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A "tetrad" refers t o  the difference i n  the products of  certain 
covariances (or  correlations) among four random variables. A 
structural equation mode l  often implies that some tetrads should 
be zero. These "vanishing tetrads" provide a means  t o  test struc- 
tural equation models.  In  this paper we develop confirmatory 
tetrad analysis ( C T A ) .  C T A  applies a simultaneous test statistic 
for multiple vanishing tetrads developed b y  Bollen (1990). The  
simultaneous test statistic is available in asymptotically 
distribution-free o r  normal-distribution versions and applies to 
covariances o r  t o  correlations. We also offer new rules for deter- 
mining the nonredundant vanishing tetrads implied by  a model  
and develop a method to estimate the power of  thestatistical test 
for vanishing tetrads. Testing vanishing tetrads provides a test 
for model  fit that can lead t o  results different f rom the usual 
likelihood-ratio ( L R )  test associated ~ ~ i t h  the m a x i m u m  likeli- 
hood methods  that dominate the structural equation field. Also ,  
the C T A  technique applies t o  some  underidentified models.  Fur- 
thermore, some  models  that are not  nested according t o  the 
traditional L R  test are nested in terms of  vanishing tetrads. Fi- 
nally, C T A  does not  require numerical minimization and thus 
avoids the associated convergence problems that are present 
with other estimation approaches. 
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In 1904 Spearman laid the groundwork for what was to become 
factor analysis. In this and more clearly in his later work (e.g., Spear- 
man 1927). he demonstrated that a single factor underlying four or 
more observed variables implies that the difference in the products 
of certain pairs of the covariances (or correlations) of these variables 
must be zero. These came to be referred to as "vanishing tetrads." 
The use of vanishing tetrads to examine models with latent variables 
dominated the work on factor analysis for the first third of the twenti- 
eth century. This approach eventually gave way to other techniques 
such as principal components (Hotelling 1933) and later to the maxi- 
mum likelihood (e.g.,  Lawley and Maxwell 1971) and weighted least 
squares (e.g.,  Browne 1984) estimators that dominate today's factor 
analyses. The general structural equation models (SEM) that have 
now swept through most of the social sciences initially also flirted 
with the tetrad approach to model testing (e.g., Costner 1969; Dun- 
can 1972; Kenny 1974), but it has been replaced by the maximum 
likelihood method popularized by Joreskog (1973) in the LISREL 
program (Joreskog and Sorbom 1989). 

The tetrad approach to SEM was all but forgotten until 
Glymour et al. (1987) proposed vanishing tetrads as a viable method 
to search for models that are consistent with the covariance matrix of 
observed variables. Their emphasis has been exploratory tetrad 
analysis (ETA) based on a computer intensive search algorithm to 
formulate models with a good match to the tetrads of the observed 
variables. In this paper we propose a confirmatory tetrad analysis 
(CTA) that tests one or  several specific models. CTA is "confirma- 
tory" in that models are specified in advance. The structure of each 
model often implies population tetrads that should be zero. A test of 
a model's vanishing tetrads is a test of the model's fit. Significant 
nonzero tetrads for the model implied vanishing tetrads cast doubt 
on the appropriateness of the model. 

The relation between ETA and CTA is analogous to that be- 
tween exploratory and confirmatory factor analysis. Our CTA ap- 
proach differs from Glymour et al.'s ETA in several ways. First, 
CTA is meant to test rather than to generate models, the latter being 
the purpose of ETA. As such, CTA and ETA are not rival methods. 
Second, we employ a simultaneous test for vanishing tetrads that 
applies to normal or nonnormal variables (Bollen 1990). Glymour et 
al. (1987) use Wishart's (1928) .single tetrad test that assumes 
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multinormally distributed observed variables and that does not con- 
trol for multiple testing problems. Third, we also provide a modifica- 
tion for the test statistic so that it applies to correlations as well as . . 

covariances. Fourth, we look only at the nonredundant vanishing 
tetrads whereas Glymour et al. (1987) examine all vanishing tetrads. 

A natural question is why should we consider CTA when we 
already have confirmatory factor analysis and the other maximum 
likelihood (ML)lweighted least squares (WLS) approaches to the gen- 
eral SEM? There are several good reasons. First, testing vanishing 
tetrads provides a goodness-of-fit test for a model that can lead to 
results different from the usual likelihood-ratio (LR) test associated 
with the MLIWLS methods.1 We do not claim that our test is superior 
to the LR test, but it may be possible to reveal specification errors that 
are not evident in the LR test. Second, the CTA technique applies to 
some underidentified models. We can have a test of model fit even if 
the parameters of the model cannot be uniquely determined.' Third, 
some moclels that are not nested according to the conventional LR test 
are nested in terms of vanishing tetrad^.^ CTA allows the overall fit of 
some "nonnested" models to be compared directly. Finally, as men- 
tioned previously, we have asymptotically distribution-free tests that 
apply to covariances and correlations. Although distribution-free esti- 
mators also are available for SEM through the work of Browne (1984) 
and others, the main advantage of our technique is that CTA uses a 

IWe use the term "likelihood ratio (LR)" test here and throughout the 
paper to refer to the tests that are based on ML estimation as well as on WLS 
estimation. Strictly speaking, the L R  test refers only to the test statistic from ML 
methods. However, Browne (1984), among others, justifies the usual ML fitting 
functions and test statistics under the less restrictive WLS family of estimators. 
Thus, for the sake of brevity, we use LR test to mean the overall fit tests derived 
from ML or  WLS methods. 

:Shapiro (1986) discusses the theoretical conditions where it is possible 
to have an LR or  WLS test statistic that follows an asymptotic chi-square distribu- 
tion for some underidentified models. We know of no empirical applications of 
this work. 

