
Unset

pybio reference manual, November 2024

pybio: basic genomics toolset
Installation
Quick Start
Examples

Adding Ensembl genomes
Adding custom genomes
Retrieving genomic sequences
Annotating genomic positions

Dependencies
Genomic coordinates
Authors
Issues and Suggestions

pybio: basic genomics toolset

pybio is a Python framework for handling genomics operations and a direct interface to Ensembl genome
assemblies and annotations.

Downloading an Ensembl genome + annotation:

install over PyPi
pip install pybio

or install directly from this repository
pip install git+https://github.com/grexor/pybio.git@master

download and process homo sapiens genome
pybio genome homo_sapiens

Features include genome+annotation download from Ensembl and processing with STAR and salmon,
support of Fasta, Fastq and bedGraph file formats, motif sequence searches.

Installation

The easiest way to install pybio is running:

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio#pybio-basic-genomics-toolset
https://github.com/grexor/pybio

Unset

Unset

Unset

Python

pybio reference manual, November 2024

pip install pybio

Note that on some systems, pip is installing the executable scripts under ~/.local/bin. However this
folder is not in the PATH which will result in “command not found” if you try to run ”pybio” on the
command line. To fix this, please execute “export PATH="$PATH:~/.local/bin” (and add this to
your .profile). Another suggestion is to install inside a virtual environment (using virtualenv).

If you would like instead to install the latest developmental version from this repository:

clone pybio GitHub repository
git clone https://github.com/grexor/pybio.git

build and install
./build.sh

Quick Start

pybio is strongly integrated with Ensembl and provides genomic loci search for diverse annotated features
(genes -> transcripts -> exons + 5UTR + 3UTR).

Let's say we are interested in the human genome. First download and prepare the genome with a single
command:

pybio genome homo_sapiens

Searching a genomic position for features is easy in python, for example:

import pybio
result = pybio.core.genomes.annotate("homo_sapiens", "1", "+", 11012344)
genes, transcripts, exons, UTR5, UTR3 = result

This will return a list of feature objects (genes, transctipts, exons, 3'-UTR and 5'-UTR) (check
pybio/core/genomes.py classes to see details of these objects).

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio.git
https://github.com/grexor/pybio/blob/master/pybio/core/genomes.py
https://github.com/grexor/pybio

Python

Python

Python

Unset

pybio reference manual, November 2024

If you would like to know all genes that span the provided position, you could then write:

for gene in genes:
print(gene.gene_id, gene.gene_name, gene.start, gene.stop)

And to list all transcripts of each gene, you could extend the code like this:

for gene in genes:
print(gene.gene_id, gene.gene_name, gene.start, gene.stop)

for transcript in gene.transcripts:
print(transcript.transcript_id)

However you could also start directly with transcripts, and print to which genes are transcripts assigned
to:

for transcript in transcripts:
print(transcript.gene.gene_id, transcript.transcript_id)

And an intuitive graph representation of relationships between feature objects:

gene <-> transcript_1 <-> exon_1
<-> exon_2
...
<-> utr5
<-> utr3

<-> transcript_2 <-> exon_1
<-> exon_2
...
<-> utr5
<-> utr3

Representation of relationships between feature objects:

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio

Unset

Unset

pybio reference manual, November 2024

gene = Gene instance object
.transcripts = list of all transcript objects of the gene

transcript = Transcript instance object
.gene = points to the gene of the transcript
.exons = list of all exon objects of the transcript
.utr5/utr3 = points to the UTR5 / UTR3 of the transcript

exon = Exon instance object
.transcript = points to the transcript of the exon

utr5/utr3 = Utr5 / Utr3 instance object
.transcript = points to the transcript of the UTR5/UTR3

Examples

Here we provide basic pybio usage examples.

Adding Ensembl genomes

To download Ensembl genomes simply run a few commands on the command line. For example:

downloads Ensembl homo_sapiens assembly and annotation (latest version)
pybio genome homo_sapiens

downloads Ensembl homo_sapiens assembly and annotation (version 109)
pybio genome homo_sapiens 109

list all available elephant genomes matching *elephant*
pybio genome elephant

The above will download the FASTA sequence and GTF annotation. If you have STAR and salmon
installed on your system, pybio will also build an index of the genome for both.

