fsegs is a function that, given a list of sequences, returns only
those from human and mouse
fsegs = lambda slist: [s for s in slist if s.startswith("Hsa") or s.startswi
print "Paralogy relationships among human and mouse"
for ev in events:
if ev.etype == "D":

', '".join (ev.

, ' join(ev.c

', '.join (ev.

, ' .join (ev.c

th ("Mms")]

2.3. Phylogenetic Trees

71

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Prints paralogy relationships considering only human and
mouse. Some duplication event may not involve such species,
so they will be empty

print ' PARALOGY RELATIONSHIP:', \
', '".join(fsegs(ev.in_seqgs)), \
P ——— | , \

', '".join (fseqgs (ev.out_seqgs))

Note that besides the list of events returned, the detection

algorithm has labeled the tree nodes according with the

predictions. We can use such lables as normal node features.
dups = t.search_nodes (evoltype="D") # Return all duplication nodes

Tree reconciliation algorithm

Tree reconciliation algorithm uses a predefined species tree to infer all the necessary genes losses that
explain a given gene tree topology. Consequently, duplication and separation nodes will strictly follow
the species tree topology.

To perform a tree reconciliation analysis over a given node in a molecular phylogeny you can use the
PhyloNode.reconcile () method, which requires a species PhyloTree as its first argument.
Leaf node names in the the species are expected to be the same species codes in the gene tree (see
taxonomic_info). All species codes present in the gene tree should appear in the species tree.

As a result, the PhyloNode. reconcile () method will label the original gene tree nodes as du-
plication or speciation, will return the list of inferred events, and will return a new reconcilied tree
(PhyloTree instance), in which inferred gene losses are present and labeled.

from ete3 import PhyloTree

Loads a gene tree and its corresponding species tree. Note that
species names in sptree are the 3 firs letters of leaf nodes in
genetree.

gene_tree_nw = ' ((Dme_001,Dme_002), (((Cfa_001,Mms_001), ((Hsa_001,Ptr_001),Mmn
species_tree_nw = " ((((Hsa, Ptr), Mmu), (Mms, Cfa)), Dme);"
genetree = PhyloTree (gene_tree_nw)

sptree = PhyloTree (species_tree_nw)

print genetree

/-Dme_ 001

[/

/ \-Dme_ 002

/

/ /—Cfa_001

/ Jfmmm /

#o————— / / \-Mms_ 001

/ Y /

/ / / /—-Hsa_001
/ / / [—m—————= /

/ / \————— / \-Ptr_001
\————— / /

/ \-Mmu_001

/

/ /—-Ptr_002

\ - /

/ /—-Hsa_002

\———— /

72 Chapter 2. The ETE tutorial

u_001)), (Pt

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

\-Mmu_002

#

Let's reconcile our genetree with the species tree
recon_tree, events = genetree.reconcile (sptree)

a new "reconcilied tree" is returned. As well as the list of
inferred events.

print "Orthology and Paralogy relationships:"

for ev in events:

if ev.etype == "S":

print 'ORTHOLOGY RELATIONSHIP:', ','.join(ev.inparalogs), "<====>",
elif ev.etype == "D":

print 'PARALOGY RELATIONSHIP:', ','.Jjoin(ev.inparalogs), "<====>",

And we can explore the resulting reconciled tree

print recon_tree

You will notice how the reconcilied tree is the same as the gene
tree with some added branches. They are inferred gene losses.

#

#

/-Dme_001

Y /

/ \-Dme_002

/

/ /-Cfa_001

/ Y /

/ / \-Mms_ 001

#o———— / [/

/ / / /-Hsa_ 001

/ / / J[mm /

/ / \ / \-Ptr_001

/ / /

/ / \-Mmu_001

\——— /

/ /—Mms

/ [/

/ / \-Cfa

/ /

/ / /-Hsa
\——— / Y /

/ [/ \-Ptr_002
/ / /

/ / \ —Mmu

\m—— /

/ /-Ptr
/ [———————= /

\ / \-Hsa_002
/

\—-Mmu_002

#

And we can visualize the trees using the default phylogeny
visualization layout

genetree.show ()

recon_tree.show ()

2.3. Phylogenetic Trees

73

', '".join (ev.

, ' .join(ev.c

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

A closer look to the evolutionary event object

Both methods, species overlap and tree reconciliation, can be used to label each tree node as a duplication
or speciation event. Thus, the PhyloNode.evoltype attribute of every node will be set to one of
the following states: D (Duplication), S (Speciation) or L gene loss.

Additionally, a list of all the detected events is returned. Each event is a python object of type
phylo.EvolEvent, containing some basic information about each event (etype, in_sedqs,
out_seqgs, node):

If an event represents a duplication, in_seqgs are all paralogous to out_segs. Similarly, if an event
represents a speciation, in_seqgs are all orthologous to out_segs.

2.3.6 Relative dating phylogenetic nodes

In molecular phylogeny, nodes can be interpreted as evolutionary events. Therefore, they represent
duplication or speciation events. In the case of gene duplication events, nodes can also be assigned to
a certain point in a relative temporal scale. In other words, you can obtain a relative dating of all the
duplication events detected.

Although absolute dating is always preferred and more precise, topological dating provides a faster
approach to compare the relative age of paralogous sequences (read this for a comparison with other
methods, such as the use of synonymous substitution rates as a proxy to the divergence time).

Some applications of topological dating can be found in Huerta-Cepas et al, 2007 or, more recently, in
Huerta-Cepas et al, 2011 or Kalinka et al, 2001.

Implementation
The aim of relative dating is to establish a gradient of ages among sequences. For this, a reference
species needs to be fixed, so the gradient of ages will be referred to that referent point.
Thus, if our reference species is Human, we could establish the following gradient of species:
¢ (1) Human -> (2) Other Primates -> (3) Mammals -> (4) Vertebrates

So, nodes in a tree can be assigned to one of the above categories depending on the sequences grouped.
For instance:

* A node with only human sequences will be mapped to (1).
* A node with human and orangutan sequences will be mapped to (2)
* A node with human a fish sequences will be mapped to (4)

This simple calculation can be done automatically by encoding the gradient of species ages as Python
dictionary.

relative_dist = {
"human": 0, # human
"chimp": 1, # Primates non human
"rat": 2, # Mammals non primates
"mouse": 2, # Mammals non primates
"fish": 3 # Vertebrates non mammals

}

74 Chapter 2. The ETE tutorial

http://bioinformatics.oxfordjournals.org/content/27/1/38.long
http://genomebiology.com/2007/8/6/r109
http://bib.oxfordjournals.org/content/12/5/442.abstract
http://www.nature.com/nature/journal/v468/n7325/full/nature09634.html

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Once done, ETE can check the relative age of any tree node. The PhyloNode. get_age () method
can be used to that purpose.

For example, let’s consider the following gene tree:

/—humanA
/===
/ \—chimpA
/Dupl
/ / /—humanB
/=== \———]
/ / \-chimpB
/=== /
/ / \—-mouseA
/ /
/ \-fish
#-Dup3
/ /—humanC
/ /===
/ /=== \—chimpC
/ / /
\Dup2 \-~humanD
/
/ /—-ratC
\———/
\-mouseC
the expected node dating would be:
e Dupl will be assigned to primates (most distant species is chimp).
Dupl.get_age (relative_distances) will return 1
* Dup2 will be assigned to mammals [2] (most distant species are rat and mouse).
Dup?2.get_age (relative_distances) will return 2
e Dup3 will be assigned to mammals [3] (most distant species is fish).
Dup3.get_age (relative_distances) will return 3
from ete3 import PhyloTree
Creates a gene phylogeny with several duplication events at
different levels. Note that we are using the default method for
detecting the species code of leaves (three first lettes in the node
name are considered the species code).
nw = """
((Dme_001,Dme_002), (((Cfa_001,Mms_001), ((((Hsa_001,Hsa_003),Ptr_001)
,Mmu_001), ((Hsa_004,Ptr_004),Mmu_004))), (Ptr_002, (Hsa_002,Mmu_002))));
t = PhyloTree (nw)
print "Original tree:",
print t
#
/—Dme_ 001
=== /
#o \-Dme_002
#
/—-Cfa_001
[/
/ \-Mms_ 001
/
2.3. Phylogenetic Trees 75

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

#——1 / /—-Hsa_001
#o / fmmmmm /

= / [mmm / \-Hsa_003
/ / / /

/ / [—m————= / \-Ptr_001

/ / / /

#o / / / \-Mmu_001

/ \ - /

\——— / / /-Hsa_004

/ / - /

/ \ = / \-Ptr_004

/ /

/ \-Mmu_004

/

/ /—-Ptr_002

\ /

/ /—Hsa_002

\——————= /

\-Mmu_002

Create a dictionary with relative ages for the species present in

the phylogenetic tree. Note that ages are only relative numbers to

define which species are older, and that different species can
belong to the same age.

speciesZ2age = {
'Hsa': 1, # Homo sapiens (Hominids)
'Ptr': 2, # P. troglodytes (primates)
'"Mmu': 2, # Macaca mulata (primates)
'Mms': 3, # Mus musculus (mammals)
'Cfa': 3, # Canis familiaris (mammals)
'Dme': 4 # Drosophila melanogaster (metazoa)

}
We can translate each number to its correspondig taxonomic number
ageZ2name = {

l:"hominids",

2:"primates",

3:"mammals",

4:"metazoa"
}
eventl= t.get_common_ancestor ("Hsa_ 001", "Hsa_004")
event2=t.get_common_ancestor ("Hsa_ 001", "Hsa_002")

print

print "The duplication event leading to the human sequences Hsa_001 and "+\
"Hsa_004 is dated at: ", ageZname[eventl.get_age (species2age)]

print "The duplication event leading to the human sequences Hsa_001 and "+\
"Hsa_ 002 is dated at: ", ageZnamef[event2.get_age (species2age)]

The duplication event leading to the human sequences Hsa 001 and Hsa_004

is dated at: primates

#

The duplication event leading to the human sequences Hsa_00l1 and Hsa_002
is dated at: mammals

Warning: Note that relative distances will vary depending on your reference species.

76 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.3.7 Automatic rooting (outgroup detection)

Two methods are provided to assist in the automatic rooting of phylogenetic trees. Since tree nodes con-
tain relative age information (based on the species code autodetection), the same relative age dictionaries
can be used to detect the farthest and oldest node in a tree to given sequences.

PhyloNode.get_farthest_oldest_node () and PhyloNode.get_farthest_oldest_leaf ()

can be used for that purpose.

2.3.8 Working with duplicated gene families
Treeko (splitting gene trees into species trees)

Comparisons between tree topologies provide important information for many evolutionary studies.
Treeko (Marcet and Gabaldon, 2011) is a novel method that allows the comparison of any two tree
topologies, even those with missing leaves and duplications. This is important in genome-wide anal-
ysis since many trees do not have exact leaf pairings and therefore most tree comparison methods are
rendered useless.

Although Treeko is available as a standalone package, it uses ETE to generate all possible species tree
topologies within a duplicated gene family tree.

Thus, the ETE method PhyloNode.get_speciation trees () is expected to provide the core
functionality required to perform a Treeko analysis. When used, the method will return a list of all pos-
sible species trees observed after combining the different non-duplicated subparts under a gene family
tree node.

Duplication events will be automatically identified using the species overlap algorithm described
within this manual. However, duplication nodes can be manually labeled and used by disabling the
autodetect_duplication flag.

Because of the combinatorial background of the Treeko method, the number of speciation trees generated
by this function may vary enormously (ranging from few hundreds to tens of thousands topologies).

Here is a basic example on how to use it:

from ete3 import PhyloTree

t = PhyloTree (" ((((Human_1, Chimp_1), (Human_2, (Chimp_2, Chimp_3))), ((Fish

t.set_species_naming_function (lambda node: node.name.split ("_")[0])

print t.get_ascii(attributes=["name", "species"], show_internal=False)
/—Human_1, Human

/=1

/ \-Chimp_1, Chimp

/ /—Human_2, Human
/ /—Chimp_2, Chimp

/

/

/

/

/=1 \-Chimp_3, Chimp

/

/ /-Fish_ 1, Fish

/

/

I /—Human_3, Human

S oHh H H HR I R R R R R R R

—_— — — — —

2.3. Phylogenetic Trees 77

L,

(Human_:

http://treeko.cgenomics.org
http://www.ncbi.nlm.nih.gov/pubmed/21335609

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ \-Fish_ 3, Fish
/
\-Yeast_2, Yeast

B S S S

\-Yeast_1, Yeast

We obtain a list of species trees inferred from the duplication
events. Note that species specific duplications are ignored.

ntrees, ndups, sptrees = t.get_speciation_trees()
print "Found species trees and duplication nodes" % (ntrees, ndups)
for spt in sptrees:
print spt
Found 5 species trees and 4 duplication nodes
#
/—Human_1
-
\-Chimp_1
#
/—Human_2
-
/ /—Chimp 2
\—/
\-Chimp_3
#
/-Fish_1
-1
\-Yeast_2
#
/—Human_ 3
/=1
- \-Fish_ 3
/
\-Yeast_2
#
——Yeast_1

Note: For performance reasons, species trees are created without any link to the original gene family
tree, rather than the species name of each node. However, the map_ features attribute can be used to

keep certain attributes of the original tree into the generated species trees.

Note: Although the efficiency of the method to generate all possible trees has been significantly im-
proved from ETE version 2.2, creating thousands of new PhyloTree objects could affect performance.

The flag newick_only is now available to limit the output to a newick string per generated tree, thus
improving the speed they can be processed or dumped into a file.

Splitting gene trees by duplication events

A much simpler approach to separate duplicates within the same gene family tree is to split the topology
by their duplication nodes. For this, the method PhyloNode. split_by_ dups () is provided.

78 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

from ete3 import PhyloTree

t = PhyloTree (" ((((Human_1, Chimp_1), (Human_2, (Chimp_2, Chimp_3))), ((Fish|_
t.set_species_naming_function (lambda node: node.name.split ("_")[0])
print t.get_ascii(attributes=["name", "species"], show_internal=False)
/—Human_1, Human

/=1

/ \-Chimp_1, Chimp

/=1

[/—Human_2, Human

/ \—J

/ / /-Chimp_2, Chimp

/ \—/

/= \-Chimp_3, Chimp

I

[/-Fish_1, Fish

I /=1

[N /—Human_3, Human

= \—/ \—/

/ / \-Fish_ 3, Fish

/ /

/ \-Yeast_2, Yeast

/

\-Yeast_1, Yeast

Again, species specific duplications are ignored
for node in t.split_by_dups():
print node

/—Human_ 1
-
\-Chimp_1

/—Human_2
-—
/ /—Chimp_ 2
\—/
\-Chimp_3

——Yeast_2
——-Fish 1
/—Human_3

-
\-Fish_ 3

S S Hh R R W R R O R R R R R R R R R

—-—Yeast_1

Collapse species specific duplications

The method PhyloNode.collapse_lineage specific expansions () method, which re-
turns a pruned version of a tree, where nodes representing lineage specific expansions are converted into
a single leaf node is also available.

2.3. Phylogenetic Trees 79

1,

(Human_ :

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

From the previous examples, the lineage specific duplication of Chimp_1 and Chimp_2 could be easily
collapsed into a single node.

from ete3 import PhyloTree

t = PhyloTree (" ((((Human_1, Chimp_1), (Human_2, (Chimp_2, Chimp_3))), ((Fish|_
t.set_species_naming_function (lambda node: node.name.split ("_")[0])
print t.get_ascii(attributes=["name", "species"], show_internal=False)
/—Human_1, Human

/=1

/ \-Chimp_1, Chimp

/=1

/| /—Human_2, Human

/ \—/

/ / /—Chimp_2, Chimp

/ \—/

/=1 \-Chimp_3, Chimp

[

/ / /-Fish_1, Fish

I /=

[N /—Human_3, Human

=1 \—/ \—/

/ / \-Fish_3, Fish

/ /

/ \-Yeast_2, Yeast

/

\-Yeast_1, Yeast

t2 = t.collapse_lineage_specific_expansions ()
print t2.get_ascii(attributes=["name", "species"], show_internal=False)
/—Human_1, Human

/=1

/ \-Chimp_ 1, Chimp

/=1

[/—Human_2, Human

/ \ -/

/ \-Chimp_2, Chimp * ok ok

/=1

I /-Fish_1, Fish

I /=

[Y B /—Human_3, Human

- \—/ \ =/

/ / \-Fish_ 3, Fish

/ /

/ \-Yeast_2, Yeast

/

\-Yeast_1, Yeast

2.4 Clustering Trees

80 Chapter 2. The ETE tutorial

1,

(Human__:

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Contents

* Clustering Trees
— Overview
— Loading ClusterTrees
— Visualization of matrix associated Trees
— Cluster Validation Example

2.4.1 Overview

Cluster analysis is the assignment of a set of observations into subsets (called clusters) so that obser-
vations in the same cluster are similar in some sense. Clustering is a method of unsupervised learning,
and a common technique for statistical data analysis used in many fields, including machine learning,
data mining, pattern recognition, image analysis and bioinformatics. Hierarchical clustering creates a
hierarchy of clusters which may be represented in a tree structure called a dendrogram. The root of
the tree consists of a single cluster containing all observations, and the leaves correspond to individual
observations. [The Wikipedia project Jun-2009].

ETE provides special ClusterNode (alias ClusterTree) instances to deal with trees associated to a
clustering analysis. The basic difference between Tree and ClusterTree is that leaf nodes in a
cluster-tree are linked to numerical profiles. Such profiles are expected to represent the data used to
generate the clustering tree. In other words, trees are bound to numerical arrays.

/—=A

-—

\-B

#

#Names coll col2 col3
A 1.1 0.1 1.33
B 2.0 1.0 2.0

Based on this, CIusterTree instances provide several several clustering validation techniques that
help in the analysis of cluster quality. Currently, inter and intra-cluster distances, cluster std.deviation,
Silhouette analysis and Dunn indexes are supported. In addition, ClusterTree nodes can be visualized
using the ProfileFace face type, which can represent cluster profiles in different ways, such as line
plots, heatmaps or bar plots.

Although this type of trees are intended to be used for clustering results, any tree that can be linked to
a table (i.e. phylogenetic profiles) could be loaded using this data type, thus taking advantage of the
profile visualization modes, etc.

2.4.2 Loading ClusterTrees

A ClusterTree can be linked to a numerical matrix by using the text_array argument.

from ete3 import ClusterTree

Example of a minimalistic numerical matrix. It is encoded as a text
string for convenience, but it usally be loaded from a text file.
matrix = """

#Names\tcoll\tcol2\tcol3\tcold\tcol5\tcolb6\tcol?
A\t-1.23\t-0.81\t1.79\t0.78\t-0.42\t-0.69\t0.58
B\t-1.76\t-0.94\t1.16\t0.36\t0.41\t-0.35\t1.12

2.4. Clustering Trees 81

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

C\t-2.19\t0.13\t0.65\t-0.51\t0.52\t1.04\t0.36
D\t-1.22\t-0.98\t0.79\t-0.76\t-0.29\t1.54\t0.93
E\t-1.47\t-0.83\t0.85\t0.07\t-0.81\t1.53\t0.65
F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.74\t0.48
G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
print "Example numerical matrix"

print matrix

#Names coll col2 col3 col4 colb colé6 col7

A -1.23 -0.81 1.79 0.78 -0.42 -0.69 0.58

B -1.76 -0.94 1.16 0.36 0.41 -0.35 1.12

C -2.19 0.13 0.65 -0.51 0.52 1.04 0.36

D -1.22 -0.98 0.79 -0.76 -0.29 1.54 0.93

E -1.47 -0.83 0.85 0.07 -0.81 1.53 0.65

F -1.04 -1.11 0.87 -0.14 -0.80 1.74 0.48

G -1.57 -1.17 1.29 0.23 -0.20 1.17 0.26

H -1.53 -1.25 0.59 -0.30 0.32 1.41 0.77

#

#

We load a tree structure whose leaf nodes correspond to rows 1in the
numerical matrix. We use the text_array argument to link the tree
with numerical matrix.

t = ClusterTree(" (((A,B), (C, (D,E))), (F, (G,H)));", text_array=matrix)

Alternatively, you can re-link the tree (or a sub-part of it) to a new matrix using the
ClusterNode.link_to_arraytable () method.

t = ClusterTree(" (((A,B), (C, (D,E))), (F, (G,H)));")
t.children([0].link_to_arraytable (matrixl)
t.children[1l].1link_to_arraytable (matrix2)

Once the tree is linked to a table of profiles, the following node properties will be avail-

able: PhyloNode.profile, PhyloNode.deviation, PhyloNode.silhoutte,
PhyloNode.intercluster_dist, PhyloNode.intracluster_dist,
PhyloNode.dunn.

Similarly, the following methods are provide for convenience
PhyloNode.iter_leaf_ profiles(), PhyloNode.get_leaf_ profiles(),

PhyloNode.get_silhouette () and PhyloNode.get_dunn () methods.

2.4.3 Visualization of matrix associated Trees

Clustering or not, any ClusterTree instance, associated to a numerical matrix, can be visualized together
with the graphical representation of its node’s numeric profiles. To this end, the ProfileFace class
is provided by the t reeview module. This face type can represent a node’s numeric profile in four
different ways:

Additionally, three basic layouts are provided that use different styles of ProfileFace instances: heatmap,
line_profiles, bar_profiles, cbar_profiles.

Import Tree instance and faces module
from ete3 import ClusterTree
Example of a minimalistic numerical matrix. It is encoded as a text

82 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

heatmap Bl

lines

1.790
-0.200

F2,190

bars __. Il

1,790

-2.190

[
cbars 1

1,790
-0.200

F2,190

string for convenience, but it usally be loaded from a text file.

matrix = """
#Names\tcoll\tcol2\tcol3\tcold\tcol5\tcolb\tcol?
A\t-1.23\t-0.81\t1.79\t0.78\t-0.42\t-0.69\t0.58
B\t-1.76\t-0.94\t1.16\t0.36\t0.41\t-0.35\t1.12
C\t-2.19\t0.13\t0.65\t-0.51\t0.52\t1.04\t0.36
D\t-1.22\t-0.98\t0.79\t-0.76\t-0.29\t1.54\t0.93
E\t-1.47\t-0.83\t0.85\t0.07\t-0.81\t1.53\t0.65
F\t-1.04\t-1.11\t0.87\t-0.14\t-0.80\t1.74\t0.438
G\t-1.57\t-1.17\t1.29\t0.23\t-0.20\t1.17\t0.26
H\t-1.53\t-1.25\t0.59\t-0.30\t0.32\t1.41\t0.77
print "Example numerical matrix"

print matrix

#Names coll colZ2 col3 col4 colb colé6
A -1.23 -0.81 1.79 0.78 -0.42 -0.69
B -1.76 -0.94 1.16 0.36 0.41 -0.35
C -2.19 0.13 0.65 -0.51 0.52 1.04
D -1.22 -0.98 0.79 -0.76 -0.29 1.54
E -1.47 -0.83 0.85 0.07 -0.81 1.53
F -1.04 -1.11 0.87 -0.14 -0.80 1.74
G -1.57 -1.17 1.29 0.23 -0.20 1.17
H -1.53 -1.25 0.59 -0.30 0.32 1.41

with numerical matrix.