31t is possible to compare the fit of nonnested models using some of the 
overall fit measures in structural equation models that take the degrees of free- 
dom of a model into account (see, for example, Bollen 1989, pp. 256-81). 
However, these typically d o  not provide a test of the statistical significance of the 
differences in fit for nonnested models. A growing literature on significance 
testing for nonnested models is accumulating (e.g.,  MacKinnon 1983; Judge et 
al. 1985. pp. 881-85). but little of this work has penetrated the structural equa- 
tion literature. On the other hand, this literature on nonnested models has not 
considered vanishing tetrads as a test for such models. 
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noniterative estimator that does not have nonconvergence problems 
as is sometimes true for the commonly used procedures. 

In this paper we propose CTA and illustrate its application to 
the previously mentioned issues. We view CTA not as a replacement 
for the standard methods of SEM but rather as a technique that 
complements current methods of model evaluation. For models that 
are not easily testable under the conventional methods, CTA some- 
times can be a useful tool for model evaluation. In the following 
sections, we will discuss the concept of vanishing tetrads, propose 
new rules for selecting nonredundant vanishing tetrads, provide a 
method of significance testing, and develop a method to estimate the 
power of the vanishing tetrad test. Finally, we will illustrate the 
applications of CTA with examples. 

1. MODEL IMPLIED VANISHING TETRADS 

The idea of vanishing tetrads is best introduced by way of examples. 
Figure l(a) is a path diagram of a factor model with one latent 
variable (5,) and four observed variables (x, to x,). We use the usual 
path analysis conventions where an oval or circle signifies a latent 
variable and boxes denote observed variables. Disturbances (or er- 
rors) are not enclosed. A single-headed straight arrow indicates an 
effect of the variable from the base of the arrow to the variable at the 
head of the arrow. The equations corresponding to this diagram are 
of the form: 

where 6, is the random measurement error (disturbance) term with 
E(6,) = 0 for all i, COV(6,, 6,) = 0 for I # 1,  and the COV(t,, 6,) = 0 
for all i. All variables are written as deviations from their means to 
simplify the algebra. 

The population covariances (a,) of the observed variables are 
of the following form: 

where allis the population covariance of the i and I variables and 4 is 
the variance of 5,. If the model is correct. then we can use covariance 
algebra (e.g.,  Bollen 1989, p. 21) to prove that the equalities below 
must hold: 
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FIGURE 1. Two factor models. 

where rghl,is the population tetrad difference that equals the quantity 
to its right. We use the Kelley (1928) notation for tetrads, here rghll 
refers to aghu,]- ug,ahiWhen rgh,is zero for a model. this is referred to 
as a vanishing tetrad. The model in Figure l (a)  implies the three 
vanishing tetrads in equation (3). Due to sampling errors, the sample 
counterpart, tghll,is likely to be nonzero. A simultaneous significance 
test descrtbecl later can be used to determine whether the model in 
Figure l ( a )  is consistent with the sample data. A nonsignificant test 
statistic means that the implied vanishing tetrads hold and the model 
is a legitimate candidate for consideration. If the significance test 
indicates otherwise, the one-factor model in Figure l (a)  would be 
rejected. 

Figure l (b)  shows a two-factor model with two indicators for 
each latent variable. The only vanishing tetrad implied by this model 
is 

A significance test of this vanishing tetrad provides a test of the 
model in Figure l(b).  Notice that the vanishing tetrad implied by the 
model in Figure l (b)  [see equation (4)] is a subset of the vanishing 
tetrads implied by the model in Figure l (a)  [see equation (3)]. When- 
ever the vanishing tetrads of one model are a subset of those in 
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another. we refer to  such models as having "nested tetrads." If the 
difference in the test statistics for the two models is not significant. 
this lends support to the model that implies the most vanishing 
tetrads. If the test result is significant, we would prefer the model 
with the fewest vanishing tetrads. In Figure 1 we uould favor the one 
factor model if the test statistic for the vanishing tetrads in equation 
(3) is not significantly greater than the test statistic for the vanishing 
tetrads in equation (4). 

2. IDENTIFYING VANISHING TETRADS 

To perform significance tests, we need to identify the vanishing 
tetrads implied by a model. We propose three methods for this task: 
covariance algebra, a new rule for factor analysis n~odels ,  and a new 
empirical method for general SEM.4 

2.1. Covariance Algebra 

The first method uses covariance algebra to show the vanishing 
tetrads for a model. The starting point is the structural equations and 
assumptions for a model (for example, see equation [I]). A few 
simple rules of covariance algebra (Bollen 1989, p. 21) allow us to 
express the covariance of any two variables in terms of the parame- 
ters of the model (for example, see equation [2]). A more general 
way of obtaining the covariances of the observed variables in terms 
of the model parameters is to use matrix methods to form the model 
implied covariance matrix for a model (see Joreskog and Sorbom 
1989, p. 5). We can then compare two pairs of covariances in a tetrad 
and conclude whether a vanishing tetrad is implied by the model. 
Whether a vanishing tetrad is implied does not depend on the value 
of the coefficients unless one or more have a trivial zero coefficient 
or the unlikely coincidence occurs that the combination of values of 
the parameters lead to zero. In other words. in practice the structure 
of a model determines the vanishing tetrads. not the specific values 
of the parameters. 

"nother possibility is to use Glymour et al. (1987) computer algorithms 
to determine the vanishing tetrads of models. 
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2.2. A Factor Analysis Rule 

Using covariance algebra, as we did for the models in Figure 1, 
becomes tedious for models with more than four variables. The sec- 
ond method, which can simplify the task, works for factor analysis 
models where each indicator is influenced only by one latent variable 
and an error variable, though this rule permits correlated errors of 
measurement. A vanishing tetrad is implied when two conditions are 
met: (1) none of the four covariances in a tetrad equation involve 
correlated error terms and (2) the two pairs of latent variables associ- 
ated with the two covariances in the first term match those in the 
second term of the equation. 