Data will be stored in the folder specified in the file pybio.config. The genomes folder structure is as
follows:

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio

Unset

Unset

Unset

Unset

pybio reference manual, November 2024

homo_sapiens.assembly.ensembl109 # FASTA files of the genome
homo_sapiens.annotation.ensembl109 # Annotation in GTF and TAB format
homo_sapiens.assembly.ensembl109.star # STAR index, GTF annotation aware
homo_sapiens.transcripts.ensembl109 # Transcriptome, Ensembl cDNA FASTA
homo_sapiens.transcripts.ensembl109.salmon # Salmon index of the transcriptome

pybio also supports the download of Ensembl Genomes (Ensembl Fungi, Ensembl Plants, Ensembl
Protists, Ensembl Metazoa). You simply provide the name of the species on the command line to
automagically download the genome, the assembly and prepare STAR and salmon indices.

For example, to download the latest version of the Dictyostelium discoideum genome, you would write:

search for genomes with "dicty" in the name of the species or description
if only one species found, directly go ahead and process
pybio genome dicty

also directly providing the exact genome species works
pybio genome dictyostelium_discoideum

Another example is download the latest Arabidopsis thaliana genome:

pybio genome arabidopsis_thaliana

To see all available species, simply run pybio species. Moreover, to see all available arabidopsis
genomes, you could run:

pybio species arabidopsis

arabidopsis_halleri Ahal2.2 ensemblgenomes plants ensemblgenomes56
arabidopsis_lyrata v.1.0 ensemblgenomes plants ensemblgenomes56
arabidopsis_thaliana TAIR10 ensemblgenomes plants ensemblgenomes56

Adding custom genomes

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio

Unset

Python

Python

pybio reference manual, November 2024

To add custom genomes to the pybio environment, you would need a FASTA (assembly) and GTF
(annotation) files and set a genome version (custom label for your genome version). An example run
would be:

add custom genome with "species" name, version "v1" from FASTA and GTF
pybio genome species -fasta sample.fasta -genome_version v1 -gtf sample.gtf

Retrieving genomic sequences

To retrieve stretches of genomic sequence, we use the seq(genome, chr, strand, position, upstream,
downstream) method:

import pybio
seq = pybio.core.genomes.seq("homo_sapiens", "1", "+", 450000, -20, 20)

The above command fetches the chr 1 sequence from 450000-20..450000+20, the resulting sequence is
of length 41, TACCCTGATTCTGAAACGAAAAAGCTTTACAAAATCCAAGA.

Annotating genomic positions

Given a genomic position, we can quickly retrieve features that are present at the position: the gene,
transcript, exon and utr5/3 information. If there are several features (genes, transcripts, exons, UTR
regions) at the specified position, they are all reported by pybio.

annotate position
result = pybio.core.genomes.annotate("hg38", "1", "+", 11012344)
expand the data to features
genes, transcripts, exons, utr5, utr3 = result
print all genes that cover the position
for gene in genes:

print(gene.gene_id, gene.gene_name, gene.start, gene.stop)

[pybio] loading genome annotation for homo_sapiens with Ensembl version 109
ENSG00000120948, TARDBP, 11012343, 11030527

pybio Github: https://github.com/grexor/pybio

https://github.com/grexor/pybio

pybio reference manual, November 2024

We can also easily access all transcripts of each gene with gene.transcripts and all exons of each
transcript with transcript.exons.

Dependencies

Basic dependencies include pysam, numpy and samtools and should be installed automatically by pip
when you install pybio over pip install pybio.

Optional dependencies include STAR and salmon if you would like to build genome/transcriptome indices
and align reads.

Genomic coordinates

All genomic coordinates we operate with inside pybio are 0-based left+right inclusive. This means, when
we say for example 100-103, this would include coordinates 100, 101, 102 and 103. The first coordinate
is 0.

Important

Refseq and Ensembl GTF files are 1-indexed. When we read files from refseq/ensembl, we substract 1
on all coordinates to keep this in line with other coordinate structures inside pybio (which are all
0-indexed).

Authors

pybio is developed and supported by Gregor Rot.

Issues and Suggestions

Use the GitHub repository issues page to report issues and leave suggestions.

pybio Github: https://github.com/grexor/pybio

https://pysam.readthedocs.io/en/latest/api.html
https://numpy.org/
http://www.htslib.org/
https://github.com/alexdobin/STAR
https://combine-lab.github.io/salmon/getting_started/
https://github.com/grexor/pybio
https://grexor.github.io/
https://github.com/grexor/pybio#issues-and-suggestions
https://github.com/grexor/pybio/issues
https://github.com/grexor/pybio