.show ("heatmap")

.show ("cluster_cbars™")
.show ("cluster_bars")
.show ("cluster_lines")

o o of o Sk Sk SR ok R TR R IR R I TR R IR H

Q

. (e}
O Wk O~
W oy N o

BN
Co

OO DO~ O
Ny o
(&) O

~
~

We load a tree structure whose leaf nodes correspond to rows in the
numerical matrix. We use the text_array argument to link the tree

= ClusterTree (" (((A,B), (C, (D,E))), (F, (G,H)));", text_array=matrix)

2.4. Clustering Trees

83

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.4.4 Cluster Validation Example

If associated matrix represents the dataset used to produce a given tree, clustering validation values can
be used to assess the quality of partitions. To do so, you will need to set the distance function that was
used to calculate distances among items (leaf nodes). ETE implements three common distance methods
in bioinformatics : euclidean, pearson correlation and spearman correlation distances.

In the following example, a microarray clustering result is visualized and validated using ETE.

i) Sin=0.21

—05 n=-0.41

1.E70
: l- - Lgdsn=0.13
- he 3 . .
* SRR TR
2230

T
o

.- 270
Hsin=0.a1 UL Lok : F
L.isC

Image resulting from a microarray clustering validation analysis. Red bubbles represent a bad silhouette
index (S<0), while green represents good silhouette index (S>0). Size of bubbles is proportional to
the Silhouette index. Internal nodes are drawn with the average expression profile grouped by their
partitions. Leaf node profiles are shown as a heatmap.

FLEAC

T

from ete3 import ClusterTree, TreeStyle, AttrFace, ProfileFace, TextFace
from ete3.treeview.faces import add_face_to_node

To operate with numbers efficiently
import numpy

PATH = "./"
Loads tree and array
t = ClusterTree (PATH+"diauxic.nw", PATH+"diauxic.array")

nodes are linked to the array table
array = t.arraytable

84 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Calculates some stats on the matrix. Needed to establish the color
gradients.

matrix_dist = [i for r in xrange(len(array.matrix))\
for i in array.matrix[r] if numpy.isfinite(i)]
matrix_max = numpy.max (matrix_dist)
matrix_min = numpy.min (matrix_dist)
matrix_avg = matrix_min+ ((matrix_max-matrix_min) /2)

Creates a profile face that will represent node's profile as a
heatmap
profileFace = ProfileFace(matrix_max, matrix_min, matrix_avg, \
200, 14, "heatmap")
cbarsFace = ProfileFace (matrix_max,matrix_min,matrix_avg, 200,70, "cbars")
nameFace = AttrFace ("name", fsize=8)
Creates my own layout function that uses previous faces
def mylayout (node) :
If node is a leaf
if node.is_leaf():
And a line profile
add_face_to_node (profileFace, node, 0, aligned=True)
node.img_style["size"]=0
add_face_to_node (nameFace, node, 1, aligned=True)

If node 1is internal

else:
If silhouette is good, creates a green bubble
if node.silhouette>0:

validationFace = TextFace ("Silh=%0.2f" %node.silhouette,
"Verdana", 10, "#056600")
node.img_style["fgcolor"]="#056600"
Otherwise, use red bubbles
else:
validationFace = TextFace ("Silh=%0.2f" %node.silhouette,
"Verdana", 10, "#940000")
node.img_style["fgcolor"]="#940000"

Sets node size proportional to the silhouette value.

node.img_style["shape"]="sphere"
if node.silhouette<=1 and node.silhouette>=-1:
node.img_style["size"]= 15+int ((abs(node.silhouette) x10) x*2)

If node is very internal, draw also a bar diagram
with the average expression of the partition
add_face_to_node(validationFace, node, 0)
if len(node)>100:

add_face_to_node (cbarsFace, node, 1)

Use my layout to visualize the tree
ts = TreeStyle ()

ts.layout_fn = mylayout
t.show(tree_style=ts)

2.5 Phylogenetic XML standards

New in version 2.1.

2.5. Phylogenetic XML standards

85

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

From version 2.1, ETE provides support for NeXML and PhyloXML phylogenetic XML standards, both
reading and writing. These standards allow to encode complex phylogenetic data, and therefore they are
not limited to trees. Although ETE is mainly focused on allowing transparent interaction with trees, it
also provides basic I/0 methods to data of different type.

Essentially, NexML and PhyloXML files are intended to encode collections of phylogenetic data. Such
information can be converted to a collection Python objects sorted in a hierarchical way. A spe-
cific Python class exists for every element encoded documented by the NeXML and PhyloXML for-
mats. This is possible thanks to the the general purpose Python drivers available for both formats
(http://etetoolkit.org/phyloxml-and-nexml-python-parsers). ETE will use such drivers to access XML
data, and it will also convert tree data into PhyloTree objects. In practice, conversions will occur trans-
parently. NeXML and PhyloXML files are loaded using their specific root classes, provided by the main
ETE module, and all the information will become available as a collection of Python objects internally
sorted according to the original XML hierarchy.

New in version 2.1.

2.5.1 NeXML

NeXML(http://nexml.org) is an exchange standard for representing phyloinformatic data inspired by the
commonly used NEXUS format, but more robust and easier to process.

Reading NeXML projects

Nexml projects are handled through the Nexml base class. To load a NexML file, the
Nexml.build from file () method can be used.

from ete3 import Nexml

nexml_prj = Nexml ()
nexml_prj.build_from_ file("/path/to/nexml_example.xml")

Note that the ETE parser will read the provided XML file and convert all elements into python instances,
which will be hierarchically connected to the Nexml root instance.

Every NeXML XML element has its own python class. Content and attributes can be handled through
the “set_” and “get_” methods existing in all objects. Nexml classes can be imported from the
ete3.nexml module.

from ete3 import Nexml, nexml

nexml_prj = Nexml ()

nexml_meta = nexml.LiteralMeta (datatype="double", property="branch_ support",
nexml_prj.add_meta (nexml_meta)

nexml_prj.export ()

Will produce:

<meta datatype="double" content="1.0" property="branch_support" xmlns:x

#
#
<Nexml xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:type="Nex
#
</Nexml>

content=1.(

ml1">
si="http://"

86 Chapter 2. The ETE tutorial

http://nexml.org/
http://phyloxml.org/
http://etetoolkit.org/phyloxml-and-nexml-python-parsers
http://nexml.org

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

NeXML trees

NeXML tree elements are automatically converted into Phy 1o Tree instances, containing all ETE func-
tionality (traversing, drawing, etc) plus normal NeXML attributes.

In the Nexml standard, trees are represented as plain lists of nodes and edges. ETE will convert such
lists into tree topologies, in which every node will contain a nexml_node and nexml_edge at-
tribute. In addition, each tree node will have a nexml_tree attribute (i.e. NEXML->FloatTree)
, which can be used to set the nexml properties of the subtree represented by each node. Note also
that node.dist and node.name features will be linked to node.nexml_edge.length and
node.nexml_node. label, respectively.

from ete3 import Nexml
Create an empty Nexml project
nexml_project = Nexml ()

Load content from NeXML file
nexml_project.build_from_file("trees.xml")

All XML elements are within the project instance.
exist in each element to access their attributes.
print "Loaded Taxa:"
for taxa in nexml_project.get_otus():
for otu in taxa.get_otu():
print "OTU:", otu.id

Extracts all the collection of trees in the project
tree_collections = nexml_project.get_trees|()

Select the first collection

collection_1 = tree_collections|[0]

print the topology of every tree
for tree in collection_1l.get_tree():
trees contain all the nexml information in their "nexml_node",
"nexml_tree", and "nexml_edge" attributes.
print "Tree id", tree.nexml_tree.id
print tree
for node in tree.traverse():
print "node", node.nexml_node.id, "is associated with", node.nexml_n

Output

==========

Loaded Taxa:

OTU: tl

OTU: t2

OTU: t3

OTU: t4

OTU: tb5

Tree id treel

#

/-n5(nb5)
/===

/ \-n6(n6)
/===

/ / /-n8(n8)
——] \———]

ode.otu,

2.5. Phylogenetic XML standards 87

"OT

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ \-n9(n9)

\-n2 (n2)
node nl is associated with None OTU
node n3 is associated with None OTU
node n2 is associated with tl1 OTU
node n4 is associated with None OTU
node n7 is associated with None OTU
node nb is associated with t3 OTU
node né6 is associated with t2 OTU
node n8 is associated with t5 OTU
node n9 is associated with t4 OTU
Tree 1id treel

/—tree2nb5 (n5)
/===
/ \—-tree2né6 (né)

/ / /—tree2n8 (n8)

-——— \———/
/ \-tree2n9(n9)

\-tree2n2(n2)
node treeZnl is associated with None OTU
node treeZn3 1is associated with None OTU
node treeZn2 is associated with tl OTU
node treeZn4 is associated with None OTU
node treeZn?7 is associated with None OTU
node tree2nb is associated with t3 OTU
node treeZn6 1is associated with t2 OTU
node treeZn8 is associated with t5 OTU
node treeZ2n9 is associated with t4 OTU

He o FH R K R S S Hh Hh R R R R R e R Tk R R R R R R R R R R R R R R

[Download tolweb.xml example] |l [Download script]

Node meta information is also available:

from ete3 import Nexml

Creates and empty NeXML project
p = Nexml ()

Fill it with the tolweb example
p.-build from_ file("tolweb.xml")

extract the first collection of trees
tree_collection = p.trees[0]

and all the tree instances 1in it
trees = tree_collection.tree

For each loaded tree, prints its structure and some of its
meta-properties
for t in trees:

print t

print

print "lLeaf node meta information:\n"

print

for meta in t.children[0] .nexml_node.meta:
print meta.property, ":", (meta.content)

88 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

H=
e}
c
o
T
<
&+

H

-——— /-node3 (Eurysphindus)

Leaf node meta information:

dc:description

tbe:AUTHORITY : Leconte
tbe:AUTHDATE : 1878
tba:ANCESTORWITHPAGE : 117851
tba:CHILDCOUNT : O
tba:COMBINATION_DATE : null
tba:CONFIDENCE : 0
tha:EXTINCT : 0

tba:HASPAGE : 1

tba:ID : 117855

tba: INCOMPLETESUBGROUPS : 0
tbha:IS_NEW _COMBINATION : 0
tba:ITALICIZENAME : 1
tba:LEAF : 0

tba:PHYLESIS : 0
tba:SHOWAUTHORITY : O
tba:SHOWAUTHORITYCONTAINING : 1

SHhoHh R R R R R S R Hh R YR R R R R R R R R R R

[Download tolweb.xml example] Il [Download script]

Creating Nexml project from scratch Nexml base class can also be used to create projects from
scratch in a programmatic way. Using the collection of NeXML classes provided by the:mod:ete3.nexml
module, you can populate an empty project and export it as XML.

import sys

Note that we import the nexml module rather than the root Nexml
class. This module contains a python object for each of the

nexml elements declared in its XML schema.

from ete3 import nexml

Create an empty Nexml project
nexml_project = nexml.Nexml ()
tree_collection = nexml.Trees ()

NexmlTree is a special PhyloTree instance that 1is prepared to be
added to NeXML projects. So lets populate a random tree
nexml_tree = nexml.NexmlTree ()

Random tree with 10 leaves

nexml_tree.populate (10, random_branches=True)

We add the tree to the collection
tree_collection.add_tree(nexml_tree)

Create another tree from a newick string
nexml_tree2 = nexml.NexmlTree (" ((hello, nexml):1.51, project):0.6;")

tree_collection.add_tree (nexml_tree2)

Tree can be handled as normal ETE objects

2.5. Phylogenetic XML standards 89

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

nexml_tree2.show()

Add the collection of trees to the NexML project object
nexml_project.add_trees (tree_collection)

Now we can export the project containing our two trees
nexml_project.export ()

[Download script]

Writing NeXML objects Every NexML object has its own export () method. By calling it, you
can obtain the XML representation of any instance contained in the Nexml project structure. Usually,
all you will need is to export the whole project, but individual elements can be exported.

import sys

from ete3 import Nexml

Create an empty Nexml project
nexml_project = Nexml ()

Upload content from file
nexml_project.build from file("nexml example.xml")

Extract first collection of trees
tree_collection nexml.get_trees () [0]

And export it
tree_collection.export (output=sys.stdout, level=0)

NeXML tree manipulation and visualization

NeXML trees contain all ETE PhyloTree functionality: orthology prediction, topology manipulation
and traversing methods, visualization, etc.

For instance, tree changes performed through the visualization GUI are kept in the NeXML format.

from ete3 import nexml

nexml_tree = nexml.NexMLTree (" ((hello, nexml):1.51, project):0.6;")
tree_collection.add_tree (nexml_tree)

nexml_tree.show ()

New in version 2.1.

2.5.2 PhyloXML

PhyloXML (http://www.phyloxml.org/) is a novel standard used to encode phylogenetic information.
In particular, phyloXML is designed to describe phylogenetic trees (or networks) and associated data,
such as taxonomic information, gene names and identifiers, branch lengths, support values, and gene
duplication and speciation events.

Loading PhyloXML projects from files

ETE provides full support for phyloXML projects through the Phyloxml object. Phylogenies are
integrated as ETE’s tree data structures as Phyloxml Tree instances, while the rest of features are

90 Chapter 2. The ETE tutorial

http://www.phyloxml.org/

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

represented as simple classes (ete3. phyloxml) providing basic reading and writing operations.

from ete3 import Phyloxml
project = Phyloxml ()
project.build_from_file("apaf.xml")

Each tree contains the same methods as a PhyloTree object
for tree in project.get_phylogeny () :
print tree
you can even use rendering options
tree.show ()
PhyloXML features are stored in the phyloxml_clade attribute
for node in tree:
print "Node name:", node.name
for seq in node.phyloxml_clade.get_sequence () :
for domain in seqg.domain_architecture.get_domain() :
domain_data [domain.valueOf_, domain.get_from(), domain.ge
print " Domain:", '\t'.Jjoin(map(str, domain_data))

t_to()]

[Download script] [Download example]

Each tree node contains two phyloxml elements, phyloxml_clade and phyloxml_phylogeny.
The first attribute contains clade information referred to the node, while phyloxml_phylogeny
contains general data about the subtree defined by each node. This way, you can split, or copy any part
of a tree and it will be exported as a separate phyloxml phylogeny instance.

Note that node.dist, node.support and node.name features are linked to
node.phyloxml_clade.branch_length, node.phyloxml_clade.confidence
and node .phyloxml_clade.name, respectively.

Creating PhyloXML projects from scratch

In order to create new PhyloXML projects, a set of classes is available in the et e 3. phyloxmI module.

from ete3 import Phyloxml, phyloxml
import random
project = Phyloxml ()

Creates a random tree

phylo = phyloxml.PhyloxmlTree ()
phylo.populate (5, random _branches=True)
phylo.phyloxml_phylogeny.set_name ("test_tree")
Add the tree to the phyloxml project
project.add_phylogeny (phylo)

print project.get_phylogeny () [0]

S o R R KR R R W
T
X
N
<
Q
=

2.5. Phylogenetic XML standards 91

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Trees can be operated as normal ETE trees
phylo.show ()

Export the project as phyloXML format
project.export ()

<phy:phylogeny>
<phy:name>test_tree</phy:name>
<phy:clade>

<phy:Phyloxml xmlns:phy="http://www.phyloxml.org/1.10/phyloxml.xsd">

<phy:name>NoName</phy : name>
<phy:branch_length>0.000000e+00</phy:branch_length>
<phy:confidence type="branch_support">1.0</phy:confidence>
<phy:clade>
<phy:name>NoName</phy :name>
<phy:branch length>1.665083e-01</phy:branch_length>
<phy:confidence type="branch_support">0.938507980435</phy:
<phy:clade>
<phy:name>NoName</phy :name>
<phy:branch_length>1.366655e-01</phy:branch_length>
<phy:confidence type="branch_support">0.791888248212<
<phy:clade>
<phy:name>ojnfg</phy:name>
<phy:branch_length>2.194209e-01</phy:branch_lengtHh
<phy:confidence type="branch_support">0.3047059778
</phy:clade>
<phy:clade>
<phy:name>qrfnz</phy:name>
<phy:branch_length>5.235437e-02</phy:branch_lengtHh
<phy:confidence type="branch_support">0.5085337654
</phy:clade>
</phy:clade>
<phy:clade>
<phy:name>shngqg</phy :name>
<phy:branch_length>9.740958e-01</phy:branch_length>
<phy:confidence type="branch_support">0.642187390965<
</phy:clade>
</phy:clade>
<phy:clade>
<phy :name>NoName</phy :name>
<phy:branch_length>3.806412e-01</phy:branch_length>
<phy:confidence type="branch_ support">0.383619811911</phy:
<phy:clade>
<phy:name>vimnk</phy:name>
<phy:branch_length>6.495163e-01</phy:branch_length>
<phy:confidence type="branch_support">0.141298879514<
</phy:clade>
<phy:clade>
<phy:name>btexi</phy:name>
<phy:branch_length>5.704955e-01</phy:branch_length>
<phy:confidence type="branch_support">0.951876078012<
</phy:clade>
</phy:clade>

</phy:clade>
</phy:phylogeny>

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
</phy:Phyloxml>

confidence>

phy:confider

>

22</phy:coni

>
18</phy:con:

phy :confider

confidence>

lohy:confider

lohy:confideri

92 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

[Download script]

Note: NeXML and PhyloXML python parsers are possible thanks to Dave Kulhman and his work on
the generateDS.py application. Thanks Dave! ;-)

New in version 2.1.

2.6 Interactive web tree visualization

Starting at version 2.1, ETE provides a module to interactively display trees within web pages. This task
is not straightforward, but ETE tries to simplify it by providing a basic WebTreeApplication class
that can be imported in your python web applications.

WebTreeApplication implements a transparent connector between ETE’s functionality and web
application. For this, a pre-built WSGI application is provided.

Through this application, you will be able to create custom web implementations to visualize and ma-
nipulate trees interactively. Some examples can be found at the PhylomeDB tree browser or in the ETE’s
online treeviewer.

2.6.1 NO X system available?
Alternatively, a virtual X system such as XVFB has been reported to work in servers without a proper X
backend. Just install XVFB and preface your ETE commands with xvfb-run.

xvfb-run python MyETEscript.py

2.6.2 Installing a X server

All modern linux desktop installations include a graphical interface (called X server). However web
servers (in which the ETE plugin is expected to run) may not count with a X server.

2.6.3 Servers

In order to render tree images with ETE, you will need to install, at least, a basic X server. Note that the
X server does not require a desktop interface, such as Gnome or KDE.

In Ubuntu, for instance, a basic X server called xdm can be installed as follows:

apt—-get install xserver-xorg xdm xfonts-base xfonts-100dpi
xfonts-75dpi

Once the X server is installed, you will need to configure it to accept connections from the web-server.

In our example, edit the /etc/X11/xdm/xdm-config file and set following values:

DisplayManagerxauthorize: false
|

DisplayManagerxauthComplain: false

Do not forget to restart your xdm server.

/etc/init.d/xdm restart

2.6. Interactive web tree visualization 93

http://www.rexx.com/~dkuhlman/generateDS.html
http://wsgi.org
http://phylomedb.org/?q=search_tree&seqid=Phy00085K5_HUMAN
http://etetoolkit.org/treeview
http://etetoolkit.org/treeview
https://github.com/jhcepas/ete/issues/101

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.6.4 Desktops

If you plan to use web tree application in a linux desktop computer, then the X server is already installed.
You will only need to give permissions to the web-server (i.e. apache) to connect your display. Usually,
as simple as running the following command in a terminal:

xhost +

2.6.5 Configuring the web sever
You will need to add support for WSGI application to your web server. In the following steps, an
Apache2 web server will be assumed.

* Install and activate the modwsgi module in Apache.

* Configure your site to support WSGIL.

Configuration will depend a lot on your specific system, but this is an example configuration file for the
default site of your Apache server (usually at /ete/apache2/sites-available/default):

<VirtualHost *:80>
ServerAdmin webmaster@localhost

DocumentRoot /var/www
<Directory />
Options +FollowSymLinks
AllowOverride None
</Directory>

ErrorLog /var/log/apache2/error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog /var/log/apache2/access.log combined

AR AR #
WSGI SPECIFIC CONFIG

WSGIDaemonProcess eteApp user=www—-data group=www—data processes=1 threads=1
WSGIProcessGroup eteApp
WSGIApplicationGroup %{GLOBAL}

<Directory /var/www/webplugin/>
Options +ExecCGI -MultiViews +SymLinksIfOwnerMatch
SetHandler wsgi-script
Order allow,deny
Allow from all
AddHandler wsgi-script .py
</Directory>

END OF WSGI SPECIFIC CONFIG
#OHHHHHAE A #

</VirtualHost>

94 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Note: /var/www/webplugin/wsgi/ is the folder in which python web application will be located. Make
sure that the apache WSGI config enables this folder to run wsgi-scripts.

Warning: Important notes:
fvar/www/webplugin/ is assumed to be the directory in which your application will run.
fvar/www/webplugin/tmp/ should be writable by the web-server (i.e. chmod 777)

2.6.6 Implementation of WebTreeApplications

ETE’s WwebTreeApplication uses WSGI in the backend, and a several javascript files in the fron-
tend. Basic files are included as an example in the ETE installation package examples/webplugin.
The whole example folder is necessary, and it contains a commented copy of a web-tree implementation
examples/webplugin/wsgi/webplugin_example.py.

2.7 Testing Evolutionary Hypothesis

Contents

e Testing Evolutionary Hypothesis
— Extension Requirements:

Overview

* The working directory
Descriptive analysis

* Branch model

* Site model
Hypothesis Testing

x Test on sites

* Test on branches

* Test on branch-sites
Utilities

* Load precomputed evolutionary model

References

2.7.1 Extension Requirements:

You should have codeml and slr in your path:
* CodeML, you can download it from http://abacus.gene.ucl.ac.uk/software/paml.html
* SLR, from here: http://www.ebi.ac.uk/goldman-srv/SLR/

Download, compile and install both of the programs, in order to be able to run the examples.

This ETE extension is written on top of these two external programs, so it is strongly recommended to
read their corresponding documentation.

2.7. Testing Evolutionary Hypothesis 95

http://pypi.python.org/pypi/ete3
http://abacus.gene.ucl.ac.uk/software/paml.html
http://www.ebi.ac.uk/goldman-srv/SLR/

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.7.2 Overview
An other aspect in the study of evolutionary history, is the analysis of selective pressures accounting for
the conservation or degeneration of protein coding genes.

The EvolTree class is an extension of the class PhyIoTree that implements mainly bindings to the
PAML package [yang2007] but also to the SLR program [massingham2005].

Evolutionary variables that are used to summary selective pressures are, of course the branch-length
(bL) already available in Phy1oTree, but also the rate of non-synonymous mutations (dN), the rate of
synonymous mutations (dS) and finally the w ratio:

dN

=9 2.1

w

The working directory

EvolTree works mainly as PhyloTree, thus it needs a tree and an alignment. However as you are going
to run external programs over it, a working directory needs to be defined. By default tree.workdiris
“/tmp/ete3-codeml/”, but it is recommended to change it to a more useful path.

Jobs will be stored in the workdir, and you will be able to load precomputed evolutionary models from
there.