Regardless of the size of the model, we consider four variables 
at a time and repeat the process for every foursome of variables in 
the model. For every four variables, there are three possible vanish- 
ing tetrads, and each of them has to be checked regarding whether it 
fulfills the above two conditions. Suppose x,, x,, x3, x, are four indica- 
tors in a factor model with each observed indicator affected only by 
one latent variable and an error variable. The four measurement 
equations are: 

"1 = hiit ;  + 61, X3 = h3k5k + 83,
and 


x2 = A&, + 62, X, = A4151 + 84. 


For instance, whether r,,,, = u12c3,- =c13c240 is implied by a model 
depends on CT~,CT~,  and Each correlated error of COV(6,,6,), 
COV(6,,6,), COV(S1,6,), and COV(6,,6,) has a unique effect on the 
covariance of a,,, CT,,, CT~,, and c2,respectively. If any of the four 
correlated error terms is nonzero, CT~,CT~, exceptwill not equal CT~,CT,,, 
under the very unlikely case where the effects of correlated errors on 
the four covariances cancel each other out. A vanishing tetrad is 
implied only under the condition that none of the four covariances 
involves a correlated error term. (This condition can be used to rule 
out vanishing tetrads in models other than the one described here.) 

If we assume that the latent variables do not correlate with the 
error terms and the correlated errors of COV(6, ,a,), COV(6,,6,), 
COV(6,,6,), and COV(6,,6,) are zero, then u,,cT,, and cI3c2,equal the 
following: 
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of latent variables, (5,,5,) and (5,,5,), of u13ud2 match those of al,a3,. 
This vanishing tetrad is no longer implied in Figure 2(b), however, 
because a correlated error term appears in u2,. The other two tetrad 
equations, T,,,, = 0 and T,,,, = 0, are not implied in the two-factor 
models in Figure 2(a) and 2(b) because the corresponding pairs of 
latent variables in the first and the second terms of the tetrad equa- 
tions do not match each other. The correlated error term in Figure 
2(a) alone is sufficient to rule out these two vanishing tetrads. Conse- 
quently, one tetrad is implied in Figure 2(a) and none is implied in 
Figure 2(b). As such, we have nested tetrads and we can compare the 
two models. Note that these two models are not nested in terms of an 
LR test, though they are nested for a tetrad test. 

The same procedure applies to models with more variables. 
With five variables, such as the models in Figures 2(c) and 2(d), we 
have five sets (5!11!4!) of tetrad equations. The task in Figure 2(c) is 
simplified because the model is composed of only two basic struc- 
tures. Consider x,, x,, x,, and x, with two indicators for each latent 
variable. This part of the model is identical to the model in Figure 
l(b), and it implies the same vanishing tetrad, T,,,. In an analogous 
fashion we can find the vanishing tetrads for x,, x,, x,, and x,, and for 
x,, x,, x,, and x, since they share the same basic structure of two 
indicators per latent variable. 

The second basic structure has one indicator for 5, and three 
indicators for 5,. Consider x,, x,, x,, and x,. All three vanishing 
tetrads (T~ , ,~  = 0, T1453 = 0, and = 0) are implied. First, no corre- 
lated errors exist in any of the covariances, and second, (5,,[,) and 
(5,,t2) are the two pairs of latent variables in the first and the second 
terms of each tetrad equation. Similarly, the three vanishing tetrads 
among x,, x,, x,, and x, are also implied for the same reasons. 

We modify Figure 2(c) by adding one more latent variable and 
one correlated error term in Figure 2(d). The rule for determining 
implied vanishing tetrads is no different from that used in the previ- 
ous three examples. If we consider x, to x,, the model structure is 
identical to the one in Figure l(b), and only = 0 is implied. For 
x,, x2,x,, and x,, T1235 = 0 and T1523 = 0are not implied because u,,, 
which is in both equations, has a correlated error term. The two pairs 
of latent variables associated with c13u52 and C T ~ ~ C T ~ ~  andare ([,,[,) 

and and respectively, and no correlated error term 
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appears in the four covariances in this tetrad equation. As such, T1352 

= 0 is implied in the model. Among x,. x?,x4,and x,, only T,, = 0 is 
implied. Finally, application of our general rule to the set of x,, x,, x,, 
and x, and the set of X? to  x5 shows no vanishing tetrads. 

The same strategy for determining vanishing tetrads applies to 
other factor analysis models where each indicator is influenced by a 
single latent variable and an error term. 

2.3. An Empirical Method 

The covariance algebra technique for determining vanishing tetrads 
is perfectly general but too tedious to implement for complex mod- 
els. The factor analysis rule is inapplicable to models with factor 
complexity greater than one or to general SEM. In this subsection we 
describe a simple but new empirical means to determine model im- 
plied vanishing tetrads. The procedure has four steps: 

1. 	 Arbitrarily specify the values of model parameters. 
2. 	 Use model parameters specified in step 1 to generate the implied 

covariance matrix through structural equation programs such as 
LISREL (Joreskog and Sorbom 1989), EQS (Bentler 1989). or 
CALIS (Hartmann 1991). 

3. 	 Calculate all tetrads. 
4. 	 Take those tetrads within rounding of zero as the model implied 

vanishing tetrads. 

In step 1 we recommend use of the parameter estimates for a model, 
if available. since the implied covariance matrix for step 2 is readily 
accessible in the above-mentioned programs. The essence of this 
method is to generate a covariance matrix that is consistent with the 
model so that when you calculate the tetrads, those that should be 
zero will be within rounding error of zero. Researchers having any 
doubt regarding whether a value is zero or not can apply the covari- 
ance algebra method to the specific tetrads that are in question as an 
additional check. Our experience suggests that this method is ex- 
tremely accurate. Coupled with its generality, this makes it the 
method of choice for most models. We will illustrate the procedure in 
the examples section. 
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3. REDUNDANT VANISHING TETRADS 

Previous tetrad analyses, such as those of Glymour et al. (1987), 
focused on tests of individual vanishing tetrads: redundancy was 
rarely a concern except in the simple case where all three vanishing 
tetrads are implied by a set of four variables. As a result, there is no 
guidance on how to select nonredundant vanishing tetrads among all 
those implied by a model. For a simultaneous test of a set of implied 
vanishing tetrads, we have to determine which vanishing tetrads are 
redundant and should be excluded from the test. Otherwise, the 
covariance matrix of the tetrads that is part of the test statistic can be 
singular, and its inverse will not exist. In the material that follows we 
develop a procedure to deal with this problem.5 

Algebraic substitution between vanishing tetrads will show 
that some of the vanishing tetrads can be derived from the others and 
are redundant for the test. When none of the covariances are in 
common between vanishing tetrads, algebraic substitution is impossi- 
ble. When two vanishing tetrads have three or more covariances in 
common., they must be identical. Therefore, we need to consider 
only two cases: those vanishing tetrads having either one or two 
covariances in common. 

When two covariances in one vanishing tetrad are identical 
with the covariances in another vanishing tetrad, it is a sufficient 
condition that a third vanishing tetrad must be implied and should be 
eliminated in the simultaneous test. The simplest case is when all 
three vanishing tetrads are implied for a set of four variables, only 
two of them are needed for the simultaneous test due to redundancy. 
For instance, if 

then any two of them imply the third-that is. only two vanishing 
tetrads are independent. Suppose we have two vanishing tetrads 

comments on this paper, Yu Xie suggested a method for determining 
the nonredundant vanishing tetrads by using an analogy to methods of determin- 
ing the odds-ratios in a contingency table. However, the method was suggested 
for single factor models without correlated errors of measurement, and it is not 
clear whether the procedure generalizes to other models. 
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= a,,cdb-a,,ucb= 0 and ( 5 )  

where crll, and udbappear in both vanishing tetrads. Algebraic manipu- 
lation between ( 5 )  and (6) will show that 

is implied. 
In the case where there is only one common covariance be- 

tween two vanishing tetrads, algebraic substitution will lead to a 
vanishing equation with six covariances, and no additional vanishing 
tetrad will be implied. For example, 

imply 

Introducing more vanishing tetrads with one common covariance 
with equation (10) only will further expand the equation. The single 
possibility is to have another vanishing tetrad that has three covari- 
ances in common with equation (10) such that three covariances can 
be eliminated and a new covariance term will be added to equation 
(10). Consider 

In vanishing tetrad (11), cr,,, a,,. and ac,,appear in equation (10). 
Equations (10) and (11) together imply a redundant vanishing tetrad, 

That means given vanishing tetrads (8). (9), and ( l l ) ,  vanishing 
tetrad (12) should be excluded in the simultaneous test. 

Alternatively. with the rule of two common covariances, van- 
ishing tetrad (12) can be concluded from pairwise algebraic substitu- 
tion between vanishing tetrads. Notice that (T,,. a;,,. go,,and a,, appear 
twice in vanishing tetrads (8). (9), and (11). These four covariances 
can be eliminated through algebraic substitution and the remaining 
four covariances form vanishing tetrad (12). We begin with vanishing 
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tetrads (8) and (11) because u,, and a,, appear in both equations. As 
a result, another vanishing tetrad 

'neb,  = aaeubd - aabued = (I3)'7 

is implied. In vanishing tetrads (9) and (13), both have caband a,,, 
and (9) and (13) together lead to the redundant vanishing tetrad 
(12). This example illustrates that pairwise comparisons between 
those vanishing tetrads with two common covariances are an ade- 
quate means for identifying redundant vanishing tetrads. 

The above example shows that vanishing tetrads (8), (9), ( l l ) ,  
(12), and (13) are linearly dependent among each other; only three 
of them are needed for model testing. If the model is correct and the 
null hypothesis is true, then the choice of the three vanishing tetrads 
matters little. With an incorrect model and a false null hypothesis, it 
is possible that the selection might matter more. In our experience 
with the examples in the empirical example section, we found similar 
results regardless of the choice of the nonredundant vanishing 
tetrads. However, as a precaution one could select a different set of 
redundant vanishing tetrads to exclude and recalculate the test of 
significance. Since more than one significance test is being per- 
formed. the researcher should adjust the individual alpha levels for 
the significance tests to maintain an overall alpha level for the family 
of tests. A Bonferroni correction is probably the easiest one to imple- 
ment. Consistent test results increase our confidence in the initial 
results while inconsistent test results indicate that the model is not 
correct .h  

4. SIGNIFICANCE TESTING OF VANISHING TETRADS 

Spearman and Holzinger (1924), Kelley (1928), Wishart (1928), and 
Kenny (1974) have proposed significance tests for a vanishing tetrad. 
All these tests are asymptotic, assume a multivariate normal distribu- 
tion among the observed variables, and are not simultaneous tests for 
multiple vanishing tetrads. Bollen (1990) proposed a less restrictive 

6There are two other possible sensitivity checks: (1) Take the pool of 
redundant tetrads and perform the simultaneous significance test on them, after 
eliminating any redundant tetrads in this group, and (2) perform individual 
vanishing tetrad tests on the redundant tetrads to see if any are significant. Use a 
Bonferroni correction to take into account the multiple tests that are performed. 
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test that evaluates multiple tetrads simultaneously, applies to nor- 
mally or nonnormally distributed observed variables, and analyzes 
correlations or covariances. This test was originally proposed for ETA 
but is applicable to CTA as well. The null hypothesis is H,: T = 0,  and 
the alternative hypothesis is H,: T # 0 where r is a vector of the 
population tetrads that are implied to be zero for a specific model. A 
significant test statistic suggests that the model implied vanishing 
tetrads are not zero and casts doubt on the model's validity. 