2.7.3 Descriptive analysis

In order to identify the evolutionary trends in a phylogenetic tree, one can either:
* conduct an analysis over branches and compute the value of w in each of them.

* look at the selective pressures along the alignment.

Branch model

As for PhyloTree, we first load the tree and alignment (and you working directory, if you want to
save a copy of your jobs):

from ete3 import EvolTree
tree = EvolTree (" ((Hylobates_lar, (Gorilla_gorilla,Pan_troglodytes)),Papio_cy,

tree.link_to_alignment ('''>Hylobates_lar
ATGGCCAGGTACAGATGCTGCCGCAGCCAGAGCCGGAGCAGATGTTACCGCCAGAGCCGGAGCAGATGTTACCGCC
>Papio_cynocephalus
ATGGCCAGGTACAGATGCTGCCGCAGCCAGAGCCGAAGCAGATGCTATCGCCAGAGCCGGAGCAGATGTAACCGCC
>Gorilla_gorilla
ATGGCCAGGTACAGATGCTGTCGCAGCCAGAGCCGCAGCAGATGTTACCGGCAGAGCCGGAGCAGGTGTTACCGGC
>Pan_troglodytes
ATGGCCAGGTACAGATGCTGTCGCAGCCAGAGCCGGAGCAGATGTTACCGGCAGAGACGGAGCAGGTGTTACCGGC

tree.workdir = '/path_to/my_working directory/'

nocephalus) ;

IAGAGGCAAAGC(

IAGAGACAGAGC(

IRGAGACAAAGCC

IAAAGGCAAAGCC

Once loaded we are able to compute selective pressure among the tree according to an evolutionary
model. In this case, we will use free-ratio model:

96 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

tree.run_model ('fb.example')

EvolNode.run_model () allows to run different evolutionary models (follow this link
EvolNode.run_model () to see the full list of models available). By convention, the name of the
model called is the first word, the rest of the string, after the dot, corresponds to its identifier in order
to differentiate different runs of one model. We can thus either run “fb” model and “fb.something” with
the same result, but they will be stored under different names instead of being overwritten.

Once computation is done, we can retrieve the evol.Model object from the tree, with the
EvolNode.get_evol_model () function.

my_first_fb_model = tree.get_evol_model ('fb.example')

print my_first_fb_model

This last print statement would ouptut:

Evolutionary Model fb.example:

log likelihood : —521.421323

number of parameters : 13

sites inference : None

sites classes : None

branches :

mark: #0 , omega: None , node_ids: 5 , name: NoName

mark: #1 , omega: 0.0001 , node_ids: 6 , name: NoName

mark: #2 , omega: 999.0 , node_ids: 4 , name: Papio_cynocephal
mark: #3 , omega: 999.0 , hode_ids: 2 , nhame: Hylobates_lar
mark: #4 , omega: 0.0001 , node_ids: 7 , name: NoName

mark: #5 , omega: 0.1049 , node_ids: 1 , name: Gorilla_gorilla
mark: #6 , omega: 0.5334 , node_ids: 3 , name: Pan_troglodytes

By default, the free-branch model is run with this parameters:

print my_first_fb_model.get_ctrl_string()

segfile = algn
treefile = tree
outfile = out

aaDist =
fix_alpha =
alpha =
fix_blength =
cleandata =
clock =
CodonFreq =
getSE =
icode =
fix_kappa =
kappa =
Malpha =
method =
Mgene =
model =
ncatG =
noisy =
NSsites =
fix_omega =

S o Hh R R R R R R R R R R W W R R R R R R R

QO QDWW ODODIODNHN ODODIOTN DD =D

2.7. Testing Evolutionary Hypothesis 97

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

omega = 0
RateAncestor = 0
runmode = 0
seqtype = 1
Small_Diff = 1
verbose = 2

H R R WK

However, it is usually recommended to run one model several times with different starting values, and
keep only the model with higher likelihood. Here an example, on how to do this.

best_model None
best_1nl = float ('—-inf'")
for starting_omega in [0.2, 0.7, 1.2]:
tree.run_model ('fb.'+str (starting_omega))
current_model = tree.get_evol _model ('fb.'+str(starting_omega))
print 'current model log likelihood:', current_model.lnL
if current_model.lnlL > best_1lnl:
best_1lnl = current_model.lnL
best_model = current_model

Finally in order to have a quick look of the selctive pressures over our phylogeny:

tree.show()

by default this will the picture obtained:

tyobates tar

Node size, and color dependant of the w value. But other displays are available:

from ete3.treeview.layouts import evol_clean_layout

tree.show(layout=evol_clean_layout)

v EE 21 - - - W

With here w ratios in red and also in gray the dN and dS values.

Site model

Another way to look at selective pressures, is to compute directly along the alignment, the value of w
for a whole column (putting all leaves together). For doing this, we can use for example the model M2
of CodeML or directly use SLR. As before we just have to:

tree.run_model ('M2")
tree.run_model ('SLR.lele'")

and to display the results:

tree.show (histfaces=['M2"])

when a site model is computed, an histface is automatically generated. Thus with this call, what we are
doing is to draw the default histface corresponding to the model named M2.1ala. This is the result:

However customizing this face is feasible:

98 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Omega value for sites under M2 model
o

B i i i || i i i ﬂ
LTF—":@.PWJI IIIIIiI-IIIIIJI-E- H)
apio_cynocephalus o R C CBS O SESEC MO SESEC NEORO S0 SRS CHE0 S0 SESEC BN S RRRRREER - 0 THEE - 1§ - BRRRERERRRE © 50 s
model2 = tree.get_evol_model ('M2'")
col2 = {'NS' 'black', 'RX' 'black’,
'RX+': 'black', 'CN' 'black’',
'CN+': 'black', 'PS' 'black', 'PS+': 'black'}
model2.set_histface (up=False, kind='curve', colors=col2, ylim=[0,4], hlines

tree.show(histfaces=["'M2"'

1)

yiobates ar s SoSESHCEEe S0 SHEC| s s T EC < gumgs
Sha_ gorta BHEH HEHE B SCOTRN: < o
.mg.uy‘em BRHEH BT HE B =0 TRN i C &

NEROBQ 50 SERS - MQ 50 SRSKC MRONCR S RERRRER O TRRR H - BRRRERERRRE - 51

L @papio_cynocepnaus BeosmS lc- R
" Lm M .iu*u.if!x JLH

or:
col = {'NS' 'grey' 'RX! 'black’,

'RX+': 'grey', 'CN' 'black’,

'CN+': 'grey' 'PS! 'black', 'PS+': 'black'}
model2.set_histface (up=False, kind='stick', hlines = [1.0,0.3], hlines_col=
tree.show(histfaces=['M2'])

yiobates ar SoSESHCEEe S0 SHEC| s s T EC < gumgs
Sha_ gorta g BHEH HEHE B SCOTRN: < o
.mg.uy‘em BRHEH BT HE B =0 TRN i C &

NEROBQ 50 SERS - MQ 50 SRSKC MRONCR S RERRRER O TRRR H - BRRRERERRRE - 51

L @Ppapio_cynocephaius BS0SHSR HROSRR

Omega value for sites under M2 model

-‘ .
J by fl | i o] | iy
L S S T T N R S T S —]

o)

The col dictionary contains the colors for sites detected to be under positive selection (PS), relaxation
(RX), or conserved (CN). However, it is not a good idea to use them now as we do not know if there is
indeed positive selection.

To be able to accept M2 results we will have to test this model against a null model.

2.7.4 Hypothesis Testing

In order to know if the parameters estimated under a given model a reliable, we have to compare its
likelihood to a null model.

Usually, the alternative model is a model that estimates the proportion of sites with w > 1 and we
compare its likelihood with a null model, usually a model that do not (letting «w <= 1). This comparison
is done through a likelihood ratio test. If the alternative model has the best fit than we are able to accept
the possibility of w > 1.

2.7. Testing Evolutionary Hypothesis 99

[

'black’,

g1

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

To see a non-exhaustive list of famous comparison see the documentation of the function:
EvolNode.get_most_likely /()

Test on sites

In order to know if some sites are significantly under positive selection, relaxed or conserved we have
usually to compare 2 models. However using the model “SLR” we can directly infer positive selection
or relaxation through the SLR program [massingham2005].

The most usual comparison, and perhaps the most robust, is the comparison of models M2 and M1.

tree.run_model ('M1"'")
tree.run_model ('M2"')

pval = tree.get_most_likely ('M2','M1")
model2 = tree.get_evol_model ('M2")

print model2

Evolutionary Model M2:

log likelihood : =517.824749

number of parameters : 11

sites inference : BEB, NEB

sites classes :

proportions: p0=0.98794 pl=0.00000 p2=0.01206

w : w0=0.09887 wl=1.00000 w2=178.86153

branches :

mark: #0, omega: 2.25526440485 , nodes paml_ids: 6 4 2 7 1 3

if pval < 0.05:
print 'M2 model wins.'

for s in range(len(model2.sites['BEB']['aa'])):
if model2.sites['BEB']['p2'][s] > 0.95:
print 'positively selected site at position: , with probability:
else:

print 'M1 model is not rejected'

M2 model wins.
positively selected site P at position: 81, with probability: 0.96293

Each sites model, contains a dictionary ‘model.sites’ in which are stored the results of CodeML. These
are displayed through the histface, but they are still accessible by digging a bit. ‘site’ dictionary usually
contains the result of the NEB and BEB analysis (prefer the BEB when available). For each of BEB
and NEB, the probability of belonging from one category of site is summarized by ‘p0’, ‘p1” and ‘p2’
in the case of M2 model that have only 3 class of sites (p0, the probability of belonging to the first class
of sites with w < 1; pl, the probability of belonging to the second class of sites with w = 1; p2, the
probability of belonging to the third class of sites with w > 1). For details on the models and outputs, it
is recommended to read PAML documentation.

Test on branches

CodeML allows to test models that infer different selective pressures on a set of given branches. To do
it, some branches of the tree are marked (usually with strings like this: ‘#1’). This is how to do it with
ETE:

100 Chapter 2. The ETE tutorial

°

(mode]

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

marks = ['2', '3', '4"']

mark a group of branches
tree.mark_tree (marks, ['#1', '"#1', "#1'])
print tree.write ()

((Hylobates_lar, (Gorilla gorilla #1,Pan_troglodytes #1) #1),Papio_cynoceph

By doing this a branch model will compute different w values in mark branches (usually called fore-
ground wy,4) and in the rest of the tree (usually called background wpyg).

Two kinds of branch models are usually used:
e the free-branch model: were wy,, and wyy, are free
e the neutral-branch model: were wy;, is fixed to one.
* the MO model: were all branches evolve at the same rate.

The comparison between free-branch and MO, will tell us if foreground branches have an w significantly
different from the rest of the tree.

And the comparison between free-branch and neutral-branch models will tell us if w4 is significantly
higher than 1.

tree.run_model ('b_ free')
tree.run_model ('b_neut')
tree.run_model ('MO")

b_free = tree.get_evol_model ('b_free')

print b_free

Evolutionary Model b _free.234:

log likelihood : =525.690213

number of parameters : 9

sites inference : None

sites classes : None

branches :

mark: #0, omega: 0.157280451975 , nodes paml_ids: 6 4 2
mark: #1, omega: 0.118462858241 , nodes paml_ids: 7 1 3

if tree.get_most_likely ('b_free', 'MO") < 0.05:
branch models have a branches dictionary were keys corresponds to paml
select one of the marked branches
frg_node = tree.search_nodes(_nid=2) [0]
frg_pamlid = frg_node.paml_id
w_frg = bfree.branches[frg_pamlid]['w']
select one of the unmarked branches
bkg_node = tree.search_nodes(_nid=1) [0]
bkg_pamlid = bkg_node.paml_id
w_bkg = bfree.branches[bkg_pamlid]['w']
print 'foreground branches evolving at omega value of significantly d

if tree.get_most_likely ('b_free', '"b_neut') < 0.05:
print 'foreground branches are significantly different from 1.'

alus);

| id of node:

iferent fron

for the given example, background and foreground are not different...

2.7. Testing Evolutionary Hypothesis 101

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Test on branch-sites

An other popular test is the branch-site test contrasting model A and A1. This test allows to detect genes

with some sites under positive selection.

this example shows how to run it over all branches in the tree:

also needs the MO model as null model
tree.run_model ('MO")

for leaf in tree:
leaf.node_id
print '\n-——————- \nNow working with leaf ' + leaf.name
tree.mark_tree ([leaf.node_id], marks=['#1"])
print tree.write ()

to organize a bit, we name model with the name of the marked node

any character after the dot, in model name, 1is not taken

for computation. (have a look in /tmp/ete3.../bsA.. directory)

print 'running model bsA and bsAl'
tree.run_model ('bsA.'+ leaf.name)
tree.run_model ('bsAl.' + leaf.name)

print 'p-value of positive selection for sites on this branch is: '
ps = tree.get_most_likely ('bsA.' + leaf.name, 'bsAl.'+ leaf.name)

rx = tree.get_most_likely ('bsAl.'+ leaf.name, 'MO'")
print str (ps)

print 'p-value of relaxation for sites on this branch is:
print str (rx)

if ps<0.05 and float (bsA.wfrg2a)>1:

A\l

print 'we have positive selection on sites on this branch'

elif rx<0.05 and ps>=0.05:
print 'we have relaxation on sites on this branch'
else:

print 'no signal detected on this branch, best fit for MO'
print '\nclean tree, remove marks'
tree.mark_tree (map (lambda x: x.node_id, tree.get_descendants()),

marks=['"'] x len (tree.get_descendants()),

print tree.get_evol_model ('bsA.Hylobates_lar')

Evolutionary Model bsA.Hylobates_lar:

log likelihood : =521.203318

number of parameters : 11

sites inference : BEB, NEB

sites classes :

foreground w: f0=0.06452 £f1=1.00000 £2=3.15727

proportions : p0=0.00415 pl=0.00023 p2=0.94413

background w: b0=0.06452 b1=1.00000 b2=0.06452

branches :

mark: #0 , omega: None , node_1ids: 5 , name:
mark: #0 , omega: None , node_1ids: 6 , name:
mark: #0 , omega: None , node_ids: 4 , hame:
mark: #1 , omega: None , node_ids: 2 , hame:
mark: #0 , omega: None , node_ids: 7 , hame:
mark: #0 , omega: None , node_1ids: 1 , name:
mark: #0 , omega: None , node_1ids: 3 , nhame:

into account

verbose=True)

£3=3.15727
p3=0.05150
b3=1.00000

NoName
NoName
Papio_cynocep
Hylobates_lar]
NoName

Gorilla_goril

Pan_troglodyt

thalus

1a

102 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.7.5 Utilities
Load precomputed evolutionary model
When an evolutionary model is computed, the output is stored in tree.workdir and can be load afterwards.

Inside tree.workdir, a new directory is created for each model you compute (if each model has a different
name), thus to load one model:

from ete3 import EvolTree
tree = EvolTree (" ((Hylobates_lar, (Gorilla_gorilla,Pan_troglodytes)),Papio_cy

tree.link_to_alignment ('''>Hylobates_lar
ATGGCCAGGTACAGATGCTGCCGCAGCCAGAGCCGGAGCAGATGTTACCGCCAGAGCCGGAGCAGATGTTACCGCC
>Papio_cynocephalus
ATGGCCAGGTACAGATGCTGCCGCAGCCAGAGCCGAAGCAGATGCTATCGCCAGAGCCGGAGCAGATGTAACCGCC
>Gorilla_gorilla
ATGGCCAGGTACAGATGCTGTCGCAGCCAGAGCCGCAGCAGATGTTACCGGCAGAGCCGGAGCAGGTGTTACCGGC
>Pan_troglodytes
ATGGCCAGGTACAGATGCTGTCGCAGCCAGAGCCGGAGCAGATGTTACCGGCAGAGACGGAGCAGGTGTTACCGG(C
tree.link_to_evol_model ('/path_to/my_working directory/fb.example/out', 'fb'

nocephalus) ,

IAGAGGCAAAGC(

IRGAGACAGAGCC

IAGAGACAAAGC(

AAAGGCAAAGCC
)

Note: EvolNode.link to_evol_model () is also able to load directly evol .Model objects.
Indeed all output files generated do not need to be kept, only a pickle or cPickle of the model for example.

Thus we can save a tree with all Models computed, after having run some models:

assume we already have run some models:
for model in tree._models:
print tree.get_evol_model (model)

Evolutionary Model MZ2.example:

log likelihood : —517.824749

number of parameters : 11

sites inference : BEB, NEB

sites classes :

proportions : p0=0.98794 pl1=0.00000 p2=0.01206

w : w0=0.09887 wl=1.00000 w2=178.86192
branches :

mark: #0, omega: 2.25526864047 , nodes paml_ids: 6 4 2 7 1 3
#

Evolutionary Model Ml.example:

log likelihood : =521.541845

number of parameters : 9

sites inference : NEB

sites classes :

proportions : p0=0.94075 pl=0.05925

w : w0=0.07025 wl=1.00000

branches

#

mark: #0, omega: 0.125334579074 , nodes paml_ids: 6 4 2 7 1 3

we save the whole tree into my_tree.pik
from cPickle import dump

out = open('my_tree.pik', 'w')
dump (tree, out)
out.close ()

2.7. Testing Evolutionary Hypothesis 103

http://docs.python.org/library/pickle.html

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

and load them:

from cPickle import load

out = open('my_tree.pik')
tree = load(out)
out.close ()

and here the same result
for model in tree._models:
print tree.get_evol_model (model)

FEvolutionary Model MZ2.example:

log likelihood : =517.824749

number of parameters : 11

sites inference : BEB, NEB

sites classes :

proportions : p0=0.98794 pl=0.00000 p2=0.01206

W : w0=0.09887 wl=1.00000 w2=178.86192
branches :

mark: #0, omega: 2.25526864047 , nodes paml_ids: 6 4 2 7 1 3
#

Evolutionary Model Ml.example:

log likelihood : —=521.541845

number of parameters : 9

sites inference : NEB

sites classes :

proportions : p0=0.94075 pl=0.05925

W : w0=0.07025 wl=1.00000

branches :

#

mark: #0, omega: 0.125334579074 , nodes paml_ids: 6 4 2 7 1 3

this also can be done for one model alone:

from cPickle import dump, load

m2_to_save = tree.get_evol_model ('M2.example')

out = open ('m2.pik', 'w')
dump (m2_to_save, out)

out.close()

and then load it
out = open ('m2.pik")
m2_to_save = dump (out)
out.close()

tree.link_to_evol_model (m2_to_save)

2.7.6 References

New in version 2.3.

104 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.8 Dealing with the NCBI Taxonomy database

ETE’s ncbi_taxonomy module provides utilities to efficiently query a local copy of the NCBI Taxonomy
database. The class NCBITaxonomy offers methods to convert from taxid to names (and vice versa),
to fetch pruned topologies connecting a given set of species, or to download rank, names and lineage
track information.

It is also fully integrated with PhyloTree instances through the
PhyloNode.annotate_nchi_taxa () method.

2.8.1 Setting up a local copy of the NCBI taxonomy database

The first time you attempt to use NCBITaxa, ETE will detect that your local database is empty and it
will attempt to download the latest NCBI taxonomy database (~300MB) and will store a parsed version
of it in your home directory: ~/.etetoolkit/taxa.sqlite. All future imports of NCBITaxa will detect the
local database and will skip this step.

:: from ete3 import NCBITaxa ncbi = NCBITaxa()
2.8.2 Upgrading the local database

Use the method :NCBITaxa:‘update_taxonomy_database‘ to download and parse the latest database
from the NCBI ftp site. Your current local database will be overwritten.

from ete3 import NCBITaxa
ncbi = NCBITaxa ()
ncbi.update_taxonomy_database ()

2.8.3 Getting taxid information
you can fetch species names, ranks and linage track information for your taxids using the following
methods:

* NCBITaxa.get_rank ()

* NCBITaxa.get_lineage ()

* NCBITaxa.get_taxid_translator ()

* NCBITaxa.get_name_translator()

e NCBITaxa.translate_to_names ()

The so called get-translator-functions will return a dictionary converting between taxids and species
names. Either species or linage names/taxids are accepted as input.

from ete3 import NCBITaxa

ncbi = NCBITaxa ()

taxid2name = ncbi.get_taxid_translator ([9606, 94431])
print taxidZ2name

{9443: u'Primates', 9606: u'Homo sapiens'}

name2taxid = ncbi.get_name_translator (['Homo sapiens', 'primates'])
print name2taxid

2.8. Dealing with the NCBI Taxonomy database 105

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

{'Homo sapiens': [9606], 'primates': [9443]}

when the same name points to several taxa, all taxids are returned
name2taxid = ncbi.get_name_translator (['Bacteria'])

print name2taxid

{'Bacteria': [2, 629395]}

Other functions allow to extract further information using taxid numbers as a query.

from ete3 import NCBITaxa
ncbi = NCBITaxa ()

print ncbi.get_rank ([9606, 9443])
{9443: u'order', 9606: u'species'}

print ncbi.get_lineage (9606)

[1, 131567, 2759, 33154, 33208, 6072, 33213, 33511, 7711, 89593, 7742,

7776, 117570, 117571, 8287, 1338369, 32523, 32524, 40674, 32525, 9347,

1437010, 314146, 9443, 376913, 314293, 9526, 314295, 9604, 207598, 9605,
9606]

And you can combine combine all at once:

from ete3 import NCBITaxa
ncbi = NCBITaxa ()

lineage = ncbi.get_lineage (9606)
print lineage

[1, 131567, 2759, 33154, 33208, 6072, 33213, 33511, 7711, 89593, 7742,

7776, 117570, 117571, 8287, 1338369, 32523, 32524, 40674, 32525, 9347,

1437010, 314146, 9443, 376913, 314293, 9526, 314295, 9604, 207598, 9605,
9606]

names = ncbi.get_taxid_translator (lineage)
print [names[taxid] for taxid in lineage]

[u'root', u'cellular organisms', u'Eukaryota', u'Opisthokonta', u'Metazoa'
u'Eumetazoa', u'Bilateria', u'Deuterostomia', u'Chordata', u'Craniata',
u'Vertebrata', u'Gnathostomata', u'Teleostomi', u'Euteleostomi',
u'Sarcopterygii', u'Dipnotetrapodomorpha', u'Tetrapoda', u'Amniota',
u'Mammalia', u'Theria', u'Eutheria', u'Boreoeutheria', u'Euarchontoglires'
u'Primates', u'Haplorrhini', u'Simiiformes', u'Catarrhini', u'Hominoidea',
u'Hominidae', u'Homininae', u'Homo', u'Homo sapiens']

HH HHR FH KR R W R

2.8.4 Getting descendant taxa

Given a taxid or a taxa name from an internal node in the NCBI taxonomy tree, their descendants can be
retrieved as follows:

from ete3 import NCBITaxa
ncbi = NCBITaxa ()

descendants = ncbi.get_descendant_taxa ('Homo")
print ncbi.translate_to_names (descendants)

106 Chapter 2. The ETE tutorial

4

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

[u'Homo heidelbergensis', u'Homo sapiens ssp. Denisova', u'Homo sapiens ne

you can easily ignore subspecies, so only taxa labeled as "species" will b

descendants = ncbi.get_descendant_taxa ('Homo', collapse_subspecies=True)
print ncbi.translate_to_names (descendants)

[u'Homo sapiens', u'Homo heidelbergensis']

or even returned as an annotated tree

tree = ncbi.get_descendant_taxa ('Homo', collapse_subspecies=True, return_tre
print tree.get_ascii(attributes=['sci_name', 'taxid'l])

/—Homo sapiens, 9606

—Homo, 9605

\—-Homo heidelbergensis, 1425170

2.8.5 Getting NCBI species tree topology

Getting the NCBI taxonomy tree for a given set of species is one of the most useful ways to get all
information at once. The method NCBITaxa.get_topology () allows to query your local NCBI
database and extract the smallest tree that connects all your query taxids. It returns a normal ETE tree
in which all nodes, internal or leaves, are annotated for lineage, scientific names, ranks, and so on.

from ete3 import NCBITaxa
ncbi = NCBITaxa()

tree = ncbi.get_topology([9606, 9598, 10090, 7707, 87821)

print tree.get_ascii(attributes=["sci_name", "rank"])

/—-Dendrochirotida, order

/

/

—-Deuterostomia, no rank /Hominin
/ /Euarchontoglires, superorder

/ / /

\Amniota, no rank \-Mus musd
/

\-Aves, class

If needed, all intermediate nodes connecting the species can also be kept in the tree:

from ete3 import NCBITaxa
ncbi NCBITaxa ()

tree = ncbi.get_topology([2, 33208], intermediate_nodes=True)
print tree.get_ascii(attributes=["sci_name"])

/Eukaryota — Opisthokonta - Metazoa
—cellular organisms
\-Bacteria

2.8. Dealing with the NCBI Taxonomy database 107

anderthalen:

e reported:

/,

subfami.