To derive the test statistic, we begin with a vector S that in- 
cludes the nonredundant elements of S, the unbiased sample covari- 
ance matrix of the observed variables.' Let a be a similar vector 
formed from 2, the population covariance matrix of the observed 
variables. We assume that the fourth-order moments of the observed 
variables exist and are finite. The E(s) is a.The distribution of <N(S 
- a )  in finite samples is not always known but the limiting distribu- 
tion is multivariate normal with a mean of zero and a covariance 
matrix of Z,, (e.g., see Browne 1984, p. 64): 

The elements of Z,, give the variances and covariances of the sample 
covariances. In general the elements of X,,equal 

where grfghis the fourth-order moment for the e, f ,g,and h variables. 
A sample estimator of uefghis 

If the observed variables are multinormally distributed. then the 
elements of 2,, are 

Instead of the asymptotic covariance matrix of the sample 
covariances, we require the asymptotic variance of the sample tetrad 
differences. Define t as the column vector of the independent sample 
tetrad differences implied by a model, ~ ( a )as the column vector of 
the population vanishing tetrads that is a function of a. and a as the 

'The derivation of this test statistic is based on the description in Bollen 
( 1990). 
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column vector of all uCfthat appear in one or more of the vanishing 
tetrads. The tetrad differences, t ,  are nonlinear functions of the sam- 
ple covariances. Assume that 7(a) is a continuously differentiable 
function with respect to a in a neighborhood of the true value of a, 
say a, ,  that does not vanish at a,. In conjunction with equation (14), 
we can use the delta method (Rao 1973, 385-89; Bishop, Fienberg, 
and Holland 1975,486-500) to estimate the asymptotic variance o f t .  
Using this theorem, we have 

Z,, = (dT/ aa ) '  z,, ( a ~ i a a ) ,  (19) 

where Z,, is the covariance matrix of the limiting distribution of the 
sample tetrad differences and Z,, is the covariance matrix of the 
limiting distribution of the sample covariances that appear in the 
sample tetrad differences. Assume that Z,, is continuous with respect 
to the fourth order moments and elements of a of which it is a 
function in a neighborhood of the true values of the fourth order 
moments and a,. Then all the parameters in (19) can be estimated by 
replacing the population parameters by their sample counterparts. 
Note also that this can be made a distribution-free estimator of the 
asymptotic covariance matrix by the choice of Z,,. The main diagonal 
of Z,, contains the variances of the sample tetrad differences while 
the off-diagonal elements contain their covariances for the limiting 
distribution. 

A test statistic of whether all tetrad differences are zero is 

Asymptotically, T approximates a chi-square variate with df equal to 
the number of tetrad differences simultaneously examined. The Ho is 
that all tetrad differences implied by a model are zero (i.e., T = 0). 
Failure to reject Ha provides support for the model whereas rejection 
suggests that one or more tetrad differences are different from zero. 
When there is only one tetrad difference in t ,  then (20) equals: 

Also, the test statistic generalizes to hypotheses of nonzero values of 
T by replacing t with (t - T) in equation (20), with T containing the 
values of the population tetrads under Ho. 
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The results can be modified to apply to tetrad differences of 
correlation coefficients rather than covariances. The key change is to 
replace the covariance matrix of the covariances (i.e., &) with the 
covariance matrix of the correlation coefficients (i.e., 2,). The ele- 
ments of 2, for arbitrary distributions are (Isserlis 1916) 

where pefgh is the standardized fourth order moment and pef is the 
population correlation of variable e and f. 

For a multinormal distribution, this simplifies to 

Thus all of the above discussion applies to tetrad differences of corre- 
lations as well as of covariances. 

5. POWER O F  VANISHING TETRAD TEST 

The power of a statistical test is the probability of rejecting a false null 
hypothesis when an alternative hypothesis is true. Recent research in 
SEM has provided ways to estimate the power of the chi-square likeli- 
hood ratio test of H,: 2 = 2(8), where 2 is the population covariance 
matrix of the observed variables, 2(B) is the covariance matrix implied 
by the hypothesized model, and f3 is the vector of free parameters in a 
model (Satorra and Saris 1985; Matsueda and Bielby 1986; Bollen 
1989, pp. 338-49). It would be helpful to know the power of the 
simultaneous vanishing tetrad test of H,: T = 0 for several reasons. 
One is that with it we could determine if a significant (nonsignificant) 
test statistic is due to too much (or too little) power. This information 
would aid our assessment of a tetrad test. For instance, if we find that a 
vanishing tetrad has low power, yet the test statistic is highly signifi- 
cant, this would cast serious doubt on any model that implies the set of 
vanishing tetrads that were tested. Alternatively, if a tetrad test had 
high power and the test statistic was not statistically significant, the 
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plausibility of the vanishing tetrads would be increased. Second, the 
power estimate for the vanishing tetrad test would be helpful in the 
situation where conflicting results occur for the LR test and the tetrad 
test. Knowing the power of both tests could partially or totally explain 
the discrepancy. 

The rationale for our method to assess the power of the vanish- 
ing tetrad test is as follows. Suppose that we replace (18) with the 
more general expression of 

where 7, is the column vector of the tetrads that are hypothesized to 
be zero for a specific model and all other symbols are defined as 
previously. Equation (24) equals equation (18) if we set 7, to zero. 
However, in equation (24) we allow some or all of the population 
tetrads to be nonzero, an outcome that runs counter to the vanishing 
tetrads implied by the hypothesized model. 

Under equation (24), the test statistic, T, in equation (20) 
asymptotically approximates a noncentral chi-square variate with df 
equal to the number of nonredundant tetrad differences simulta- 
neously examined and with a noncentrality parameter of 

By knowing the df,K, and the Type I alpha level at which we test the 
vanishing tetrads, we can estimate the power of the simultaneous 
vanishing tetrad test. The df are obvious by counting the number of 
nonredundant vanishing tetrads implied by a model. The alpha value 
is the probability of a Type I error chosen by a researcher and is 
typically 0.05. The value of N is known and equation (19) enables us 
to get Zil.8The only remaining quantity in equation (25) is 7,. To get 
T,, we must formulate an alternative model with respect to which we 
are testing the power.9 Give values to all of the parameters in the 
alternative model and form the implied covariance matrix [2(8,)]for 
the observed variables at these values. Based on the tetrads that 

8For variables with the same multivariate kurtosis as a normal distribu- 
tion, the elements of Z,, that are needed to form Z,, can be taken from Z(0,), 
which is the implied covariance matrix under the alternative model. For 
nonnormal data with excessive multivariate kurtosis, the elements of Z,, can be 
estimated from the sample data as described in the previous section. 

T h e  same step of formulating an alternative model with all the parame- 
ter values is necessary in the usual power tests for structural equation models. 
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should be zero for the hypothesized (not the alternative) model and 
the implied covariance matrix, we can calculate the values of 7,. 

In brief, the steps to the procedure are: 

1. 	 Determine 8,,the specific values for the parameters in the alter- 
native model. 

2. 	 Generate the implied covariance matrix, Z(0,). 
3. 	 Form T,, the vector of nonredundant tetrads implied under H, 

using Z(8,)instead of S. 
4. 	 Form N T,'Z,'T,as the noncentrality value. 
5 .  	 Calculate the power of the tetrad test based on the d f ,  the Type I 

probability, and the noncentrality value. 

We will illustrate the procedure in the next section. 

6. EXAMPLES 

6.1. Example 1: Sympathy and Anger  Confirmatory Factor Analysis 

The first example illustrates the use of the CTA test statistic in testing 
the fit of a factor analysis model. Figure 3 is the path diagram for a 
two-factor model with each factor measured with three indicators. 

,:::;4---b
8
x5 


f t f  t t t  
8, 6, 8, 6, 6: 6, 

FIGURE 3. Sympathy and anger. 

The data are taken from a social psychological experiment by 
Reisenzein (1986). As part of the experiment, he measures the feel- 
ings of sympathy and anger of 138 subjects. The covariance matrix 
for the six indicators is: 
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In Table 1, we use the sympathy and anger example of Figure 
3 to illustrate the three methods of determining the vanishing 
tetrads. For the empirical method, the estimates of model parame- 
ters are used to generate the covariance matrix. This covariance 
matrix is used to calculate the tetrads. When comparing with the 
covariance algebra method and the factor model rules, it becomes 
apparent that the empirical method is effective in showing which 
vanishing tetrads are implied by the model. The model implied van- 
ishing tetrads as determined by the covariance algebra and factor 
analysis analytic methods are virtually zero using the empirical 
method. 

Eliminating the redundant vanishing tetrads, we identify eight 
independent vanishing tetrads (r,,,, =0, r,,,, =0, r,,,, =0, =0, r,,,, 
-- 0, r15,, 0, r16230, and r,,,, = 0). With raw data kindly provided by = = 
Reisenzein, we tested for excessive multivariate kurtosis. Mardia and 
Foster's (1983) "normalized" estimate of multivariate kurtosis is 6.60 
(Bollen 1989, p. 424), indicating substantial positive multivariate 
kurtosis. The simultaneous asymptotically distribution-free test of 
these eight tetrads results in a chi-square of 6.71 with 8dfand ap-value 
of 0.57. We cannot reject the null hypothesis that all eight population 
tetrads are zero. Thus the sample tetrads are consistent with this 
model structure. Using the usual structural equation procedures, the 
asymptotic distribution free test statistic (weighted least squares 
[WLS] estimator) for this model is 6.49 with 8 df ( p  = 0.59), which 
leads to the same conclusion. 

The power of these statistical tests helps in evaluating model 
fit. As the alternative model, we take the WLS estimates of the 
parameters of the original model in Figure 3 and add to it three 
correlated errors of measurement. The covariances of these errors 
are set to be equivalent to correlations of 0.1 and we generated the 
implied covariance matrix. Following the power procedure described 
in the previous section, the noncentrality parameter is 1.45 with df of 