\ -

specie

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.8.6 Automatic tree annotation using NCBI taxonomy

NCBI taxonomy annotation consists of adding additional information to any internal a leaf node in a
give user tree. Only an attribute containing the taxid associated to each node is required for the nodes in
the query tree. The annotation process will add the following features to the nodes:

* sci_name

e taxid

* named_lineage
* lineage

e rank

Note that, for internal nodes, taxid can be automatically inferred based on their sibling nodes. The easiest
way to annotate a tree is to use a Phy 1 o Tree instance where the species name attribute is transparently
used as the taxid attribute. Note that the :PhyloNode:‘annotate_ncbi_taxa‘: function will also return
the used name, lineage and rank translators.

Remember that species names in PhyloTree instances are automatically extracted from leaf names. The
parsing method can be easily adapted to any formatting:

from ete3 import PhyloTree

load the whole leaf name as species taxid
tree = PhyloTree (' ((9606, 9598), 10090);"', sp_naming_function=lambda name: n
tax2names, tax2lineages, tax2rank = tree.annotate_ncbi_taxal()

split names by '|' and return the first part as the species taxid
tree = PhyloTree (' ((9606|protA, 9598 |protA), 10090|protB);"', sp_naming_funct
tax2names, tax2lineages, tax2rank = tree.annotate_ncbi_taxa()

print tree.get_ascii(attributes=["name", "sci_name", "taxid"])

/=-9606 |protA, Homo sapiens, 9§
/, Homininae, 207598

#-, Euarchontoglires, 314146 \-9598|protA, Pan troglodytes,
/

\-10090|protB, Mus musculus, 10090

ame)

ion=lambda r

06

9598

Alternatively, you can also use the NCBITaxa.annotate_tree () function to annotate a custom
tree instance.

from ete3 import Tree, NCBITaxa

ncbi = NCBITaxa ()

tree = Tree("")

ncbi.annotate_tree(tree, taxid_attr="name")

2.9 SCRIPTS: orthoXML

108 Chapter 2. The ETE tutorial

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Contents

* SCRIPTS: orthoXML
— OrthoXML parser
— The etree2orthoxml script
* Usage

Example: Using custom evolutionary annotation
Example: Automatic detection of species names
Example: Tree rooting

* % ¥

2.9.1 OrthoXML parser

etree2orthoxml is a python script distributed as a part of the ETE toolkit package. It uses an
automatic python parser generated on the basis of the OrthoXML schema to convert the evolutionary
events in phylogenetic tree topologies into the orthoXML format.

ETE OrthoXML parser is a low level python module that allows to operate with the orthoXML structure
using python objects. Every element defined in the orthoXML schema has its akin in the parser module,
so a complete orthoXML structure can be generated from scratch within a python script. In other words,
low level access to the orthoXML parser allows to create orthoxml documents in a programmatic way.

The following example will create a basic orthoXML document

from ete3 import orthoxml
Creates an empty orthoXML object
oxml = orthoxml.orthoXML ()

Add an ortho group container to the orthoXML document
ortho_groups = orthoxml.groups ()
oxml.set_groups (ortho_groups)

Add an orthology group including two sequences
orthologs = orthoxml.group ()
orthologs.add_geneRef (orthoxml.geneRef (1))
orthologs.add_geneRef (orthoxml.geneRef (2))
ortho_groups.add_orthologGroup (orthologs)

oxml_file = open("test_orthoxml.xml", "w")
oxml .export (oxml_file, level=0)
oxml_file.close ()

producing the following output
#<ortho:orthoXML>

<ortho:groups>

<ortho:orthologGroup>

<ortho:geneRef 1id="1"/>
<ortho:geneRef 1id="2"/>
</ortho:orthologGroup>

</ortho:groups>
#</ortho:orthoXML>

2.9. SCRIPTS: orthoXML 109

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

2.9.2 The etree2orthoxml script

etree2orthoxml is a standalone python script that allows to read a phylogenetic tree in newick for-
mat and export their evolutionary events (duplication and speciation events) as an orthoXML document.
The program is installed along with ETE, so it should be found in your path. Alternatively you can
found it in the script folder of the latest ETE package release (http://etetoolkit.org/releases/ete3/).

To work, etree2orthoxml requires only one argument containing the newick representation of a
tree or the name of the file that contains it. By default, automatic detection of speciation and duplication
events will be carried out using the built-in species overlap algorithm, although this behavior can be
easily disabled when event information is provided along with the newick tree. In the following sections
you will find some use case examples.

Also, consider reading the source code of the script. It is documented and it can be used as a template
for more specific applications. Note that et ree2orthoxml is a work in progress, so feel free to use
the etetoolkit mailing list to report any feedback or improvement to the code.

Usage

usage: etreeZorthoxml [-h] [--sp_delimiter SPECIES_DELIMITER]
[-—sp_field SPECIES_FIELD] [--root [ROOT [ROOT ...]11]
[-—skip_ortholog_detection]
[-—evoltype_attr EVOLTYPE_ATTR] [--database DATABASE]
[-—show] [--ascii] [-—-newick]
tree_file

etree2orthoxml is a python script that extracts evolutionary events
(speciation and duplication) from a newick tree and exports them as a
OrthoXML file.

positional arguments:
tree_file A tree file (or text string) in newick format.

optional arguments:

-h, —-help show this help message and exit

——sp_delimiter SPECIES_DELIMITER
When species names are guessed from node names, this
argument specifies how to split node name to guess the
species code

—-sp_field SPECIES_FIELD
When species names are guessed from node names, this
argument specifies the position of the species name
code relative to the name splitting delimiter

—-—root [ROOT [ROOT ...]1]
Roots the tree to the node grouping the list of node
names provided (space separated). In example:'--root
human rat mouse'

——-skip_ortholog_detection
Skip automatic detection of speciation and duplicatijon
events, thus relying in the correct annotation of thle
provided tree using the extended newick format (i.e.
'"((A, A)[&&NHX:evoltype=D], B) [&&NHX:evoltype=S];")

——evoltype_attr EVOLTYPE_ATTR
When orthology detection is disabled, the attribute
name provided here will be expected to exist in all
internal nodes and read from the extended newick

110 Chapter 2. The ETE tutorial

http://etetoolkit.org/releases/ete3/
https://groups.google.com/forum/#!forum/etetoolkit

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

format
——database DATABASE Database
——show Show the

orthoXML
—-—ascii Show the

name
tree and its evolutionary events before
export

tree using ASCII representation and all its

evolutionary events before orthoXML export
——newick print the extended newick format for provided tree

using ASCII representation and all its evolutionary

events before orthoXML export

Example: Using custom evolutionary annotation

If all internal nodes in the provided tree are correctly label as duplication or speciation nodes, automatic
detection of events can be disabled using the ——skip_ortholog_detection flag.

Node labeling should be provided using the extended newick format. Duplication nodes should contain
the label evoltype set to D, while speciation nodes should be set to evoltype=S. If tag names is
different, the option evoltype_attr can be used as convenient.

In the following example, we force the HUMAN clade to be considered a speciation node.

etree2orthoxml --skip_ortholog_detection ' ((HUMAN_A, HUMAN_B) [&&NHX:evolty)
<orthoXML>
<species name="A">
<database name="">
<genes>
<gene protId="HUMAN_A" id="0"/>
</genes>
</database>

</species>
<species name="B">
<database name="">
<genes>

<gene protId="HUMAN_B" id="1"/>
<gene protId="MOUSE_RBR" id="2"/>

</genes>
</database>
</species>
<groups>
<orthologGroup>
<geneRef id="2"/>
<orthologGroup>

<geneRef id="0"/>
<geneRef id="1"/>

</orthologGroup>
</orthologGroup>
</groups>
</orthoXML>

pe=S],

You can avoid tree reformatting when node labels are slightly different by using the evoltype_attr:

MOUSE

etreelorthoxml —--evoltype_attr E —--skip ortholog detection ' ((HUMAN_A, HUMAN?B)[&&NHX.

However, more complex modifications on raw trees can be easily performed using the core methods of

the ETE library, so they match the requirements of the et ree2orthoxml script.

2.9. SCRIPTS: orthoXML

111

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

from ete3 import Tree
Having the followin tree
t = Tree (' ((HUMAN_A, HUMAN_B) [&&NHX:speciation=N], MOUSE_B) [&&NHX:speciation

We read the speciation tag from nodes and convert it into a vaild evoltreg
for node in t.traverse():
if not node.is_leaf():
etype = "D" if node.speciation == "N" else "S"
node.add_features (evoltype=etype)

We the export a newick string that is compatible with etreelorthoxml scrip
t.write (features=["evoltype"], format_root_node=True)

converted newick:
'((HUMAN_A:1,HUMAN_B:1)1:1[&&NHX:evoltype=D],MOUSE _B:1)1:1[&&NHX:evoltype=

S]; !

Example: Automatic detection of species hames

As different databases and software may produce slightly different newick tree formats, the script pro-
vides several customization options.

In gene family trees, species names are usually encoded as a part of leaf names (i.e. P53_HUMAN). If
such codification follows a simple rule, et ree2orthoxml can automatically detect species name and
used to populate the relevant sections within the orthoXML document.

For this, the sp_delimiter and sp_field arguments can be used. Note how species are correctly
detected in the following example:

etree2orthoxml --database TestDB —--evoltype_attr E --skip_ortholog_detecti
<orthoXML>
<species name="HUMAN">
<database name="TestDB">
<genes>
<gene protId="HUMAN_A" id="0"/>
<gene protId="HUMAN_B" id="1"/>
</genes>
</database>
</species>
<species name="MOUSE">
<database name="TestDB">

<genes>
<gene protId="MOUSE_B" id="2"/>
</genes>
</database>
</species>
<groups>
<orthologGroup>
<geneRef id="2"/>
<orthologGroup>

<geneRef id="0"/>
<geneRef id="1"/>
</orthologGroup>
</orthologGroup>
</groups>
</orthoXML>

112 Chapter 2. The ETE tutorial

on ——sp_del:

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Example: Tree rooting

When evolutionary events are expected to be automatically inferred from tree topology, outgroup infor-
mation can be passed to the program to root the tree before performing the detection.

etree2orthoxml --ascii —--root FLY_1 FLY 2 --sp_delimiter '_' --sp_field 0 | ' ((HUMAN_A,

/-FLY_1

/D, NoName

| \-FLY_2

-S, NoName

| /—HUMAN_A

| /D, NoName

\S, NoName \-HUMAN_B
\
\-MOUSE_B

<orthoXML>
<species name="FLY">
<database name="">
<genes>
<gene protId="FLY_1" id="0"/>
<gene protId="FLY 2" id="1"/>
</genes>
</database>
</species>
<species name="HUMAN">
<database name="">
<genes>
<gene protId="HUMAN_A" id="2"/>
<gene protId="HUMAN_B" id="3"/>
</genes>
</database>
</species>
<species name="MOUSE">
<database name="">
<genes>
<gene protId="MOUSE_B" id="4"/>
</genes>
</database>
</species>
<groups>
<orthologGroup>
<paralogGroup>
<geneRef id="0"/>
<geneRef id="1"/>
</paralogGroup>
<orthologGroup>
<geneRef id="4"/>
<paralogGroup>
<geneRef id="2"/>
<geneRef 1d="3"/>
</paralogGroup>
</orthologGroup>
</orthologGroup>

2.9. SCRIPTS: orthoXML 113

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

</groups>
</orthoXML>

114 Chapter 2. The ETE tutorial

CHAPTER 3

ETE’s Reference Guide

Current modules:

3.1 Master Tree class

class TreeNode (newick=None, format=0, dist=None, support=None, name=None)
TreeNode (Tree) class is used to store a tree structure. A tree consists of a collection of TreeNode
instances connected in a hierarchical way. Trees can be loaded from the New Hampshire Newick
format (newick).

Parameters

* newick — Path to the file containing the tree or, alternatively, the text string
containing the same information.

¢ format (0) — subnewick format

FORMAT | DESCRIPTION

flexible with support values

flexible with internal node names

all branches + leaf names + internal supports
all branches + all names

leaf branches + leaf names

internal and leaf branches + leaf names
internal branches + leaf names

leaf branches + all names

all names

leaf names

100 topology only

O| XN N | AW~ O

Returns a tree node object which represents the base of the tree.

** Examples: **

tl = Tree() # creates an empty tree
t2 = Tree('(A:1, (B:1, (C:1,D:1):0.5):0.5);")
t3 Tree (' /home/user/myNewickFile.txt")

add_child (child=None, name=None, dist=None, support=None)
Adds a new child to this node. If child node is not suplied as an argument, a new node
instance will be created.

115

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Parameters
* child (None) — the node instance to be added as a child.
* name (None) — the name that will be given to the child.
e dist (None) — the distance from the node to the child.
* support’ (None) — the support value of child partition.
Returns The child node instance

add_face (face, column, position="branch-right’)
Add a fixed face to the node. This type of faces will be always attached to nodes, indepen-
dently of the layout function.

Parameters
e face — a Face or inherited instance
* column — An integer number starting from 0

* position (“branch-right”) —Posible values are: “branch-right”, “branch-
top”, “branch-bottom”, “float”, “aligned”

add_feature (pr_name, pr_value)
Add or update a node’s feature.

add_features (**features)
Add or update several features.

add_sister (sister=None, name=None, dist=None)
Adds a sister to this node. If sister node is not supplied as an argument, a new TreeNode
instance will be created and returned.

check_monophyly (values, target_attr, ignore_missing=False, unrooted=False)
Returns True if a given target attribute is monophyletic under this node for the provided set
of values.

If not all values are represented in the current tree structure, a ValueError exception will be
raised to warn that strict monophyly could never be reached (this behaviour can be avoided
by enabling the ignore_missing flag.

Parameters
* values — a set of values for which monophyly is expected.

* target_attr — node attribute being used to check monophyly (i.e.
species for species trees, names for gene family trees, or any custom fea-
ture present in the tree).

* ignore_missing (False) — Avoid raising an Exception when missing
attributes are found.

Parameters unrooted (Fulse) — If True, tree will be treated as unrooted, thus
allowing to find monophyly even when current outgroup is spliting a mono-
phyletic group.

Returns the following tuple IsMonophyletic (boolean), clade type (‘mono-
phyletic’, ‘paraphyletic’ or ‘polyphyletic’), leaves breaking the monophyly
(set)

116 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

children
A list of children nodes

compare (ref _tree, use_collateral=False, min_support_source=0.0,
min_support_ref=0.0, has_duplications=False, expand_polytomies="False, un-
rooted=False, max_treeko_splits_to_be_artifact=1000, ref_tree_attr="name’,

source_tree_attr="name’)) o
compare this tree with another using robinson foulds symmetric difference and number of

shared edges. Trees of different sizes and with duplicated items allowed.
returns: a Python dictionary with results

convert_to_ultrametric (tree_length=None, strategy="balanced’)
Converts a tree into ultrametric topology (all leaves must have the same distance to root).
Note that, for visual inspection of ultrametric trees, node.img_style[”’size”’] should be set to
0.

copy (method="cpickle’)
Returns a copy of the current node.

Variables method (cpickle) — Protocol used to copy the node
structure. The following values are accepted:

*“newick”: Tree topology, node names, branch lengths and branch support values will
be copied by as represented in the newick string (copy by newick string serialisation).

*“newick-extended”: Tree topology and all node features will be copied based on the ex-
tended newick format representation. Only node features will be copied, thus excluding
other node attributes. As this method is also based on newick serialisation, features will
be converted into text strings when making the copy.

*“cpickle”: The whole node structure and its content is cloned based on cPickle object
serialisation (slower, but recommended for full tree copying)

*“deepcopy”: The whole node structure and its content is copied based on the standard
“copy” Python functionality (this is the slowest method but it allows to copy complex
objects even if attributes point to lambda functions, etc.)

del_feature (pr_name)
Permanently deletes a node’s feature.

delete (prevent_nondicotomic=True, preserve_branch_length=False)
Deletes node from the tree structure. Notice that this method makes ‘disappear’ the node
from the tree structure. This means that children from the deleted node are transferred to the
next available parent.

Parameters prevent_nondicotomic (True) — When True (default), delete
function will be execute recursively to prevent single-child nodes.
Parameters preserve_branch_length (False) — If True, branch lengths

of the deleted nodes are transferred (summed up) to its parent’s branch, thus keeping original
distances among nodes.

Example:

/ C
root—|

3.1.

Master Tree class 117

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

\ / B
\-—— H |
\ A

> H.delete() will produce this structure:

describe ()
Prints general information about this node and its connections.

detach ()
Detachs this node (and all its descendants) from its parent and returns the referent to itself.

Detached node conserves all its structure of descendants, and can be attached to another
node through the ‘add_child’ function. This mechanism can be seen as a cut and paste.

dist
Branch length distance to parent node. Default = 0.0

expand_polytomies (map_attr="name’, polytomy_size_limit=3,

skip_large_polytomies=False)
New in version 2.3.

Given a tree with one or more polytomies, this functions returns the list of all trees (in newick
format) resulting from the combination of all possible solutions of the multifurcated nodes.

http://ajmonline.org/2010/darwin.php

static from_parent_child_table (parent_child_table)
Converts a parent-child table into an ETE Tree instance.

Parameters parent_child_table - a list of tuples containing parent-child
relationsships. For example: [(“A”, “B”, 0.1), (“A”, “C”, 0.2), (“C”, “D”, 1),
(“C”, “E”, 1.5)]. Where each tuple represents: [parent, child, child-parent-dist]

Returns A new Tree instance

Example

>>> tree = Tree.from_parent_child_table([("A", "B", 0.1), ("A", "C"
>>> print tree

static from_skbio (skbio_tree, map_attributes=None)
Converts a scikit-bio TreeNode object into ETE Tree object.

Parameters
e skbio_tree - a scikit bio TreeNode instance

* map_attributes (None) — A list of attribute nanes in the scikit-bio tree
that should be mapped into the ETE tree instance. (name, id and branch
length are always mapped)

Returns A new Tree instance

Example

118 Chapter 3. ETE’s Reference Guide

220

("C"

http://ajmonline.org/2010/darwin.php

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

>>> tree = Tree.from_skibio(skbioTree, map_attributes=["value"]) ‘

get_ancestors ()
versionadded: 2.2

Returns the list of all ancestor nodes from current node to the current tree root.

get_ascii (show_internal=True, compact=False, attributes=None)
Returns a string containing an ascii drawing of the tree.

Parameters
* show_internal - includes internal edge names.
* compact — use exactly one line per tip.

* attributes — A list of node attributes to shown in the ASCII representa-
tion.

get_cached content (store_attr=None, container_type=<type ‘set’>, _store=None)
Returns a dictionary pointing to the preloaded content of each internal node under this tree.
Such a dictionary is intended to work as a cache for operations that require many traversal
operations.

Parameters store_attr (None) — Specifies the node attribute that
should be cached (i.e. name, distance, etc.). When none, the whole node instance is cached.
Parameters _store — (internal use)

get_children ()
Returns an independent list of node’s children.

get_closest_1leaf (topology_only=False, is_leaf fn=None)
Returns node’s closest descendant leaf and the distance to it.

Parameters topology_only (False) — If set to True, distance between nodes
will be referred to the number of nodes between them. In other words, topo-
logical distance will be used instead of branch length distances.

Returns A tuple containing the closest leaf referred to the current node and the
distance to it.

get_common_ancestor (*target_nodes, **kargs)
Returns the first common ancestor between this node and a given list of ‘target_nodes’.

Examples:

t tree.Tree (" (((A:0.1, B:0.01):0.0
A t.get_descendants_by_name ("A") [0
C t.get_descendants_by_name ("C") [0
)

common = A.get_common_ancestor (C

1, C:0.0001):1.0[&&NHX:name=common], (D:

print common.name

get_descendants (strategy="levelorder’, is_leaf fn=None)
Returns a list of all (Ieaves and internal) descendant nodes.

Parameters is_leaf_ fn (None) — See TreeNode.traverse () for docu-
mentation.

Master Tree class 119

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

get_distance (rarget, target2=None, topology_only=False)
Returns the distance between two nodes. If only one target is specified, it returns the distance
bewtween the target and the current node.

Parameters
* target — a node within the same tree structure.

* target2 — a node within the same tree structure. If not specified, current
node is used as target2.

* topology_ only (False) — If set to True, distance will refer to the number
of nodes between target and target2.

Returns branch length distance between target and target2. If topology_only flag
is True, returns the number of nodes between target and target2.

get_edges (cached_content=None)
New in version 2.3.

Returns the list of edges of a tree. Each egde is represented as a tuple of two elements, each
containing the list of nodes separated by the edge.

get_farthest_1leaf (topology_only=False, is_leaf fn=None)
Returns node’s farthest descendant node (which is always a leaf), and the distance to it.

Parameters topology_only (False) — If set to True, distance between nodes
will be referred to the number of nodes between them. In other words, topo-
logical distance will be used instead of branch length distances.

Returns A tuple containing the farthest leaf referred to the current node and the
distance to it.

get_farthest_node (topology_only=False)
Returns the node’s farthest descendant or ancestor node, and the distance to it.

Parameters topology_only (False) — If set to True, distance between nodes
will be referred to the number of nodes between them. In other words, topo-
logical distance will be used instead of branch length distances.

Returns A tuple containing the farthest node referred to the current node and the
distance to it.

get_leaf names (is_leaf fn=None)
Returns the list of terminal node names under the current node.

Parameters is_leaf £fn (None) — See TreeNode.traverse () for docu-
mentation.

get_1leaves (is_leaf fn=None)
Returns the list of terminal nodes (leaves) under this node.

Parameters is_leaf_ £fn (None) — See TreeNode.traverse () for docu-
mentation.

get_leaves_by_name (name)
Returns a list of leaf nodes matching a given name.

get_midpoint_outgroup ()
Returns the node that divides the current tree into two distance-balanced partitions.