TABLE 1 

Model Implied Vanishing Tetrads for Sympathy and Anger Example 


Tetrads 

'1234 

'1423 

'1342 

'123s 

'1523 

'1352 

'1236 

'1623 

'1362 

'124.5 

'1524 

'1452 

'1216 

'1624 

'1.162 

'1256 

'1625 

'1562 

'1345 

'1534 

'1453 

'1346 

'1634 

'1463 

'1356 

'1635 

'1563 

'1.156 

'1645 

'1561 

'2345 

7 2 ~ ~ . 4  

'2453 

'2346 

'2634 

'2463 

'2356 

T2635 

'2563 

'2456 

Tz6.t5 

'2564 

'3456 

'3645 

'3564 

Cov. Algebrai 

Factor Rules 


implied 
implied 
implied 
implied 
implied 
implied 
implied 
implied 
implied 

implied 

implied 

implied 

implied 

implied 

implied 
implied 
implied 
implied 

implied 

implied 

implied 
implied 
implied 
implied 
implied 
implied 
implied 

Empirical Method 

-0.00000000 
-0.00000005 

0.00000006 
-0. 00000004 

0.0000001 1 
-0. 00000007 

0.00000003 
0.0000001 1 

-0.000000 14 
14.97524804 

-14.97524810 
0.00000006 

14.75163923 
-14.75163932 

0.00000010 
13.53462924 

-13.53462927 
0.00000003 

13.99787900 
-13.99787907 

0.00000008 
13.78886419 

-13.78836426 
0.00000008 

12.65128313 
-12.65128313 

0.00000000 
-0.00000028 

0.00000024 
0.00000004 

10.72377520 
-10.72377521 

0.0000000 1 
10.56364895 

-10.56364893 
-0.00000001 

9.69213805 
-9.69214803 
-0.00000002 
-0.00000010 

0.00000001 
0.00000009 

-0.00000007 
0.00000003 
0.00000003 
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8. With a type I error of 0.05, the power of the tetrad test is 0.11. 
Using the same alternative model and estimating the power of the 
WLS-based test statistic, we find the same 0.11 value. Thus the 
tetrad test and the WLS test have low power to detect the correlated 
errors, and the fit of the model appears less ideal than an examina- 
tion of p-value for the test of null hypothesis alone would lead one to 
believe. Though we found the power of the tetrad test and the WLS 
test to be the same in this example, this will not always be the case. 

6.2. Example 2: Union Sentiment: A n  SEM Without Latent Variables 

The second example illustrates that CTA also applies to SEM that do 
not contain any latent variables. Figure 4 is the path diagram for the 
model taken from Bollen (1989. pp. 82-83). The data are from a 
study of union sentiment among southern nonunion textile workers 
(McDonald and Clelland 1984). The variables are deference (or sub- 
missiveness) to managers (y,). support for labor activism ( y 2 ) ,senti-
ment toward unions (y,), the logarithm of years in textile mill ( x , ) ,  
and age (x?). The sample covariance matrix (N = 173) is (Bollen 
1989, p. 120): 

14.610 
-5.250 11.017 

-0.482 0.677 1.559 1.021 

The null hypothesis of multivariate normality could not be rejected 
for these data where the normalized test statistics for multivariate 

FIGURE 4. Union sentiment. 
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skewness was 0.74 and was -1.14 for multivariate kurtosis (Bollen 
1989, p.424). Thus we use the CTA and LR test statistics that are 
based on the normality assumption. 

With either covariance algebra or our empirical method, we 
find the only vanishing tetrad to be r,1r1r2J2The CTA test statistic is 
0.73 with 1 df O, = 0.39). This excelient fit is consistent with the LR 
test statistic of 1.26 with 3 df @ = 0.74). 

6.3. Example 3: Comparison of "Nonnested" Models with 
Simulated Data 

Some models that are not nested for the usual SEM likelihood ratio 
(LR) test comparison of fit are nested in the implied vanishing 
tetrads. The implication is that model comparisons are possible for 
some models that we have traditionally believed to be nonnested. We 
take an example from Glymour et al. (1987) to illustrate this. The 
three models in Figure 5 differ in the relation between the x, and y ,  
variables. In Figure 5(a), x, affects y , ,  while in 5(b) the opposite 
relation holds. Figure 5(c) shows only correlated errors between 
these two variables. Clearly, from the perspective of LR test compari- 
sons, these models are nonnested. However, the implied vanishing 
tetrads in Figures 5(a) and 5(b) are subsets of those implied in Figure 
5(c). Figure 5(c), which has the most implied vanishing tetrads, is the 
most restrictive model of the three, and we can compare whether this 
more restrictive model fits as well as the less restrictive ones in 
Figures 5(a) and 5(b). We use the simulated "Data Set 2. Study 1" ( N  
= 2000) from Glymour et al. (1987, p .  128). The correlation matrix 

is generated from the model in Figure 5(c). The models in Figures 
5(a) and 5(b) have 6 df and chi-squares of 2.76 and 3.26 (p-values of 
0.84 and 0.78) respectively. The model in Figure 5(c) has 7 df and a 
chi-square value of 3.39 (p-value of 0.85). Chi-square difference tests 
of the first two models compared to Figure 5(c) reveal no significant 
differences, lending support to the validity of Figure 5(c); therefore 
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FIGURE5. Simulated data 

we retain the model with a correlated error and select the true 
model. Note also that this example illustrates how the simultaneous 
test statistic developed here can be applied in the exploratory tetrad 
analyses proposed by Glymour et al. (1987) to compare alternative 
models that have nested vanishing tetrads. 

6.4. Example 4: Four-Wave Developmental Model 

McArdle and Epstein (1987) introduce the path model in Figure 6 to 
study the developmental changes in intelligence measured by the 
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FIGURE 6. Four-wave developmental model. 

Wechsler Scale in a four-wave study of 204 children. The covariance 
matrix is (N = 204): 

40.628 
37.741 53.568s =  [ 140.051 48.500 60.778 
50.643 63.169 70.200 107.869 

The model has four latent variables, each of which has one indicator. 
Each latent variable is determined only by the immediately preced- 
ing latent variable. This is commonly known as the "autoregressive" 
or the "simplex" model. The authors did not evaluate this model 
against the data partly because without further restrictions this is an 
underidentified model. Such a model can be tested with CTA. One 
vanishing tetrad, 71342= 0, is implied by the model, and the CTA test 
statistic is a chi-square estimate of 1.12 with 1 df and a p-value of 
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0.29. The CTA results suggest a good fit for the four-wave path 
model. We are encouraged to explore this model with the conven- 
tional ML method by constraining P,, = Pi? = P43and VAR(8,) = 
VAR(8,) = VAR(S,) = VAR(8,). The model with these equality 
constraints has an excellent fit with a chi-square of 2.93 with 4 df and 
ap-value of 0.57. This example shows that multiwave single indicator 
panel models can be tested with CTA procedures even when the 
model is underidentified. 

Dimensionality tests are also possible with CTA. Suppose we 
wish to test whether intelligence is a stable latent variable that influ- 
ences all four tests. Figure 6(b) contains the path diagram for this 
alternative model. Compared to Figure 6(a), this model assumes a 
one latent-variable solution rather than a four latent-variable one. 
The model in Figure 6(b) implies two independent vanishing tetrads. 
The CTA test statistic is 5.42 with 2 df and a p-value of 0.07. The 
vanishing tetrad for the four-wave simplex model shown in Figure 
6(a) is nested in those implied in the one latent-variable model. The 
chi-square difference between these two models is 4.30 with 1 df. 
The p-value is less than 0.05, which suggests that the four-wave 
model in Figure 6(a) is preferable. Thus this example illustrates a 
tetrad test for dimensionality. 

7. CONCLUSIONS 

Confirmatory Tetrad Analysis holds promise as a model testing proce- 
dure in SEM. At  a minimum, it provides a check on the LR test 
results. When both test statistics agree, it increases our confidence in 
a model's match to the data. Disagreements suggest potential specifi- 
cation errors or differences in the power of the tests. In addition, 
CTA applies in some situations where the LR test statistic is inappli- 
cable or is more complicated to apply. We gave examples of models 
that were not nested for LR tests but were nested in their vanishing 
tetrads. Thus we can compare and test some models that have long 
been considered nonnested. Furthermore, the fit of some under- 
identified models can be assessed with the CTA test statistic. This 
could help researchers to determine whether it is worth looking for 
further restrictions that would help to identify a model. Finally, the 
test statistic we have used could also be helpful in ETA when compar- 
ing alternative models that have nested vanishing tetrads. 



172 KENNETH A .  TINGBOLLEN A N D  KWOK-FAI 

The characteristics of CTA may be made clearer by contrasting 
it with the more common maximum likelihood (ML) and weighted 
least squares (WLS) approaches to SEM. In MLIWLS approaches, 
the null hypothesis is H,: Z = Z(8),where Z is the population covari- 
ance matrix of the observed variables and Z(8) is the model implied 
covariance matrix with 8 the vector of free parameters in the model. 
We have a test statistic that has an asymptotic chi-square distribution 
when H, is valid. In CTA the null hypothesis is H,: r = 0 where is the 
vector of vanishing tetrads implied by the model. Here, too. we have a 
test statistic that has an asymptotic chi-square distribution when H, is 
valid. In both cases the chi-square distribution is a large sample result; 
the small sample properties require further study. This suggests the 
need for Monte Carlo simulation experiments to explore the behavior 
of the test statistics in commonly used sample sizes. 

Nesting of models in the MLIWLS approach occurs when the 
parameters of one model are a restricted version of the parameters in 
another model. Nesting in CTA exists when the vanishing tetrads of 
one model are a restricted version, typically a subset. of the vanish- 
ing tetrads of another model. As we illustrated here, a set of models 
can be nested in their vanishing tetrads but not nested in their pa- 
rameters, and this allows a test of some models that are nonnested in 
their structural parameters. 

With MLIWLS methods, it is possible that multiple models 
have identical values for the implied covariance matrix and for the 
test statistic. The equivalent models are indistinguishable in terms of 
their overall fit to the data (Joreskog and Sorbom 1989, pp. 221-24). 
Similarly. we can have the same vanishing tetrads implied by multi- 
ple models. These "tetrad equivalent" models are indistinguishable 
in fit using our test statistic. Thus with both the MLIWLS and CTA 
approaches we should not confuse a favorable test statistic with proof 
of the validity of a model since other models can have a fit as good as 
or better than the ones tested. 

The idea of tetrad equivalent models can help explain why it is 
possible for models to have tetrads that are nested but parameters that 
are not. A given set of vanishing tetrads can be implied by more than 
one model. The same is true for a second set of vanishing tetrads that is 
nested in the first. A test statistic for the nested tetrads provides a test 
of the relative fit of all models that imply the one set of vanishing 
tetrads to all models that imply the other set. Some of the models in 
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the two sets may be nested in their parameters, but, as we illustrated, 
this need not be true. And this leads to situations where we can com- 
pare the fit of models not nested in their parameters. 

A n  important difference in methodologies is that MLIWLS is a 
structural parameter estimator, while CTA tests only model fit and 
does not estimate structural parameters.l(' For this reason, CTA 
clearly is a complement, not a replacement, for the traditional proce- 
dures. Largely because it is not a structural parameter estimator, CTA 
does not require iterative methods as do  the ML/WLS methods. 

We close by pointing out that CTA is in the original spirit of 
Spearman's work of determining the vanishing tetrads implied by a 
model and assessing whether they hold. It also is consistent with the 
early work on SEM that attempted to test models by examining the 
implied vanishing tetrads. This paper furthers the work of Spearman 
and others by providing a general simultaneous test of vanishing 
tetrads to evaluate models, by giving new rules for determining the 
vanishing tetrads implied by a model and eliminating the redundant 
ones, and by providing a method to estimate the power of the vanish- 
ing tetrad test. 
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