120 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

get_monophyletic (values, target_attr)
New in version 2.2.

Returns a list of nodes matching the provided monophyly criteria. For a node to be con-
sidered a match, all target_attr values within and node, and exclusively them, should be

grouped.
Parameters
* values — a set of values for which monophyly is expected.

* target_attr — node attribute being used to check monophyly (i.e.
species for species trees, names for gene family trees).

get_sisters|()
Returns an indepent list of sister nodes.

get_topology_ id (attr="name’)
New in version 2.3.

Returns the unique ID representing the topology of the current tree. Two trees with the same
topology will produce the same id. If trees are unrooted, make sure that the root node is not
binary or use the tree.unroot() function before generating the topology id.

This is useful to detect the number of unique topologies over a bunch of trees, without
requiring full distance methods.

The id is, by default, calculated based on the terminal node’s names. Any other node attribute
could be used instead.

get_tree_root ()
Returns the absolute root node of current tree structure.

img_style
Branch length distance to parent node. Default = 0.0

is _leaf ()
Return True if current node is a leaf.

is_root ()
Returns True if current node has no parent

iter ancestors ()
versionadded: 2.2

Iterates over the list of all ancestor nodes from current node to the current tree root.

iter descendants (strategy="'levelorder’, is_leaf fn=None)
Returns an iterator over all descendant nodes.

Parameters is_leaf £fn (None) — See TreeNode.traverse () for docu-
mentation.

iter_edges (cached_content=None)
New in version 2.3.

Iterate over the list of edges of a tree. Each egde is represented as a tuple of two elements,
each containing the list of nodes separated by the edge.

iter_ leaf names (is_leaf fn=None)
Returns an iterator over the leaf names under this node.

3.1.

Master Tree class 121

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Parameters is_leaf £fn (None) — See TreeNode.traverse () for docu-
mentation.

iter_ leaves (is_leaf fn=None)
Returns an iterator over the leaves under this node.

Parameters is_leaf fn (None) — See TreeNode.traverse () for docu-
mentation.

iter prepostorder (is_leaf fn=None)
Iterate over all nodes in a tree yielding every node in both pre and post order. Each iteration
returns a postorder flag (True if node is being visited in postorder) and a node instance.

iter search_nodes (**conditions)
Search nodes in an interative way. Matches are being yield as they are being found. This
avoids to scan the full tree topology before returning the first matches. Useful when dealing
with huge trees.

ladderize (direction=0)
Sort the branches of a given tree (swapping children nodes) according to the size of each

partition.

t = Tree("(f, ((d, ((a,b),c)),e));")
print t

#

/—f

/

/ /—=d

- /

/ /=== /-a
/ / / /===

/ / \———/ \-b
\———/ /

/ \-c

/

\-e

t.ladderize ()

print t

/-f

|

/ /—e

\———/

/ /=d

\ ===

/ /—c

\———/

/ /-a
\———|

\-b

populate (size, names_library=None, reuse_names=False, random_branches=False,
branch_range=(0, 1), support_range=(0, 1))
Generates a random topology by populating current node.

Parameters

122 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* names_1library (None) — If provided, names library (list, set, dict, etc.)
will be used to name nodes.

* reuse_names (Fualse) — If True, node names will not be necessarily
unique, which makes the process a bit more efficient.

* random_branches (False) —If True, branch distances and support values
will be randomized.

* branch_range ((0,1)) — If random_branches is True, this
range of values will be used to generate random distances.
Parameters support_range ((0,1)) — If random_branches is True,
this range of values will be used to generate random branch support values.

prune (nodes, preserve_branch_length=False)
Prunes the topology of a node to conserve only the selected list of leaf internal nodes. The
minimum number of nodes that conserve the topological relationships among the requested
nodes will be retained. Root node is always conserved.

Variables nodes — a list of node names or node objects that should be retained
Parameters preserve_branch_length (False) — If True, branch lengths

of the deleted nodes are transferred (summed up) to its parent’s branch, thus keeping original
distances among nodes.

Examples:

tl = Tree(' (((((A,B)C)D,E)F,G)H, (I,J)K)root; "', format=1)
tl.prune(['A', 'B'])

/A

/D /C|

JF| \-B

/ /

/H| \-E

/ / /-A
#-root \-G —-root

/ \-B

/ /I

\K |/

\-J

tl = Tree('(((((A,B)C)D,E)F,G)H, (I,J)K)root;"', format=1)
tl.prune(['A', 'B', 'C'])

/—A

/D /C|

JF| \-B

/ /

/H| \-E

/ / /—A
#-root \-G —-root— C|

/ \-B

3.1. Master Tree class 123

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

/ /-1
\K |/

\-J
tl = Tree('

(((((A,B)C)D,E)F,G)H, (I,J)K)root;"', format=1)
tl.prune(['A', 'B', 'I'])

/A

/D /C|

/F| \-B

/ /

/H| \-E /-1

[—-root
#-root \-G / /—=A
/ \C/

/ /-I \-B
\K/

\-J

tl = Tree("(((((A,B)C)D,E)F,G)H, (I,J)K)root;"', format=1)
tl.prune(['A', 'B', 'EF', '"H'])

/A

/D /C|

JF| \-B

/ /

/H| \-E

/ / /=A
#-root \-G -root—-H /F|

/ \-B
/ /-I

\K/

\-J

remove_child (child)
Removes a child from this node (parent and child nodes still exit but are no longer con-
nected).

remove_sister (sister=None)
Removes a sister node. It has the same effect as ‘TreeNode.up.remove_child(sister)*

If a sister node is not supplied, the first sister will be deleted and returned.
Parameters sister — A node instance
Returns The node removed

render (file_name, layout=None, w=None, h=None, tree_style=None, units="px’,
dpi=90)
Renders the node structure as an image.

Variables

* file_name — path to the output image file. valid extensions are .SVG,
.PDF, .PNG

124 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

layout - a layout function or a valid layout function name
tree_style —a TreeStyle instance containing the image properties
units (px) — “px”: pixels, “mm”: millimeters, “in”: inches

h (None) — height of the image in units

w (None) — width of the image in units

dpi (300) — dots per inches.

resolve_polytomy (default_dist=0.0, default_support=0.0, recursive=True)
Resolve all polytomies under current node by creating an arbitrary dicotomic structure
among the affected nodes. This function randomly modifies current tree topology and should
only be used for compatibility reasons (i.e. programs rejecting multifurcated node in the
newick representation).

Parameters

default_dist (0.0) - artificial branch distance of new nodes.
default_support (0.0) — artificial branch support of new nodes.

recursive (True) — Resolve any polytomy under this node. When False,
only current node will be checked and fixed.

robinson_foulds (12, attr_tl="name’, attr_t2="name’, unrooted_trees=Fualse,

expand_polytomies=False, polytomy_size_limit=35,
skip_large_polytomies=False, correct_by_polytomy_size=False,
min_support_t1=0.0, min_support_t2=0.0)

Returns the Robinson-Foulds symmetric distance between current tree and a different tree

instance.

Parameters

t2 — reference tree

attr_t1 (name) — Compare trees using a custom node attribute as a node
name.

attr_t2 (False) — Compare trees using a custom node attribute as a node
name in target tree.

attr_ t2 —If True, consider trees as unrooted.

expand_polytomies (False) — If True, all polytomies in the ref-
erence and target tree will be expanded into all possible binary
trees. Robinson-foulds distance will be calculated between all tree
combinations and the minimum value will be returned. See also,
NodeTree.expand_polytomy ().

Returns (rf, rf_max, common_attrs, names, edges_tl, edges_t2, dis-
carded_edges_t1, discarded_edges_t2)

search_nodes (**conditions)
Returns the list of nodes matching a given set of conditions.

Example:

tree.search_nodes (dist=0.0, name="human")

3.1.

Master Tree class

125

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

set_outgroup (outgroup)
Sets a descendant node as the outgroup of a tree. This function can be used to root a tree or
even an internal node.

Parameters outgroup — a node instance within the same tree structure that will
be used as a basal node.

set_style (node_style)
Set ‘node_style’ as the fixed style for the current node.

show (layout=None, tree_style=None, name="ETE’)
Starts an interative session to visualize current node structure using provided layout and
TreeStyle.

sort_descendants (attr="name’)
This function sort the branches of a given tree by considerening node names. After the tree is
sorted, nodes are labeled using ascendent numbers. This can be used to ensure that nodes in
a tree with the same node names are always labeled in the same way. Note that if duplicated
names are present, extra criteria should be added to sort nodes.

Unique id is stored as a node._nid attribute

standardize (delete_orphan=True, preserve_branch_length=True)
New in version 2.3.

process current tree structure to produce a standardized topology: nodes with only one child
are removed and multifurcations are automatically resolved.

support
Branch support for current node

swap_children ()
Swaps current children order.

traverse (strategy="levelorder’, is_leaf fn=None)
Returns an iterator to traverse the tree structure under this node.

Parameters

* strategy (“levelorder”) — set the way in which tree will be traversed.
Possible values are: “preorder” (first parent and then children) ‘postorder’
(first children and the parent) and “levelorder” (nodes are visited in order
from root to leaves)

* is_leaf_ f£n (None) — If supplied, is_leaf_fn function will be used
to interrogate nodes about if they are terminal or internal. is_leaf_ fn
function should receive a node instance as first argument and return True
or False. Use this argument to traverse a tree by dynamically collapsing
internal nodes matching is_leaf_fn.

unroot ()
Unroots current node. This function is expected to be used on the absolute tree root node,
but it can be also be applied to any other internal node. It will convert a split into a multifur-
cation.

up
Pointer to parent node

126 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

write (features=None, outfile=None, format=0, is_leaf _fn=None, for-
mat_root_node=Fualse, dist_formatter=None, support_formatter=None,

name_formatter=None)
Returns the newick representation of current node. Several arguments control the way in

which extra data is shown for every node:
Parameters

* features — a list of feature names to be exported using the Extended
Newick Format (i.e. features=["name”, “dist”]). Use an empty list to export
all available features in each node (features=[])

* outfile — writes the output to a given file

e format — defines the newick standard used to encode the tree. See tutorial
for details.

* format_root_node (False) — If True, it allows features and branch in-
formation from root node to be exported as a part of the newick text string.
For newick compatibility reasons, this is False by default.

e is leaf fn - See TreeNode.traverse () for documentation.

Example:

t.get_newick (features=["species", "name"], format=1)

Tree

alias of TreeNode

3.2 Treeview module

Contents

o Treeview module

— TreeStyle
— NodeStyle
— Faces

— Color names

3.2.1 TreeStyle

class TreeStyle

New in version 2.1.
Contains all the general image properties used to render a tree
— About tree design —

Parameters layout_£fn (None) — Layout function used to dynamically control the
aspect of nodes. Valid values are: None or a pointer to a method, function, etc.

— About tree shape —

Parameters

3.2

Treeview module 127

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

€«

* mode (“r”) — Valid modes are ‘c’(ircular) or ‘r’(ectangular).

* orientation (0) — If 0, tree is drawn from left-to-right. If 1, tree is drawn
from right-to-left. This property only makes sense when “r’” mode is used.

* rotation (0) — Tree figure will be rotate X degrees (clock-wise rotation).

* min_leaf_separation (/) — Min separation, in pixels, between two ad-
jacent branches

* branch_vertical_margin (0) — Leaf branch separation margin, in pix-
els. This will add a separation of X pixels between adjacent leaf branches. In
practice, increasing this value work as increasing Y axis scale.

* arc_start (0) — When circular trees are drawn, this defines the starting
angle (in degrees) from which leaves are distributed (clock-wise) around the
total arc span (0 = 3 o’clock).

* arc_span (359) — Total arc used to draw circular trees (in degrees).
* margin_left (0) — Left tree image margin, in pixels.
* margin_right (0) — Right tree image margin, in pixels.
* margin_top (0) — Top tree image margin, in pixels.
* margin_bottom (0) — Bottom tree image margin, in pixels.
— About Tree branches —
Parameters

* scale (None) — Scale used to draw branch lengths. If None, it will be auto-
matically calculated.

* optimal_scale_level (“mid”) — Two levels of automatic branch scale
detection are available: "mid" and "full". In full mode, branch scale
will me adjusted to fully avoid dotted lines in the tree image. In other words,
scale will be increased until the extra space necessary to allocated all branch-
top/bottom faces and branch-right faces (in circular mode) is covered by real
branches. Note, however, that the optimal scale in trees with very unbalanced
branch lengths might be huge. If "mid" mode is selected (as it is by default),
optimal scale will only satisfy the space necessary to allocate branch-right
faces in circular trees. Some dotted lines (artificial branch offsets) will still
appear when branch-top/bottom faces are larger than branch length. Note that
both options apply only when scale is set to None (automatic).

* root_opening factor (0.25) — (from O to 1). It defines how much the
center of a circular tree could be opened when adjusting optimal scale, re-
ferred to the total tree length. By default (0.25), a blank space up to 4 times
smaller than the tree width could be used to calculate the optimal tree scale.
A 0 value would mean that root node should always be tightly adjusted to the
center of the tree.

* complete_branch_lines_when_necessary (True) — True or False.
Draws an extra line (dotted by default) to complete branch lengths when the
space to cover is larger than the branch itself.

* extra branch_ line_type (2) — O=solid, 1=dashed, 2=dotted

128 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

extra_branch_line_color (“gray”) — RGB code or name in
SVG_COLORS

force_topology (False) — Convert tree branches to a fixed length, thus
allowing to observe the topology of tight nodes

draw_guiding_lines (False) — Draw guidelines from leaf nodes to
aligned faces

guiding lines_type (2) — O=solid, 1=dashed, 2=dotted.

guiding lines_color (“gray”)—RGB code or name in SVG_COLORS

— About node faces —

Parameters

— Addons -

allow_face_overlap (False) — If True, node faces are not taken into
account to scale circular tree images, just like many other visualization pro-
grams. Overlapping among branch elements (such as node labels) will be
therefore ignored, and tree size will be a lot smaller. Note that in most cases,
manual setting of tree scale will be also necessary.

draw_aligned_faces_as_table (True) — Aligned faces will be drawn
as a table, considering all columns in all node faces.

children_faces_on_top (True) — When floating faces from different
nodes overlap, children faces are drawn on top of parent faces. This can be
reversed by setting this attribute to false.

Parameters

show_border (False) — Draw a border around the whole tree
show_scale (True) — Include the scale legend in the tree image

show_leaf name (False) — Automatically adds a text Face to leaf nodes
showing their names

show_branch_length (False) — Automatically adds branch length infor-
mation on top of branches

show_branch_support (False) — Automatically adds branch support text
in the bottom of tree branches

— Tree surroundings —

The following options are actually Face containers, so graphical elements can be added just as it
is done with nodes. In example, to add tree legend:

TreeStyle.legend.add_face(CircleFace (10, "red"), column=0)
TreeStyle.legend.add_face (TextFace ("0.5 support"), column=1)

Parameters

* aligned_header -a FaceContainer aligned to the end of the tree and

* aligned_foot — a FaceContainer aligned to the end of the tree and

placed at the top part.

placed at the bottom part.

3.2. Treeview module

129

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* legend — a FaceContainer with an arbitrary number of faces represent-
ing the legend of the figure.

* legend_position=4 (4)— TopLeft corner if 1, TopRight if 2, BottomLeft
if 3, BottomRight if 4

e title — A Face container that can be used as tree title
class FaceContainer
New in version 2.1.
Use this object to create a grid of faces. You can add faces to different columns.

add_face (face, column)
add the face face to the specified column

3.2.2 NodeStyle
class NodeStyle (*args, **kargs)
New in version 2.1.
A dictionary with all valid node graphical attributes.
Parameters
* fgcolor (#0030cl) — RGB code or name in SVG_COLORS
* bgcolor (#FFFFFF) — RGB code or name in SVG_COLORS
* node_bgcolor (#FFFFFF) — RGB code or name in SVG_COLORS
* partition_bgcolor (#FFFFFF)—RGB code or name in SVG_COLORS
* faces_bgcolor (#FFFFFF) — RGB code or name in SVG_COLORS
e vt_line color (#000000) — RGB code or name in SVG_COLORS
e hz_line_color (#000000) — RGB code or name in SVG_COLORS
* hz_line_type (0) — integer number
* vt_1line_type (0) — integer number
* size (3) — integer number
* shape (“circle”) — “circle”, “square” or “sphere”
* draw_descendants (True) — Mark an internal node as a leaf.

* hz_line_width (0) — integer number representing the width of the line in
pixels. A line width of zero indicates a cosmetic pen. This means that the pen
width is always drawn one pixel wide, independent of the transformation set
on the painter.

* vt_line_width (0) — integer number representing the width of the line in
pixels. A line width of zero indicates a cosmetic pen. This means that the pen
width is always drawn one pixel wide, independent of the transformation set
on the painter.

130 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

3.2.3 Faces

add_face_to_node (face, node, column, aligned=False, position="branch-right’)
Adds a Face to a given node.

Parameters face — A Face instance

Parameters
* node — a tree node instance (I'ree, PhyloTree, etc.)
* column — An integer number starting from 0
* position (“branch-right”) — Possible values are “branch-right”, “branch-

top”, “branch-bottom”, “float”, “float-behind” and “aligned”.
class Face
Base Face object. All Face types (i.e. TextFace, SeqMotifFace, etc.) inherit the following options:

Parameters
* margin_left (0) - in pixels
* margin_right (0) - in pixels
* margin_top (0) —in pixels
* margin_bottom (0) —in pixels
* opacity (/.0) — a float number in the (0,1) range

* rotable (True) — If True, face will be rotated when necessary (i.e. when
circular mode is enabled and face occupies an inverted position.)

* hz_align (0) — 0 left, 1 center, 2 right
e vt_align (/) — 0 top, 1 center, 2 bottom
* background. color — background color of face plus all its margins.

* inner_background.color — background color of the face excluding
margins

* border — Border around face margins.
* inner_border — Border around face excluding margins.
border and inner_border sub-parameters:
Parameters
* (inner_)border.type (0) — 0=solid, 1=dashed, 2=dotted

* (inner_)border.width (None) — a positive integer number. Zero indi-
cates a cosmetic pen. This means that the pen width is always drawn one pixel
wide, independent of the transformation set on the painter. A “None” value
means invisible border.

* (inner)border.color (black)—RGB or color name in SVG_COLORS

See also specific options for each face type.

3.2. Treeview module 131

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class TextFace (text, ftype="Verdana’, fsize=10, fgcolor="black’, penwidth=0,

fstyle="normal’, tight_text=False, bold=False)
Static text Face object

Parameters
* text — Text to be drawn
» ftype — Font type, e.g. Arial, Verdana, Courier
» fsize — Fontsize, e.g. 10,12,6, (default=10)

* fgcolor - Foreground font color. RGB code or color name in
SVG_COLORS

* penwidth — Penwdith used to draw the text.
» fstyle — “normal” or “italic”
e tight_text (False) — When False, boundaries of the text are

approximated according to general font metrics, producing slightly worse aligned text faces but
improving the performance of tree visualization in scenes with a lot of text faces.

class AttrFace (attr, ftype="Verdana’, fsize=10, fgcolor="black’, penwidth=0, text_prefix="",

text_suffix="", formatter=None, fstyle="normal’, tight_text=False)
Dynamic text Face. Text rendered is taken from the value of a given node attribute.

Parameters
* attr — Node’s attribute that will be drawn as text
* ftype — Font type, e.g. Arial, Verdana, Courier, (default="Verdana™)
* fsize — Fontsize, e.g. 10,12,6, (default=10)
* fgcolor — Foreground font color. RGB code or name in SVG_COLORS
* penwidth — Penwdith used to draw the text. (default is 0)
* text_prefix —text_rendered before attribute value
e text_suffix - text_rendered after attribute value

* formatter - atext string defining a python formater to process the attribute
value before renderer. e.g. “%0.2f”

* fstyle — “normal” or “italic”

class ImgFace (img_file, width=None, height=None, is_url=False)
Creates a node Face using an external image file.

Parameters
* img_file — path to the image file.
* width (None) — if provided, image will be scaled to this width (in pixels)
* height (None) — if provided, image will be scaled to this height (in pixels)

* is_url (False) — if True, img_file is considered a URL and the image is
automatically downloaded

If only one dimension value (width or height) is provided, the other will be calculated to keep
aspect ratio.

132 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class CircleFace (radius, color, style="circle’, label=None)
New in version 2.1.

Creates a Circle or Sphere Face.
Parameters
* radius - integer number defining the radius of the face
¢ color — Color used to fill the circle. RGB code or name in SVG_COLORS
* style (“circle”) — Valid values are “circle” or “sphere”
* label - optional text string to annotate the face: Default value is None;

label can also be a dict with attributes text, font, color, and fontsize color defaults to circle color
(because it looks nice with “sphere”), font to Verdana, fontsize to 12

class RectFace (width, height, fgcolor, bgcolor, label=None)
New in version 2.3.

Creates a Rectangular solid face.
Parameters label - optional text string to annotate the face: Default value is None;

label can also be a dict with attributes text, font, color, and fontsize color defaults to background
color, font to Verdana, fontsize to 12

class StackedBarFace (percents, width, height, colors=None, line_color=None)

class SequenceFace (seq, seqtype=’aa’, fsize=10, fg_colors=None, bg_colors=None,
codon=None, col_w=None, alt_col_w=3, special_col=None, interac-

tive=False)
Creates a new molecular sequence face object. :param seq: Sequence string to be drawn :param

seqtype: Type of sequence: “nt” or “aa” :param fsize: Font size, (default=10)
You can set custom colors for amino-acids or nucleotides:
Parameters

* codon (None) — a string that corresponds to the reverse translation of the
amino-acid sequence

¢ col_w (None) — width of the column (if col_w is lower than font size, letter
wont be displayed)

* fg_colors (None) — dictionary of colors for foreground, with as keys each
possible character in sequences, and as value the colors

* bg_colors (None) — dictionary of colors for background, with as keys each
possible character in sequences, and as value the colors

* alt_col_w (3) — works together with special_col option, defines the width
of given columns

* special_col (None) — list of lists containing the bounds of columns to be
displayed with alt_col_w as width

* interactive (False) — more info can be displayed when mouse over se-
quence

class InteractiveLetterItem (*arg, **karg)
This is a class

3.2. Treeview module 133

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

hoverEnterEvent (¢)
when mouse is over

hoverLeaveEvent (¢)
when mouse leaves area

class SegMotifFace (seq=None, motifs=None, seqtype="aa’, gap_format="line’,
seq_format=()’, scale_factor=1, height=10, width=10, fg-
color="slategrey’, bgcolor="slategrey’, gapcolor="black’)
New in version 2.2.

Creates a face based on an amino acid or nucleotide sequence and a list of motif regions.
Parameters

* seq (None) — a text string containing an aa or nt sequence. If not provided,
seq and compact seq motif modes will not be available.

* motifs (None) — a list of motif regions referred to original sequence. Each
motif is defined as a list containing the following information:

motifs = [[seg.start, seqg.end, shape, width, height, fgcolor,| bgcolor, te
[seq.start, seqg.end, shape, width, height, fgcolor, [bgcolor, tes:

Where:

— seq.start: Motif start position referred to the full sequence (1-based)
— seq.end: Motif end position referred to the full sequence (1-based)
— shape: Shape used to draw the motif. Available values are:

+ o = circle or ellipse

*

> = triangle (base to the left)

*

< = triangle (base to the left)

*

~ = triangle (base at bottom)
% v = triangle (base on top)

% <> = diamond

% [] =rectangle

% () =round corner rectangle
#* line = horizontal line

#* blank = blank space

#* seq = Show a color and the corresponding letter of each sequence posi-
tion
* compactseq = Show a thinh vertical color line for each sequence po-
sition
— width: total width of the motif (or sequence position width if seq motif
type)

134 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

— height: total height of the motif (or sequence position height if seq motif
type)

— fgcolor: color for the motif shape border

— bgcolor: motif background color. Color code or name can be preceded
with the “rgradient:” tag to create a radial gradient effect.

— text_label: a text label in the format ‘FontTypelFontSizelFontColor|Text’,
for instance, ariall8lwhitelMotifName™*

* gap_format (line) — default shape for the gaps between motifs

* seq_format (blockseq) — default shape for the seq regions not covered in
motifs

class BarChartFace (values, deviations=None, width=200, height=100, colors=None,
labels=None, min_value=0, max_value=None, label_fsize=6,

scale_fsize=6)
New in version 2.2.

Parameters

* values - a list of values each representing a vertical bar.

width (200) — width of the bar chart.

height (/00) — height of the bar chart

* colors (None) — a list of colors, one per bar value

label (None) — a list of labels, one per bar
* min_value (0) — min value to set the scale of the chart.
* max_value (None) — max value to set the scale of the chart.

class PieChartFace (percents, width, height, colors=None, line_color=None)
New in version 2.2.

Parameters
* percents — a list of values summing up 100.
* width — width of the piechart
* height - height of the piechart
* colors — alist of colors (same length as percents)

* line_color - color used to render the border of the piechart
(None=transparent)

class ProfileFace (max_v, min_v, center_v, width=200, height=40, style="’lines’, col-

orscheme=2, values_vector=None, deviations_vector=None)
A profile Face for ClusterNodes

Parameters
* max_v — maximum value used to build the build the plot scale.
* max_v — minimum value used to build the build the plot scale.

* center_v — Center value used to scale plot and heatmap.

3.2. Treeview module 135

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* width (200) — Plot width in pixels.
* height (40) — Plot width in pixels.

* style (lines) — Plot style: “lines”, “bars”, “cbars” or “heatmap”.

* colorscheme (2) — colors used to create the gradient from min values to
max values. O=green & blue; 1=green & red; 2=red & blue. In all three cases,
missing values are rendered in black and transition color (values=center) is
white.

class TreeFace (tree, tree_style)
New in version 2.1.

Creates a Face containing a Tree object. Yes, a tree within a tree :)
Parameters
* tree — An ETE Tree instance (Tree, PhyloTree, etc...)
* tree_style — A TreeStyle instance defining how tree show be drawn

class StaticItemFace (item)
New in version 2.1.

Creates a face based on an external QtGraphicsltem object. QGraphicsltem object is expected to
be independent from tree node properties, so its content is assumed to be static (drawn only once,
no updates when tree changes).

Parameters item — an object based on QGraphicsltem

class DynamicItemFace (constructor, *args, **kargs)
New in version 2.1.

Creates a face based on an external QGraphicsltem object whose content depends on the node that
is linked to.

Parameters constructor — A pointer to a method (function or class constructor)
returning a QGraphicsltem based object. “constructor” method is expected to re-
ceive a node instance as the first argument. The rest of arguments passed to Item-
Face are optional and will passed also to the constructor function.

3.2.4 Color names

SVG_COLORS

Apart from RGB color codes, the following SVG color names are supported:

136 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Red colors Green colors Brown colors

IndianRed Green'ellow AD FF 2F 173 255 47 Cornsilk FF F8 DC 255 248 220

Chartreuse JF FF 00 127 255 O BlanchedAlmond FF EE CD 255 233 203

7C FC 00 124 252 o Bisque FF E4 C4 255 228 196

PaleGreen 98 FB 98 152 251 152 BurlyWood
LightGreen 80 EE 90 144 238 144 Tan 210 180 140

e TR IR _-_
LightPink FF B6 Cl 255 182 193 orestGree

MediumVioletRed

PaleVioletRed

Orange colors

&

B8 87 222 184 135

Light5almon FF B0 7A 255 160 122 White colors

White FF FF FF 255 255 255
Snow FF FA FA 235 250 250
Honeydew FO FF FO 240 255 240
-_ MintCream F5 FF FA 243 253 230
Yellow colors Blue/Cyan colors AliceBlue FO F8 FF 240 248 253

Gold FF D7 00 255 215 O _-_ GhostWhite F8 Fa8 FF 248 248 255

LightYellow FF FF E0 255 253 224 LightCyan E0 FF FF 224 253 255 Seashell FF F5 EE 255 245 238
LemonChiffon FF FA CD 255 250 205 PaleTurquoise AF EE EE 175 238 238 Beige F5 F5 DC 245 245 220
LightGoldenrodYellow FA FR DZ 250 250 210 Aquamarine JF FF D4 127 253 212 OldLace FD F5 E6 253 245 230

PapayaWhip FF EF D5 255 239 213 _-_ FloralWhite FF FA FO 255 250 240
Moccasin FF E4 B3 255 228 181 _- vory FF FF F0 233 253 240
PeachPuff FF DA B9 255 218 185 i o AntiqueWhite ~ FA EB D7 250 235 215
PaleGoldenrod EE E8 AR 238 232 170 nen FA FO E6 2350 240 230
Khaki F0 E6 8C 240 230 140 mm LavenderBlush FF FO F5 255 240 245
_ _ 176 196 22 MistyRose FF E4 E1 255 228 223

C

Purple colors PowderBlue BO EO0 E6 176 224 230 Gray colors
Lavender E6 E6 FA 230 230 250 LightBlue AD D8 E6 173 216 230 Gainsboro DC DC DC 220 220 220
Thistle D8 BF D8 216 191 216 a7 CE EB 135 206 235 LightGrey D3 D3 D3 211 211 211

DD A0 DD 221 160 221

87 CE FA 135 206 250

DodgerBlue m

CO0 CO CO 192 192 192

'l

Silver
_

CornflowerBlue DimGra

pedumsaenne e o 5212 o1
oo x| o5 105 2 |

N N
T RN
B

MediumOrchid
BlueViolet
Da 0

SlateGray

RoyalBlue

Indigo

MediumSlateBlue m

COLOR_SCHEMES

N
5 e o |
pae oo sl v |
———
e R
50 3o] 721 19|

random_color (h=None, [=None, s=None, num=None, sep=None, seed=None)
returns the RGB code of a random color. Hue (h), Lightness (1) and Saturation (s) of the generated
color could be fixed using the pertinent function argument.

3.2. Treeview module 137

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

3.3 PhyloTree class

class PhyloNode (newick=None, alignment=None, alg_format="fasta’,
sp_naming_function=<function _parse_species>, format=0, **kargs)
Bases: ete3.coretype.tree.TreeNode
Extends the standard TreeNode instance. It adds specific attributes and methods to work with
phylogentic trees.

Parameters

* newick — Path to the file containing the tree or, alternatively, the text string
containing the same information.

* alignment - file containing a multiple sequence alignment.

LR N3

* alg format - “fasta”, “phylip” or “iphylip” (interleaved)

e format — sub-newick format

FORMAT | DESCRIPTION

flexible with support values

flexible with internal node names

all branches + leaf names + internal supports
all branches + all names

leaf branches + leaf names

internal and leaf branches + leaf names
internal branches + leaf names

leaf branches + all names

all names

O X QAN N WN—O

leaf names
100 topology only

* sp_naming_function — Pointer to a parsing python function that re-
ceives nodename as first argument and returns the species name (see
PhyloNode.set_species_naming_function (). By default, the 3
first letter of nodes will be used as species identifiers.

Returns a tree node object which represents the base of the tree.

annotate_ncbi_taxa (faxid_attr="species’, tax2name=None, tax2track=None,

tax2rank=None, dbfile=None)
Add NCBI taxonomy annotation to all descendant nodes. Leaf nodes are expected to contain

a feature (name, by default) encoding a valid taxid number.

All descendant nodes (including internal nodes) are annotated with the following new fea-
tures:

Node.spname: scientific spcies name as encoded in the NCBI taxonomy database
Node.named_lineage: the NCBI lineage track using scientific names

Node.taxid: NCBI taxid number

Node.lineage: same as named_lineage but using taxid codes.

Note that for internal nodes, NCBI information will refer to the first common lineage of the
grouped species.

Parameters

138 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

e taxid_attr (name) — the name of the feature that should be used to ac-
cess the taxid number associated to each node.

* tax2name (None) — A dictionary where keys are taxid numbers and

values are their translation into NCBI scientific name. Its use is optional and allows to avoid
database queries when annotating many trees containing the same set of taxids.

Parameters tax2track (None) — A dictionary where keys are taxid numbers
and

values are their translation into NCBI lineage tracks (taxids). Its use is optional and allows
to avoid database queries when annotating many trees containing the same set of taxids.

Parameters tax2rank (None) — A dictionary where keys are taxid numbers and

values are their translation into NCBI rank name. Its use is optional and allows to avoid
database queries when annotating many trees containing the same set of taxids.

:param None dbfile : If provided, the provided file will be used as a local copy of the NCBI
taxonomy database.

Returns tax2name (a dictionary translating taxid numbers into

scientific name), tax2lineage (a dictionary translating taxid numbers into their corresponding
NCBI lineage track) and tax2rank (a dictionary translating taxid numbers into rank names).

collapse_lineage_specific_expansions (species=None, return_copy=True)
Converts lineage specific expansion nodes into a single tip node (randomly chosen from tips
within the expansion).

Parameters species (None) — If supplied, only expansions matching the
species criteria will be pruned. When None, all expansions within the tree
will be processed.

get_age (species2age)
Implements the phylostratigrafic method described in:

Huerta-Cepas, J., & Gabaldon, T. (2011). Assigning duplication events to relative temporal
scales in genome-wide studies. Bioinformatics, 27(1), 38-45.

get_age_balanced_outgroup (species2age)
New in version 2.2.

Returns the node better balance current tree structure according to the topological age of the
different leaves and internal node sizes.

Parameters species2age — A dictionary translating from leaf names into a
topological age.

get_descendant_evol_events (sos_thr=0.0)
Returns a list of all duplication and speciation events detected after this node. Nodes are as-
sumed to be duplications when a species overlap is found between its child linages. Method
is described more detail in:

“The Human Phylome.” Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol.
2007;8(6):R109.

get_farthest_oldest_leaf (species2age, is_leaf fn=None)
Returns the farthest oldest leaf to the current one. It requires an species2age dictionary with
the age estimation for all species.

3.3. PhyloTree class 139

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Parameters is_leaf £n (None) — A pointer to a function that receives a node
instance as unique argument and returns True or False. It can be used to dy-
namically collapse nodes, so they are seen as leaves.

get_farthest_oldest_node (species2age)
New in version 2.1.

Returns the farthest oldest node (leaf or internal). The difference with
get_farthest_oldest_leaf() is that in this function internal nodes grouping seqs from
the same species are collapsed.

get_my evol_events (sos_thr=0.0)
Returns a list of duplication and speciation events in which the current node has been in-
volved. Scanned nodes are also labeled internally as dup=TruelFalse. You can access this
labels using the ‘node.dup’ sintaxis.

Method: the algorithm scans all nodes from the given leafName to the root. Nodes are as-
sumed to be duplications when a species overlap is found between its child linages. Method
is described more detail in:

“The Human Phylome.” Huerta-Cepas J, Dopazo H, Dopazo J, Gabaldon T. Genome Biol.
2007;8(6):R1009.

get_speciation_trees (map_features=None, autodetect_duplications=True,

newick_only="False, target_attr="species’)
Calculates all possible species trees contained within a duplicated gene family tree as de-
scribed in Treeko (see Marcet and Gabaldon, 2011).

Parameters autodetect_duplications (True) — If True, duplication

nodes will be automatically detected using the Species Overlap algorithm
(PhyloNode.get_descendants_evol_events (). If False, duplication nodes
within the original tree are expected to contain the feature “evoltype=D".

Parameters features (None) — A list of features that should be
mapped from the original gene family tree to each species tree subtree.
Returns (number_of_sptrees, number_of_dups, species_tree_iterator)

get_species ()
Returns the set of species covered by its partition.

iter_species|()
Returns an iterator over the species grouped by this node.

link_to_alignment (alignment, alg_format="fasta’, **kwargs)
ncbi_compare (autodetect_duplications=True, cached_content=None)

reconcile (species_tree)
Returns the reconcilied topology with the provided species tree, and a list of evolutionary
events inferred from such reconciliation.

set_species_naming_ function (fin)
Sets the parsing function used to extract species name from a node’s name.

Parameters £n — Pointer to a parsing python function that receives nodename as
first argument and returns the species name.

140 Chapter 3. ETE’s Reference Guide

http://treeko.cgenomics.org
http://www.ncbi.nlm.nih.gov/pubmed/21335609

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Example of a parsing function to extract species names for
all nodes in a given tree.
def parse_sp_name (node_name) :

return node_name.split ("_")[1]

tree.set_species_naming_function (parse_sp_name)

species

split_by_ dups (autodetect_duplications=True)
Returns the list of all subtrees resulting from splitting current tree by its duplication nodes.

Parameters autodetect_duplications (True) — If True, duplication

nodes will be automatically detected using the Species Overlap algorithm
(PhyloNode.get_descendants_evol_events (). If False, duplication nodes
within the original tree are expected to contain the feature “evoltype=D".

Returns species_trees

PhyloTree
alias of PhyloNode

class EvolEvent
Basic evolutionary event. It stores all the information about an event(node) ocurred in a phyloge-
netic tree.

etype : D (Duplication), S (Speciation), L (gene loss),
in_seqgs : the list of sequences in one side of the event.
out_seqgs : the list of sequences in the other side of the event

node : link to the event node in the tree

Contents

* Clustering module

3.4 Clustering module

class ClusterNode (newick=None, text_array=None, fdist=<function spearman_dist>)
Bases: ete3.coretype.tree.TreeNode

Creates a new Cluster Tree object, which is a collection of ClusterNode instances connected in a
hierarchical way, and representing a clustering result.

a newick file or string can be passed as the first argument. An ArrayTable file or instance can be
passed as a second argument.

Examples: t1 = Tree() # creates an empty tree t2 = Tree(‘(A:1,(B:1,(C:1,D:1):0.5):0.5);”) t3 =
Tree(‘/home/user/myNewickFile.txt’)

get_dunn (clusters, fdist=None)
Calculates the Dunn index for the given set of descendant nodes.

get_leaf profiles|()
Returns the list of all the profiles associated to the leaves under this node.

3.4. Clustering module 141

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

get_silhouette (fdist=None)
Calculates the node’s silhouette value by using a given distance function. By default, eu-
clidean distance is used. It also calculates the deviation profile, mean profile, and inter/intra-
cluster distances.

It sets the following features into the analyzed node:

* node.intracluster

* node.intercluster

* node.silhouete
intracluster distances a(i) are calculated as the Centroid Diameter
intercluster distances b(i) are calculated as the Centroid linkage distance

** Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. J. Comput. Appl. Math., 20, 53-65.

iter_ leaf profiles()
Returns an iterator over all the profiles associated to the leaves under this node.

link_ to_arraytable (arraytbl)
Allows to link a given arraytable object to the tree structure under this node. Row names in
the arraytable object are expected to match leaf names.

Returns a list of nodes for with profiles could not been found in arraytable.

set_distance_function (fin)
Sets the distance function used to calculate cluster distances and silouette index.

ARGUMENTS:
fn: a pointer to python function acepting two arrays (numpy) as arguments.
EXAMPLE:

A simple euclidean distance my_dist_fn = lambda x,y: abs(x-y)
tree.set_distance_function(my_dist_fn)

ClusterTree

alias of ClusterNode

New in version 2.1.

3.5 Nexml module

3.5.1 Nexml classes linked to ETE

class Nexml (*args, **kargs)

Creates a new nexml project.

build_from_file (fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class Nexml1Tree (newick=None, alignment=None, alg_format="fasta’,

sp_naming_function=<function _parse_species>, format=0)
Special PhyloTree object with nexml support

142

Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

3.5.2 Generic Nexml classes

class AAChar (about=None, meta=None, label=None, id=None, tokens=None, states=None,

codon=None, valueOf_=None)
A concrete implementation of the AbstractChar element.

superclass
alias of AbstractChar

class AAFormat (about=None, meta=None, states=None, char=None, set=None, val-

ueOf_=None)
The AAFormat class is the container of amino acid column definitions.

superclass
alias of AbstractFormat

class AAMapping (state=None, valueOf_=None)
An IUPAC ambiguity mapping.

superclass
alias of AbstractMapping

class AAMat rixObsRow (about=None, meta=None, label=None, id=None, otu=None,

cell=None, set=None, valueOf_=None)
This is a row in a matrix of amino acid data containing granular observations.

superclass
alias of Abst ractObsRow

class AAMat rixSeqRow (about=None, meta=None, label=None, id=None, otu=None,

seq=None, valueOf_=None)
This is a row in a matrix of amino acid data containing raw sequence data.

superclass
alias of AbstractSeqRow

class AAObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
This is a single cell in a matrix containing an amino acid observation.

superclass
alias of AbstractObs

class AAObsMat rix (about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with single character observations.

superclass
alias of AbstractObsMatrix

class AAPolymorphicStateSet (about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,

valueOf_=None)
The AAPolymorphicStateSet defines a polymorphic ambiguity mapping.

superclass
alias of AbstractPolymorphicStateSet

class AASeqMatrix (about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with amino acid data as sequence strings.

3.5. Nexml module 143

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

superclass
alias of AbstractSegMatrix

class AAState (about=None, meta=None, label=None, id=None, symbol=None, val-

ueOf_=None)
This is a concrete implementation of the state element, which requires a symbol element, in this

case restricted to AAToken, i.e. a single [UPAC amino acid symbol, and optional mapping ele-
ments to refer to other states.

superclass
alias of AbstractState

class AAStates (about=None, meta=None, label=None, id=None, state=None, poly-

morphic_state_set=None, uncertain_state_set=None, set=None, val-

ueOf_=None)
A container for a set of states.

superclass
alias of AbstractStates

class AAUncertainStateSet (about=None, meta=None, label=None, id=None, sym-

bol=None, member=None, valueOf_=None)
The AAUncertainStateSet defines an uncertain ambiguity mapping.

superclass
alias of AbstractUncertainStateSet

class AbstractBlock (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, valueOf_=None)
The AbstractBlock is the superclass for blocks that contain an element structure of type Abstract-

Format.

superclass
alias of TaxaLinked

class AbstractCells (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
The AbstractSeqBlock type is the superclass for character blocks that consist of granular character

state observations.

superclass
alias of AbstractBlock

class AbstractChar (about=None, meta=None, label=None, id=None, tokens=None,

states=None, codon=None, valueOf_=None)
The AbstractChar type is the superclass for a column definition, which may have a “states” at-

tribute that refers to an AbstractStates element, a codon attribute of type CodonPosition and an id
attribute that may be an actual id (e.g. for categorical matrices where observations explicitly refer
to a column definition) or an integer for sequence matrices.

superclass
alias of IDTagged

class AbstractEdge (about=None, meta=None, label=None, id=None, source=None,

length=None, target=None, valueOf_=None)
The AbstractEdge superclass is what concrete edges inherit from by restriction. It represents an

edge element much like that of GraphML, i.e. an element that connects node elements.

superclass
alias of IDTagged

144 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class AbstractFormat (about=None, meta=None, states=None, char=None, set=None, val-

ueOf_=None)
The AbstractFormat type is the superclass for the element that defines the allowed characters and

states in a matrix, and their ambiguity mapping. It may enclose AbstractStates elements that define
states and their mappings, and AbstractChar elements that specify which AbstractStates apply to
which matrix columns.

superclass
alias of Annotated

class AbstractMapping (state=None, valueOf_=None)
The AbstractMapping type is the superclass for an ambiguity mapping. In an instance document,
a subclass of this type will look like <member state=""st1”’/>, i.e. an element called “member” with
an attribute called “state” whose value is an id reference that refers to an element that subclasses
AbstractState. The purpose of AbstractMapping is to specify which other states may be implied,
e.g. a nucleotide symbol “N” would have mappings to “A”, “C”, “G” and “T”.

superclass
alias of Base

class AbstractNetwork (about=None, meta=None, label=None, id=None, node=None,

edge=None, set=None, valueOf_=None)
The AbstractNetwork superclass is what a concrete network inherits from.

superclass
alias of IDTagged

class AbstractNode (about=None, meta=None, label=None, id=None, otu=None,

root=False, valueOf_=None)
The AbstractNode superclass is what concrete nodes inherit from by restriction. It represents a

node element much like that of GraphML, i.e. an element that is connected into a tree by edge
elements.

superclass
alias of OptionalTaxonLinked

class AbstractObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
The AbstractObs type is the superclass for single observations, i.e. cells in a matrix. A concrete

instance of AbstractObs has a “char” attribute that refers to an explicitly defined character (e.g. in
categorical matrices), and a “state” attribute that either holds a reference to an explicitly defined
state, or a raw state value (a continuous value).

superclass
alias of Labelled

class AbstractObsMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
The AbstractObsMatrix super class is the abstract type for a <matrix> element that contains rows

which hold granular state observations.

superclass
alias of Annotated

class AbstractObsRow (about=None, meta=None, label=None, id=None, otu=None,

cell=None, set=None, valueOf_=None)
The AbstractObsRow represents a single row in a matrix. The row must refer to a previously

3.5. Nexml module 145

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

declared otu element by its id attribute (and must have an id itself, may have a label, and may have
meta attachments). The row contains multiple cell elements.

superclass
alias of TaxonLinked

class AbstractPolymorphicStateSet (about=None, meta=None, label=None,
id=None, symbol=None, member=None, un-

certain_state_set=None, valueOf_=None)
The AbstractPolymorphicStateSet type is the super-class for a polymorphic state set definition.

The element has a required AbstractSymbol attribute that in restricted concrete subclasses must be
of a sensible type such as a single IUPAC character. It may enclose zero or more AbstractMapping
elements to resolve ambiguities.

superclass
alias of AbstractUncertainStateSet

class AbstractRootEdge (about=None, meta=None, label=None, id=None, length=None,

target=None, valueOf _=None)
The AbstractRootEdge complex type is a superclass for the edge that leads into a root, i.e. an edge

with only a target attribute, but no source attribute. This type of edge is used for coalescent trees,
where the initial lineage has a certain length before things start splitting up.

superclass
alias of IDTagged

class AbstractSeqMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
The AbstractSeqMatrix super class is the abstract type for a <matrix> element that contains rows
which hold raw character sequences.

superclass
alias of Annotated

class AbstractSeqRow (about=None, meta=None, label=None, id=None, otu=None,

seq=None, valueOf_=None)
The AbstractSeqRow represents a single row in a matrix. The row must refer to a previously

declared otu element by its id attribute (and must have an id itself, may have a label, and may have
meta attachments). The row contains a single seq element with raw character data.

superclass
alias of TaxonLinked

class AbstractSegqgs (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
The AbstractSeqBlock type is the superclass for character blocks that consist of raw character
sequences.

superclass
alias of AbstractBlock

class AbstractState (about=None, meta=None, label=None, id=None, symbol=None, val-
ueOf_=None)
The AbstractState type is the super-class for a state definition. The element has a required symbol
attribute that in restricted concrete subclasses must be of a sensible type such as a single TUPAC
character. It may enclose zero or more AbstractMapping elements to resolve ambiguities.

superclass
alias of IDTagged

146 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class AbstractStates (about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-

ueOf_=None)
A container for a set of AbstractState elements.

superclass
alias of IDTagged

class AbstractTree (about=None, meta=None, label=None, id=None, node=None, root-

edge=None, edge=None, set=None, valueOf_=None)
The AbstractTree superclass is what a concrete tree inherits from.

superclass
alias of IDTagged

class AbstractTrees (about=None, meta=None, label=None, id=None, network=None,

tree=None, set=None, valueOf_=None)
The AbstractTrees superclass is what concrete trees inherit from.

superclass
alias of IDTagged

class AbstractUncertainStateSet (about=None, meta=None, label=None, id=None,

symbol=None, member=None, valueOf_=None)
The AbstractUncertainStateSet type is the super-class for an uncertain state set definition. The

element has a required AbstractSymbol attribute that in restricted concrete subclasses must be of
a sensible type such as a single [IUPAC character. It may enclose zero or more AbstractMapping
elements to resolve ambiguities.

superclass
alias of AbstractState

class Annotated (about=None, meta=None, valueOf_=None)
The Annotated complexType is a super class for objects that optionally have metadata annotations
of type Meta.

superclass
alias of Base

class Base (valueOf_=None)
The base type for all complexType definitions in the nexml schema. This type allows a number of
special attributes: xml:lang - for languages codes xml:base - see http://www.w3.org/TR/xmlbase/
xml:id - see http://www.w3.org/TR/xml-id/ xml:space - for whitespace handling xlink:href - for
links Also see http://www.w3.0rg/2001/xml.xsd for more information on the xml and xlink at-
tributes.

class ContinuousCells (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
A continuous characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

class ContinuousChar (about=None, meta=None, label=None, id=None, tokens=None,

states=None, codon=None, valueOf_=None)
A concrete implementation of the char element, which requires only an id attribute.

superclass
alias of AbstractChar

3.5. Nexml module 147

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class ContinuousFormat (about=None, meta=None, states=None, char=None, set=None,

valueOf_=None)
The ContinuousFormat class is the container of continuous column definitions.

superclass
alias of AbstractFormat

class ContinuousMatrixObsRow (about=None, meta=None, label=None, id=None,

otu=None, cell=None, set=None, valueOf_=None)
This is a row in a matrix of continuous data as granular obervations.

superclass
alias of AbstractObsRow

class ContinuousMatrixSeqRow (about=None, meta=None, label=None, id=None,

otu=None, seq=None, valueOf_=None)
This is a row in a matrix of continuous data as character sequences.

superclass
alias of AbstractSeqRow

class ContinuousObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
This is a single cell in a matrix containing a continuous observation.

superclass
alias of AbstractObs

class ContinuousObsMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with single character observations.

superclass
alias of AbstractObsMatrix

class ContinuousSegMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with seq strings of type continuous.

superclass
alias of AbstractSegMatrix

class ContinuousSeqgs (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf _=None)
A continuous characters block consisting of float sequences preceded by metadata.

superclass
alias of AbstractSeqgs

class DNAChar (about=None, meta=None, label=None, id=None, tokens=None, states=None,

codon=None, valueOf_=None)
A concrete implementation of the AbstractChar element.

superclass
alias of AbstractChar

class DNAFormat (about=None, meta=None, states=None, char=None, set=None, val-

ueOf_=None)
The DNAFormat class is the container of DNA column definitions.

superclass
alias of AbstractFormat

148 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class DNAMapping (state=None, valueOf_=None)
An TUPAC ambiguity mapping.

superclass
alias of AbstractMapping

class DNAMat rixObsRow (about=None, meta=None, label=None, id=None, otu=None,

cell=None, set=None, valueOf _=None)
This is a row in a matrix of DNA data containing granular observations.

superclass
alias of AbstractObsRow

class DNAMat rixSeqRow (about=None, meta=None, label=None, id=None, otu=None,

seq=None, valueOf_=None)
This is a row in a matrix of DNA data containing raw sequence data.

superclass
alias of Abstract SeqRow

class DNAObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
This is a single cell in a matrix containing a nucleotide observation.

superclass
alias of AbstractObs

class DNAObsMat rix (about=None, meta=None, row=None, set=None, valueOf _=None)
A matrix of rows with single character observations.

superclass
alias of AbstractObsMatrix

class DNAPolymorphicStateSet (about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,

valueOf_=None)
The DNAPolymorphicStateSet type defines an [IUPAC ambiguity mapping. It may enclose zero

or more AbstractMapping elements to resolve ambiguities.

superclass
alias of AbstractPolymorphicStateSet

class DNASegMat rix (about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with seq strings of type DNA.

superclass
alias of AbstractSegMatrix

class DNAState (about=None, meta=None, label=None, id=None, symbol=None, val-

ueOf_=None)
This is a concrete implementation of the state element, which requires a symbol element, in this

case restricted to DNAToken, i.e. a single [IUPAC nucleotide symbol, and optional mapping ele-
ments to refer to other states.

superclass
alias of AbstractState

class DNAStates (about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-
ueOf_=None)

3.5. Nexml module 149

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

A container for a set of states.

superclass
alias of AbstractStates

class DNAUncertainStateSet (about=None, meta=None, label=None, id=None, sym-

bol=None, member=None, valueOf_=None)
The DNAUncertainStateSet type defines an IUPAC ambiguity mapping. It may enclose zero or

more AbstractMapping elements to resolve ambiguities.

superclass
alias of AbstractUncertainStateSet

class DnaCells (about=None, meta=None, label=None, id=None, otus=None, format=None,

matrix=None, valueOf_=None)
A DNA characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

class DnaSeqs (about=None, meta=None, label=None, id=None, otus=None, format=None,

matrix=None, valueOf_=None)
A DNA characters block consisting of sequences preceded by metadata.

superclass
alias of AbstractSeqgs

class FloatNetwork (about=None, meta=None, label=None, id=None, node=None,

edge=None, set=None, valueOf_=None)
A concrete network implementation, with floating point edge lengths.

superclass
alias of AbstractNetwork

class FloatTree (about=None, meta=None, label=None, id=None, node=None, root-

edge=None, edge=None, set=None, valueOf_=None)
A concrete tree implementation, with floating point edge lengths.

subclass
alias of NexmlTree

superclass
alias of AbstractTree

class IDTagged (about=None, meta=None, label=None, id=None, valueOf _=None)
The IDTagged complexType is a super class for objects that require unique id attributes of type
xs:1D. The id must be unique within the XML document.

superclass
alias of Labelled

class IntNetwork (about=None, meta=None, label=None, id=None, node=None,

edge=None, set=None, valueOf_=None)
A concrete network implementation, with integer edge lengths.

superclass
alias of AbstractNetwork

class IntTree (about=None, meta=None, label=None, id=None, node=None, rootedge=None,

edge=None, set=None, valueOf_=None)
A concrete tree implementation, with integer edge lengths.

150 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

subclass
alias of NexmlTree

superclass
alias of AbstractTree

class Labelled (about=None, meta=None, label=None, valueOf_=None)
The Labelled complexType is a super class for objects that optionally have label attributes to use
as a (non-unique) name of type xs:string.

superclass
alias of Annotated

class LiteralMeta (datatype=None, content=None, property=None, valueOf_=None)
Metadata annotations in which the object is a literal value. If the @content attribute is used, then
the element should contain no children.

class NetworkFloatEdge (about=None, meta=None, label=None, id=None, source=None,

length=None, target=None, valueOf _=None)
A concrete network edge implementation, with float edge.

superclass
alias of AbstractEdge

class NetworkIntEdge (about=None, meta=None, label=None, id=None, source=None,

length=None, target=None, valueOf_=None)
A concrete network edge implementation, with int edge.

superclass
alias of AbstractEdge

class NetworkNode (about=None, meta=None, label=None, id=None, otu=None, root=False,

valueOf_=None)
A concrete network node implementation.

superclass
alias of AbstractNode

class Nexml (*args, **kargs)
Creates a new nexml project.

build_from_file (fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class OptionalTaxonLinked (about=None, meta=None, label=None, id=None, otu=None,

valueOf_=None)
The OptionalOTULinked complexType is a super class for objects that that optionally have an otu

id reference.

superclass
alias of IDTagged

class ProteinCells (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
An amino acid characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

3.5. Nexml module 151

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class ProteinSegqs (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
An amino acid characters block consisting of sequences preceded by metadata.

superclass
alias of AbstractSeqgs

class RNAChar (about=None, meta=None, label=None, id=None, tokens=None, states=None,

codon=None, valueOf_=None)
A concrete implementation of the AbstractChar element, i.e. a single column in an alignment.

superclass
alias of AbstractChar

class RNAFormat (about=None, meta=None, states=None, char=None, set=None, val-

ueOf_=None)
The RNAFormat class is the container of RNA column definitions.

superclass
alias of AbstractFormat

class RNAMapping (state=None, valueOf_=None)
An IUPAC RNA ambiguity mapping.

superclass
alias of AbstractMapping

class RNAMat rixObsRow (about=None, meta=None, label=None, id=None, otu=None,

cell=None, set=None, valueOf_=None)
This is a row in a matrix of RNA data containing granular observations.

superclass
alias of AbstractObsRow

class RNAMat rixSeqRow (about=None, meta=None, label=None, id=None, otu=None,

seq=None, valueOf_=None)
This is a row in a matrix of RNA data containing raw sequence data.

superclass
alias of Abstract SeqRow

class RNAObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
This is a single cell in a matrix containing an RNA nucleotide observation.

superclass
alias of AbstractObs

class RNAObsMat rix (about=None, meta=None, row=None, set=None, valueOf_=None)
A matrix of rows with single character observations.

superclass
alias of AbstractObsMatrix

class RNAPolymorphicStateSet (about=None, meta=None, label=None, id=None, sym-
bol=None, member=None, uncertain_state_set=None,

valueOf_=None)
The RNAPolymorphicStateSet describes a single polymorphic IUPAC ambiguity mapping.

superclass
alias of AbstractPolymorphicStateSet

152 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class RNASegMatrix (about=None, meta=None, row=None, set=None, valueOf _=None)
A matrix of rows with seq strings of type RNA.

superclass
alias of AbstractSegMatrix

class RNAState (about=None, meta=None, label=None, id=None, symbol=None, val-

ueOf_=None)
This is a concrete implementation of the state element, which requires a symbol attribute, in

this case restricted to RNAToken, i.e. a single IUPAC nucleotide symbol, and optional mapping
elements to refer to other states.

superclass
alias of AbstractState

class RNAStates (about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-

ueOf_=None)
A container for a set of states.

superclass
alias of AbstractStates

class RNAUncertainStateSet (about=None, meta=None, label=None, id=None, sym-

bol=None, member=None, valueOf _=None)
The RNAUncertainStateSet describes a single uncertain IUPAC ambiguity mapping.

superclass
alias of AbstractUncertainStateSet

class ResourceMeta (href=None, rel=None, meta=None, valueOf_=None)
Metadata annotations in which the object is a resource. If this element contains meta elements as
children, then the object of this annotation is a “blank node”.

class RestrictionCells (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
A standard characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

class RestrictionChar (about=None, meta=None, label=None, id=None, tokens=None,

states=None, codon=None, valueOf _=None)
A concrete implementation of the char element, which requires a unique identifier and a state set

reference.

superclass
alias of AbstractChar

class RestrictionFormat (about=None, meta=None, states=None, char=None, set=None,

valueOf_=None)
The RestrictionFormat class is the container of restriction column definitions.

superclass
alias of AbstractFormat

class RestrictionMatrixObsRow (about=None, meta=None, label=None, id=None,

otu=None, cell=None, set=None, valueOf_=None)
This is a row in a matrix of restriction site data as granular obervations.

3.5. Nexml module 153

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

superclass
alias of AbstractObsRow

class RestrictionMatrixSeqRow (about=None, meta=None, label=None, id=None,

otu=None, seq=None, valueOf_=None)
This is a row in a matrix of restriction site data as character sequences.

superclass
alias of AbstractSeqRow

class RestrictionObs (about=None, meta=None, label=None, char=None, state=None,

valueOf_=None)
This is a single cell in a matrix containing a restriction site observation.

superclass
alias of AbstractObs

class RestrictionObsMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with single character observations.

superclass
alias of AbstractObsMatrix

class RestrictionSegMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with seq strings of type restriction.

superclass
alias of AbstractSegMatrix

class RestrictionSeqs (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
A restriction site characters block consisting of sequences preceded by metadata.

superclass
alias of AbstractSeqgs

class RestrictionState (about=None, meta=None, label=None, id=None, symbol=None,

valueOf_=None)
This is a concrete implementation of the state element, which requires a symbol element, in this

case restricted to 0/1.

superclass
alias of AbstractState

class RestrictionStates (about=None, meta=None, label=None, id=None, state=None,
polymorphic_state_set=None, uncertain_state_set=None,

set=None, valueOf_=None)
A container for a set of states.

superclass
alias of AbstractStates

class RnaCells (about=None, meta=None, label=None, id=None, otus=None, format=None,

matrix=None, valueOf_=None)
A RNA characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

154 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class RnaSeqs (about=None, meta=None, label=None, id=None, otus=None, format=None,

matrix=None, valueOf_=None)
A RNA characters block consisting of sequences preceded by metadata.

superclass
alias of AbstractSeqgs

class StandardCells (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf_=None)
A standard characters block consisting of granular cells preceded by metadata.

superclass
alias of AbstractCells

class StandardChar (about=None, meta=None, label=None, id=None, tokens=None,

states=None, codon=None, valueOf_=None)
A concrete implementation of the char element, which requires a states attribute to refer to a set

of defined states

superclass
alias of AbstractChar

class StandardFormat (about=None, meta=None, states=None, char=None, set=None, val-

ueOf_=None)
The StandardFormat class is the container of standard column definitions.

superclass
alias of AbstractFormat

class StandardMapping (state=None, valueOf_=None)
A standard character ambiguity mapping.

superclass
alias of AbstractMapping

class StandardMatrixObsRow (about=None, meta=None, label=None, id=None,

otu=None, cell=None, set=None, valueOf_=None)
This is a row in a matrix of standard data as granular obervations.

superclass
alias of AbstractObsRow

class StandardMat rixSeqRow (about=None, meta=None, label=None, id=None,

otu=None, seq=None, valueOf_=None)
This is a row in a matrix of standard data as character sequences.

superclass
alias of Abstract SeqRow

class StandardObs (about=None, meta=None, label=None, char=None, state=None, val-

ueOf_=None)
This is a single cell in a matrix containing a standard observation.

superclass
alias of AbstractObs

class StandardObsMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with single character observations.

3.5. Nexml module 155

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

superclass
alias of AbstractObsMatrix

class StandardPolymorphicStateSet (about=None, meta=None, label=None,
id=None, symbol=None, member=None, un-

certain_state_set=None, valueOf_=None)
The StandardPolymorphicStateSet type is a single polymorphic ambiguity mapping.

superclass
alias of AbstractPolymorphicStateSet

class StandardSeqMatrix (about=None, meta=None, row=None, set=None, val-

ueOf_=None)
A matrix of rows with seq strings of type standard.

superclass
alias of AbstractSegMatrix

class StandardSegs (about=None, meta=None, label=None, id=None, otus=None, for-

mat=None, matrix=None, valueOf _=None)
A standard characters block consisting of sequences preceded by metadata.

superclass
alias of AbstractSegs

class StandardState (about=None, meta=None, label=None, id=None, symbol=None, val-

ueOf_=None)
This is a concrete implementation of the state element, which requires a symbol element, in this

case restricted to integers, and optional mapping elements to refer to other states.

superclass
alias of AbstractState

class StandardStates (about=None, meta=None, label=None, id=None, state=None, poly-
morphic_state_set=None, uncertain_state_set=None, set=None, val-

ueOf_=None)
A container for a set of states.

superclass
alias of AbstractStates

class StandardUncertainStateSet (about=None, meta=None, label=None, id=None,

symbol=None, member=None, valueOf_=None)
The StandardUncertainStateSet type is a single uncertain ambiguity mapping.

superclass
alias of AbstractUncertainStateSet

class TaxalLinked (about=None, meta=None, label=None, id=None, otus=None, val-

ueOf_=None)
The TaxalLinked complexType is a super class for objects that that require an otus id reference.

superclass
alias of IDTagged

class TaxonLinked (about=None, meta=None, label=None, id=None, otu=None, val-

ueOf_=None)
The TaxonLinked complexType is a super class for objects that require a taxon id reference.

superclass
alias of IDTagged

156 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class TreeFloatEdge (about=None, meta=None, label=None, id=None, source=None,

length=None, target=None, valueOf_=None)
A concrete edge implementation, with float length.

superclass
alias of AbstractEdge

class TreeFloatRootEdge (about=None, meta=None, label=None, id=None, length=None,

target=None, valueOf_=None)
A concrete root edge implementation, with float length.

superclass
alias of AbstractRootEdge

class TreeIntEdge (about=None, meta=None, label=None, id=None, source=None,

length=None, target=None, valueOf_=None)
A concrete edge implementation, with int length.

superclass
alias of AbstractEdge

class TreeIntRootEdge (about=None, meta=None, label=None, id=None, length=None,

target=None, valueOf_=None)
A concrete root edge implementation, with int length.

superclass
alias of AbstractRootEdge

class TreeNode (about=None, meta=None, label=None, id=None, otu=None, root=False, val-

ueOf_=None)
A concrete node implementation.

superclass
alias of AbstractNode

class Trees (about=None, meta=None, label=None, id=None, otus=None, network=None,

tree=None, set=None, valueOf_=None)
A concrete container for tree objects.

superclass
alias of TaxaLinked

class attrExtensions (valueOf_=None)
This element is for use in WSDL 1.1 only. It does not apply to WSDL 2.0 documents. Use in
WSDL 2.0 documents is invalid.

class Nexml (*args, **kargs)
Creates a new nexml project.

build_ from_file (fname, index_otus=True)
Populate Nexml project with data in a nexml file.

class Nexml1Tree (newick=None, alignment=None, alg_format="fasta’,

sp_naming_function=<function _parse_species>, format=0)
Special PhyloTree object with nexml support

New in version 2.1.

3.5. Nexml module 157

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

3.6 Phyloxml Module

3.6.1 Phyloxml classes linked to ETE

class Phyloxml (*args, **kargs)

class PhyloxmlTree (phyloxml_clade=None, phyloxml_phylogeny=None, **kargs)
PhyloTree object supporting phyloXML format.

3.6.2 Generic Phyloxml classes

class Accession (source=None, valueOf_=None)
Element Accession is used to capture the local part in a sequence identifier (e.g. ‘P17304’ in
‘UniProtKB:P17304’, in which case the ‘source’ attribute would be ‘UniProtKB”).

class Annotation (source=None, type_=None, ref=None, evidence=None, desc=None, confi-

dence=None, property=None, uri=None, valueOf_=None)
The annotation of a molecular sequence. It is recommended to annotate by using the op-

tional ‘ref’ attribute (some examples of acceptable values for the ref attribute: ‘G0:0008270°,
‘KEGG:Tetrachloroethene degradation’, ‘EC:1.1.1.1"). Optional element ‘desc’ allows for a free
text description. Optional element ‘confidence’ is used to state the type and value of support for
a annotation. Similarly, optional attribute ‘evidence’ is used to describe the evidence for a anno-
tation as free text (e.g. ‘experimental’). Optional element ‘property’ allows for further, typed and
referenced annotations from external resources.

class BinaryCharacters (lost_count=None, absent_count=None, present_count=None,
type_=None, gained_count=None, gained=None, lost=None,

present=None, absent=None, valueOf_=None)
The names and/or counts of binary characters present, gained, and lost at the root of a clade.

class BranchColor (red=None, green=None, blue=None, valueOf_=None)
This indicates the color of a clade when rendered (the color applies to the whole clade unless
overwritten by the color(s) of sub clades).

class Clade (id_source=None, branch_length_attr=None, name=None, branch_length=None,
confidence=None, width=None, color=None, node_id=None, taxonomy=None,
sequence=None, events=None, binary_characters=None, distribution=None,

date=None, reference=None, property=None, clade=None, valueOf_=None)
Element Clade is used in a recursive manner to describe the topology of a phylogenetic tree. The

parent branch length of a clade can be described either with the ‘branch_length’ element or the
‘branch_length’ attribute (it is not recommended to use both at the same time, though). Usage of
the ‘branch_length’ attribute allows for a less verbose description. Element ‘confidence’ is used to
indicate the support for a clade/parent branch. Element ‘events’ is used to describe such events as
gene-duplications at the root node/parent branch of a clade. Element ‘width’ is the branch width
for this clade (including parent branch). Both ‘color’ and ‘width’ elements apply for the whole
clade unless overwritten in-sub clades. Attribute ‘id_source’ is used to link other elements to a
clade (on the xml-level).

class CladeRelation (id_ref O=None, id_ref_1=None, type_=None, distance=None, confi-

dence=None, valueOf_=None)
This is used to express a typed relationship between two clades. For example it could be used to

describe multiple parents of a clade.

158 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class Confidence (fype_=None, valueOf_=None)
A general purpose confidence element. For example this can be used to express the bootstrap
support value of a clade (in which case the ‘type’ attribute is ‘bootstrap’).

class Date (unit=None, desc=None, value=None, minimum=None, maximum=None, val-

ueOf_=None)
A date associated with a clade/node. Its value can be numerical by using the ‘value’ element and/or

free text with the ‘desc’ element’ (e.g. ‘Silurian’). If a numerical value is used, it is recommended
to employ the ‘unit’ attribute to indicate the type of the numerical value (e.g. ‘mya’ for ‘million
years ago’). The elements ‘minimum’ and ‘maximum’ are used the indicate a range/confidence
interval

class Distribution (desc=None, point=None, polygon=None, valueOf_=None)
The geographic distribution of the items of a clade (species, sequences), intended for phylogeo-
graphic applications. The location can be described either by free text in the ‘desc’ element and/or
by the coordinates of one or more ‘Points’ (similar to the ‘Point’ element in Google’s KML for-
mat) or by ‘Polygons’.

class DomainArchitecture (length=None, domain=None, valueOf_=None)
This is used describe the domain architecture of a protein. Attribute ‘length’ is the total length of
the protein

class Events (type_=None, duplications=None, speciations=None, losses=None, confi-

dence=None, valueOf_=None)
Events at the root node of a clade (e.g. one gene duplication).

class Id (provider=None, valueOf_=None)
A general purpose identifier element. Allows to indicate the provider (or authority) of an identifier.

class MolSeq (is_aligned=None, valueOf_=None)
Element ‘mol_seq’ is used to store molecular sequences. The ‘is_aligned’ attribute is used to
indicated that this molecular sequence is aligned with all other sequences in the same phylogeny
for which ‘is aligned’ is true as well (which, in most cases, means that gaps were introduced, and
that all sequences for which ‘is aligned’ is true must have the same length).

class Phylogeny (rerootable=None, branch_length_unit=None, type_=None, rooted=None,
name=None, id=None, description=None, date=None, confidence=None,
clade=None, clade_relation=None, sequence_relation=None, prop-

erty=None, valueOf_=None)
Element Phylogeny is used to represent a phylogeny. The required attribute ‘rooted’ is used to

indicate whether the phylogeny is rooted or not. The attribute ‘rerootable’ can be used to indicate
that the phylogeny is not allowed to be rooted differently (i.e. because it is associated with root
dependent data, such as gene duplications). The attribute ‘type’ can be used to indicate the type
of phylogeny (i.e. ‘gene tree’). It is recommended to use the attribute ‘branch_length_unit’ if
the phylogeny has branch lengths. Element clade is used in a recursive manner to describe the
topology of a phylogenetic tree.

subclass
alias of PhyloxmlTree

class Point (geodetic_datum=None, alt_unit=None, lat=None, long=None, alt=None, val-

ueOf_=None)
The coordinates of a point with an optional altitude (used by element ‘Distribution’). Required

attributes are the ‘geodetic_datum’ used to indicate the geodetic datum (also called ‘map datum’,
for example Google’s KML uses “WGS84°). Attribute ‘alt_unit’ is the unit for the altitude (e.g.
‘meter’).

3.6. Phyloxml Module 159

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class Polygon (point=None, valueOf _=None)
A polygon defined by a list of ‘Points’ (used by element ‘Distribution’).

class Property (datatype=None, id_ref=None, ref=None, applies_to=None, unit=None, val-

ueOf_=None, mixedclass_=None, content_=None)
Property allows for typed and referenced properties from external resources to be attached to ‘Phy-

logeny’, ‘Clade’, and ‘Annotation’. The value of a property is its mixed (free text) content. At-
tribute ‘datatype’ indicates the type of a property and is limited to xsd-datatypes (e.g. ‘xsd:string’,
‘xsd:boolean’, ‘xsd:integer’, ‘xsd:decimal’, ‘xsd:float’, ‘xsd:double’, ‘xsd:date’, ‘xsd:anyURI’).
Attribute ‘applies_to’ indicates the item to which a property applies to (e.g. ‘node’ for the par-
ent node of a clade, ‘parent_branch’ for the parent branch of a clade). Attribute ‘id_ref’ al-
lows to attached a property specifically to one element (on the xml-level). Optional attribute
‘unit’ is used to indicate the unit of the property. An example: <property datatype="xsd:integer”
ref="NOAA:depth” applies_to="clade” unit="METRIC:m”> 200 </property>

class ProteinDomain (to=None, confidence=None, fromxx=None, id=None, val-

ueOf_=None)
To represent an individual domain in a domain architecture. The name/unique identifier is de-

scribed via the ‘id’ attribute. ‘confidence’ can be used to store (i.e.) E-values.

class Reference (doi=None, desc=None, valueOf_=None)
A literature reference for a clade. It is recommended to use the ‘doi’ attribute instead of the free
text ‘desc’ element whenever possible.

class Sequence (id_source=None, id_ref=None, type_=None, symbol=None, accession=None,
name=None, location=None, mol_seq=None, uri=None, annotation=None,

domain_architecture=None, valueOf _=None)
Element Sequence is used to represent a molecular sequence (Protein, DNA, RNA) associated

with a node. ‘symbol’ is a short (maximal ten characters) symbol of the sequence (e.g. ‘ACTM”)
whereas ‘name’ is used for the full name (e.g. ‘muscle Actin’). ‘location’ is used for the location
of a sequence on a genome/chromosome. The actual sequence can be stored with the ‘mol_seq’
element. Attribute ‘type’ is used to indicate the type of sequence (‘dna’, ‘rna’, or ‘protein’). One
intended use for ‘id_ref” is to link a sequence to a taxonomy (via the taxonomy’s ‘id_source’) in
case of multiple sequences and taxonomies per node.

class SequenceRelation (id_ref O=None, id_ref_I=None, type_=None, distance=None,

confidence=None, valueOf_=None)
This is used to express a typed relationship between two sequences. For example it could be used

to describe an orthology (in which case attribute ‘type’ is ‘orthology’).

class Taxonomy (id_source=None, id=None, code=None, scientific_name=None, author-
ity=None, common_name=None, synonym=None, rank=None, uri=None,

valueOf_=None)
Element Taxonomy is used to describe taxonomic information for a clade. Element ‘code’ is

intended to store UniProt/Swiss-Prot style organism codes (e.g. ‘APLCA’ for the California sea
hare ‘Aplysia californica’) or other styles of mnemonics (e.g. ‘Aca’). Element ‘authority’ is
used to keep the authority, such as ‘J. G. Cooper, 1863°, associated with the ‘scientific_name’.
Element ‘id’ is used for a unique identifier of a taxon (for example ‘6500’ with ‘ncbi_taxonomy’
as ‘provider’ for the California sea hare). Attribute ‘id_source’ is used to link other elements to a
taxonomy (on the xml-level).

class Uri (type_=None, desc=None, valueOf_=None)
A uniform resource identifier. In general, this is expected to be an URL (for example, to link to
an image on a website, in which case the ‘type’ attribute might be ‘image’ and ‘desc’ might be
‘image of a California sea hare’).

160 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

class PhyloxmlTree (phyloxml_clade=None, phyloxml_phylogeny=None, **kargs)
PhyloTree object supporting phyloXML format.

3.7 Seqgroup class

class SeqGroup (sequences=None, format="fasta’, fix_duplicates=True, **kwargs)
Bases: object

SeqGroup class can be used to store a set of sequences (aligned or not).
Parameters

* sequences — Path to the file containing the sequences or, alternatively, the
text string containing the same information.

e format (fasta) — the format in which sequences are encoded. Current sup-
ported formats are: fasta, phylip (phylip sequencial) and iphylip
(phylip interleaved). Phylip format forces sequence names to a maximum
of 10 chars. To avoid this effect, you can use the relaxed phylip format:
phylip_relaxedand iphylip_relaxed.

msf = ">seql\nAAAAAAAAAAA\N>segq2\nTTTTTTTTTTTTT\n"
seqgs = SeqGroup (msf, format="fasta")
print seqgs.get_seq("seqgl")

get_entries ()
Returns the list of entries currently stored.

get_seq (name)
Returns the sequence associated to a given entry name.

iter _entries|()
Returns an iterator over all sequences in the collection. Each item is a tuple with the sequence
name, sequence, and sequence comments

set_seq (name, seq, comments=None)
Updates or adds a sequence

write (format="fasta’, outfile=None)
Returns the text representation of the sequences in the supplied given format (de-
fault=FASTA). If “oufile” argument is used, the result is written into the given path.

New in version 2.1.

3.8 WebTreeApplication object

class WebTreeApplication
Provides a basic WSGI application object which can handle ETE tree visualization and in-
teractions. Please, see the webplugin example provided with the ETE installation package
(http://pypi.python.org/pypi/ete3).

register_action (name, target, handler, checker, html_generator)
Adds a new web interactive function associated to tree nodes.

3.7. Seqgroup class 161

http://pypi.python.org/pypi/ete3

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

set_default_layout_£n (layout_fn)
Fix the layout function used to render the tree.

set_external_ app_handler (handler)
Sets a custom function that will extend current WSGI application.

set external tree renderer (handler)
If the tree needs to be processed every time is going to be drawn, the task can be delegated.

set_tree_ loader (TreeConstructor)
Delegate tree constructor. It allows to customize the Tree class used to create new tree
instances.

set_tree_size (w, h, units="px’)
Fix the size of tree image

set_tree_style (handler)
Fix a TreeStyle instance to render tree images.

3.9 EvolTree class

class EvolNode (newick=None, alignment=None, alg_format="fasta’,
sp_naming_function=<function _parse_species>, format=0, binpath="",
**kwargs)

Bases: ete3.phylo.phylotree.PhyloNode

Re-implementation of the standart TreeNode instance. It adds attributes and methods to work with
phylogentic trees.

Parameters
* newick — path to tree in newick format, can also be a string
* alignment — path to alignment, can also be a string.
* alg format (fasta) — alignment format.
* sp_naming function - function to infer species name.
* format — type of newick format
* binpath — path to binaries, in case codeml or SLR are not in global path.

change_dist_to_evol (evol, model, fill=False)
change dist/branch length of the tree to a given evolutionary variable (dN, dS, w or bL),
default is bL.

Parameters
* evol - evolutionary variable
* model — Model object from which to retrieve evolutionary variables

* £i11 (False) — do not affects only dist parameter, each node will be anno-
tated with all evolutionary variables (nodel.dN, node.w...).

get_descendant_by_ node_id (idname)
returns node list corresponding to a given idname

162 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

get_evol_model (modelname)
returns one precomputed model

Parameters modelname — string of the name of a model object stored

Returns Model object

get_most_likely (altn, null)

Returns pvalue of LRT between alternative model and null model.

usual comparison are:

Alternative

Null

Test

M2

M1

PS on sites (M2 prone to
miss some sites) (Yang 2000)

M3

MO

test of variability among sites

M8

M7

PS on sites (Yang 2000)

M8

MS8a

RX on sites?? think so....

bsA

bsAl

PS on sites on specific branch
(Zhang 2005)

bsA

M1

RX on sites on specific
branch (Zhang 2005)

bsC

M1

different omegas on clades
branches sites ref: Yang
Nielsen 2002

bsD

M3

different omegas on clades
branches sites (Yang Nielsen
2002, Bielawski 2004)

b_free

b_neut

foreground branch not neutr

* RX if P<0.05
(means that w on
frg=1)

* PS if P>0.05 and
wirg>1

* CN if P>0.05 and
wirg>1

(Yang Nielsen 2002)

b_free

MO

different ratio on branches
(Yang Nielsen 2002)

Parameters

* altn — model with higher number of parameters (np)

* null — model with lower number of parameters (np)

link_to_alignment (alignment, alg_format="paml’, nucleotides=True, **kwargs)
same function as for phyloTree, but translate sequences if nucleotides nucleotidic sequence

is kept under node.nt_sequence

Parameters

3.9.

EvolTree class

163

al (w!l=1)

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* alignment (True) — path to alignment or string
* alg_format — one of fasta phylip or paml

* alignment - set to False in case we want to keep it untranslated

link_to_evol_model (path, model)
link EvolTree to evolutionary model
* free-branch model (“fb”’) will append evol values to tree

* Site models (MO, M1, M2, M7, M8) will give evol values by site and likelihood

Parameters

* path — path to outfile containing model computation result

* model — either the name of a model, or a Model object (usually empty)

mark_tree (node_ids, verbose=False, **kargs)
function to mark branches on tree in order that paml could interpret it. takes a “marks”

argument that should be a list of #1,#1,#2 e.g.

t=Tree.mark_tree([2,3], marks=["#1","#2"])

Parameters
* node_ids — list of node ids (have a look to node.node_id)

* verbose (False) — warn if marks do not correspond to codeml standard
* kargs — mainly for the marks key-word which needs a list of marks

(marks=["#1", ‘#2])

render (file_name, layout=None, w=None, h=None, tree_style=None, header=None,

histfaces=None)
call super show adding up and down faces

Parameters
* layout - a layout function

* tree_style (None) — tree_style object
* Nonehistface — an histogram face function. This is only to plot selective

pressure among sites

run_model (model_name, ctrl_string="", keep=True, **kwargs)
To compute evolutionnary models. e.g.: b_free_lala.vs.lele, will launch one free branch

model, and store it in “WORK_DIR/b_free_lala.vs.lele” directory
WARNING: this functionality needs to create a working directory in “rep”

WARNING: you need to have codeml and/or SLR in your path

The models available are:

164 Chapter 3. ETE’s Reference Guide

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

Model name | Description Model kind

Ml relaxation site

M10 beta and gamma + 1 site

Ml11 beta and normal > 1 site

M12 0 and 2 normal > 2 site

M13 3 normal >0 site

M2 positive-selection site

M3 discrete site

M4 frequencies site

M5 gamma site

M6 2 gamma site

M7 relaxation site

MS positive-selection site

M8a relaxation site

M9 beta and gamma site

SLR positive/negative selection | site

MO negative-selection null

fb_anc free-ratios branch_ancestor

bsA positive-selection branch-site

bsAl relaxation branch-site

bsB positive-selection branch-site

bsC different-ratios branch-site

bsD different-ratios branch-site

b_free positive-selection branch

b_neut relaxation branch

fb free-ratios branch

XX User defined Unknown
Parameters

* model_name — a string like “model-name[.some-secondary-name]” (e.g.:
“fb.my_first_try”, or just “fb”) * model-name is compulsory, is the name of
the model (see table above for the full list) * the second part is accessory, it
is to avoid over-writing models with the same name.

* ctrl_string - list of parameters that can be used as control file.

* kwargs — extra parameters should be one of: verbose, CodonFreq,
ncatG, cleandata, fix_blength, NSsites, fix_omega, clock, seqfile, runmode,
fix_kappa, fix_alpha, Small_Diff, method, Malpha, aaDist, RateAncestor,
outfile, icode, alpha, seqtype, omega, getSE, noisy, Mgene, kappa, treefile,
model, ndata.

sep = ‘\n’

show (layout=None, tree_style=None, histfaces=None)
call super show of PhyloTree histface should be a list of models to be displayes as histfaces

Parameters
* layout — a layout function

* tree_style (None) — tree_style object

. EvolTree class 165

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

* Nonehistface — an histogram face function. This is only to plot selective
pressure among sites

write (features=None, outfile=None, format=10)
Inherits from Tree but adds the tenth format, that allows to display marks for CodeML.
TODO: internal writting format need to be something like 0

Returns the newick representation of current node. Several arguments control the way in
which extra data is shown for every node:

Parameters

» features - a list of feature names to be exported using the Extended
Newick Format (i.e. features=["name”, “dist”’]). Use an empty list to export
all available features in each node (features=[])

* outfile — writes the output to a given file

* format (/0) — defines the newick standard used to encode the tree. See
tutorial for details.

e format_root_node (False) — If True, it allows features and branch in-
formation from root node to be exported as a part of the newick text string.
For newick compatibility reasons, this is False by default.

e is leaf fn - See TreeNode.traverse () for documentation.

Example:
t.get_newick (features=["species", "name"], format=1)
x = ‘XX’
EvolTree

alias of EvolNode

3.10 NCBITaxa class

genindex

modindex

166 Chapter 3. ETE’s Reference Guide

Bibliography

[yang2007] Yang, Z., PAML 4: phylogenetic analysis by maximum likelihood. Molecular biology and
evolution 24: 1586-91. (2007)

[massingham?2005] Massingham T. and Goldman N. Detecting amino acid sites under positive selection
and purifying selection. Genetics 169: 1853-1762. (2005)

167

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

168 Bibliography

Python Module Index

ete2.
ete3,
ete3.
ete3.
ete3.
ete3
ete3
ete3
ete3
ete3

ncbi_taxonomy, 166
13

clustering, 80
evol, 162

nexml, 142

.parser.seqgroup, 161
.phylo, 138
.phyloxml, 157
.treeview, 127
.webplugin, 93

169

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

170 Python Module Index

Index

A

add_child() (TreeNode method), 115
add_face() (FaceContainer method), 130
add_face() (TreeNode method), 116
add_face_to_node() (in module ete3), 131
add_feature() (TreeNode method), 116
add_features() (TreeNode method), 116
add_sister() (TreeNode method), 116
annotate_ncbi_taxa() (PhyloNode method), 138
AttrFace (class in ete3), 132

B

BarChartFace (class in ete3), 135
build_from_file() (Nexml method), 142

C

change_dist_to_evol() (EvolNode method), 162

check_monophyly() (TreeNode method), 116

children (TreeNode attribute), 116

CircleFace (class in ete3), 132

ClusterNode (class in ete3), 141

ClusterTree (in module ete3), 142

collapse_lineage_specific_expansions() (PhyloN-
ode method), 139

COLOR_SCHEMES (in module ete3), 137

compare() (TreeNode method), 117

convert_to_ultrametric() (TreeNode method), 117

copy() (TreeNode method), 117

D

del_feature() (TreeNode method), 117
delete() (TreeNode method), 117
describe() (TreeNode method), 118
detach() (TreeNode method), 118

dist (TreeNode attribute), 118
DynamicltemFace (class in ete3), 136

E

ete2.ncbi_taxonomy (module), 166
ete3 (module), 13, 108

ete3.clustering (module), 80, 141
ete3.evol (module), 162

ete3.nexml (module), 142
ete3.parser.seqgroup (module), 161
ete3.phylo (module), 138
ete3.phyloxml (module), 157
ete3.treeview (module), 127
ete3.webplugin (module), 93, 161
EvolEvent (class in ete3.phylo), 141
EvolNode (class in ete3), 162
EvolTree (in module ete3), 166
expand_polytomies() (TreeNode method), 118

F

Face (class in ete3), 131

FaceContainer (class in ete3), 130

from_parent_child_table() (TreeNode
method), 118

from_skbio() (TreeNode static method), 118

G

get_age() (PhyloNode method), 139
get_age_balanced_outgroup()
method), 139
get_ancestors() (TreeNode method), 119
get_ascii() (TreeNode method), 119
get_cached_content() (TreeNode method), 119
get_children() (TreeNode method), 119
get_closest_leaf() (TreeNode method), 119
get_common_ancestor() (TreeNode method), 119

static

(PhyloNode

get_descendant_by_node_id() (EvolNode
method), 162
get_descendant_evol_events() (PhyloNode

method), 139
get_descendants() (TreeNode method), 119
get_distance() (TreeNode method), 119
get_dunn() (ClusterNode method), 141
get_edges() (TreeNode method), 120
get_entries() (SeqGroup method), 161
get_evol_model() (EvolNode method), 162

171

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

get_farthest_leaf() (TreeNode method), 120
get_farthest_node() (TreeNode method), 120
get_farthest_oldest_leaf() (PhyloNode method),
139
get_farthest_oldest_node() (PhyloNode method),
140
get_leaf_names() (TreeNode method), 120
get_leaf_profiles() (ClusterNode method), 141
get_leaves() (TreeNode method), 120
get_leaves_by_name() (TreeNode method), 120
get_midpoint_outgroup() (TreeNode method), 120
get_monophyletic() (TreeNode method), 120
get_most_likely() (EvolNode method), 163
get_my_evol_events() (PhyloNode method), 140
get_seq() (SeqGroup method), 161
get_silhouette() (ClusterNode method), 141
get_sisters() (TreeNode method), 121
get_speciation_trees() (PhyloNode method), 140
get_species() (PhyloNode method), 140
get_topology_id() (TreeNode method), 121
get_tree_root() (TreeNode method), 121

H

hoverEnterEvent() (Sequence-
Face.InteractiveLetterltem method),
133

hoverLeaveEvent() (Sequence-
Face.InteractiveLetterItem method),
134

img_style (TreeNode attribute), 121
ImgFace (class in ete3), 132

is_leaf() (TreeNode method), 121

is_root() (TreeNode method), 121
iter_ancestors() (TreeNode method), 121
iter_descendants() (TreeNode method), 121
iter_edges() (TreeNode method), 121
iter_entries() (SeqGroup method), 161
iter_leaf names() (TreeNode method), 121
iter_leaf_profiles() (ClusterNode method), 142
iter_leaves() (TreeNode method), 122
iter_prepostorder() (TreeNode method), 122
iter_search_nodes() (TreeNode method), 122
iter_species() (PhyloNode method), 140

L

ladderize() (TreeNode method), 122
link_to_alignment() (EvolNode method), 163
link_to_alignment() (PhyloNode method), 140
link_to_arraytable() (ClusterNode method), 142
link_to_evol_model() (EvolNode method), 164

M
mark_tree() (EvolNode method), 164

ncbi_compare() (PhyloNode method), 140
Nexml (class in ete3), 142

NexmlTree (class in ete3), 142

NodeStyle (class in ete3), 130

P

PhyloNode (class in ete3), 138
PhyloTree (in module ete3), 141
Phyloxml (class in ete3), 158
PhyloxmlTree (class in ete3), 158
PieChartFace (class in ete3), 135
populate() (TreeNode method), 122
ProfileFace (class in ete3), 135
prune() (TreeNode method), 123

R

random_color() (in module ete3), 137
reconcile() (PhyloNode method), 140
RectFace (class in ete3), 133
register_action() (WebTreeApplication method),
161
remove_child() (TreeNode method), 124
remove_sister() (TreeNode method), 124
render() (EvolNode method), 164
render() (TreeNode method), 124
resolve_polytomy() (TreeNode method), 125
robinson_foulds() (TreeNode method), 125
run_model() (EvolNode method), 164

S

search_nodes() (TreeNode method), 125
sep (EvolNode attribute), 165
SeqGroup (class in ete3), 161
SeqMotifFace (class in ete3), 134
SequenceFace (class in ete3), 133

SequenceFace.InteractiveLetterltem (class in
ete3), 133
set_default_layout_fn() (WebTreeApplication

method), 161

set_distance_function() (ClusterNode method),
142

set_external_app_handler() (WebTreeApplication
method), 162

set_external_tree_renderer() (WebTreeApplication
method), 162

set_outgroup() (TreeNode method), 125

set_seq() (SeqGroup method), 161

172

Index

Tutorial: Environment for Tree Exploration, Release 3.0.0b30

set_species_naming_function() (PhyloNode
method), 140

set_style() (TreeNode method), 126

set_tree_loader() (WebTreeApplication method),
162

set_tree_size() (WebTreeApplication method), 162

set_tree_style() (WebTreeApplication method),
162

show() (EvolNode method), 165

show() (TreeNode method), 126

sort_descendants() (TreeNode method), 126

species (PhyloNode attribute), 141

split_by_dups() (PhyloNode method), 141

StackedBarFace (class in ete3), 133

standardize() (TreeNode method), 126

StaticltemFace (class in ete3), 136

support (TreeNode attribute), 126

SVG_COLORS (in module ete3), 136

swap_children() (TreeNode method), 126

T

TextFace (class in ete3), 131
traverse() (TreeNode method), 126
Tree (in module ete3), 127
TreeFace (class in ete3), 136
TreeNode (class in ete3), 115
TreeStyle (class in ete3), 127

U

unroot() (TreeNode method), 126
up (TreeNode attribute), 126

W

WebTreeApplication (class in ete3), 161
write() (EvolNode method), 166
write() (SeqGroup method), 161
write() (TreeNode method), 126

X
x (EvolNode attribute), 166

Index

173

	Changelog history
	What's new in ETE 2.3
	What's new in ETE 2.2
	What's new in ETE 2.1

	The ETE tutorial
	Working With Tree Data Structures
	The Programmable Tree Drawing Engine
	Phylogenetic Trees
	Clustering Trees
	Phylogenetic XML standards
	Interactive web tree visualization
	Testing Evolutionary Hypothesis
	Dealing with the NCBI Taxonomy database
	SCRIPTS: orthoXML

	ETE's Reference Guide
	Master Tree class
	Treeview module
	PhyloTree class
	Clustering module
	Nexml module
	Phyloxml Module
	Seqgroup class
	WebTreeApplication object
	EvolTree class
	NCBITaxa class

	Bibliography
	Python Module Index
	Index

