Algorithm AS 136: A K-Means Clustering Algorithm
J. A. Hartigan; M. A. Wong

Applied Satistics, Vol. 28, No. 1. (1979), pp. 100-108.

Stable URL:
http://links.jstor.org/sici ?sici=0035-9254%281979%2928%3A 1%3C100%3AAA 1A CA%3E2.0.CO%3B2-V

Applied Satisticsis currently published by Royal Statistical Society.

Y our use of the JSTOR archive indicates your acceptance of JISTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/rss.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

The JSTOR Archiveisatrusted digita repository providing for long-term preservation and access to |eading academic
journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers,
and foundations. It isan initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take
advantage of advances in technology. For more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Wed Jul 11 14:42:51 2007

http://links.jstor.org/sici?sici=0035-9254%281979%2928%3A1%3C100%3AAA1ACA%3E2.0.CO%3B2-V
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/rss.html

100 APPLIED STATISTICS
FIND MAXIMUM ENTRY

Qo

60 PIVAT = ACU
KK = O
DO 70 I =1I, U
K = INDEX(I)
IF (ABS(IUZK, II)Y ,LE, PIVOT) GOTO 70
PIVOT = ABS(LUCK, IIV)
KK = I
70 CONTINUE
IF (KK .EQ. 0) GOTO 10

SWITCH ORDER

ana

ISAVE = INDEX(KK)
INDEX(KK) = INDEX(II)
INDEX(II) = ISAVE

PUT IN COLUMNS OF LU ONE AT A TIME

aoan

IF (INTL) IBASE(II) = IROW

IF (II EQ. MY GOTO O

J =11 +1

D380 I=J, M

K = INDEX(I)

(K, II) = W(K, IIY / LUCISAVE, II)
80 CONTINUE
QO CONTINUE

KKK = IROW

RETURN

END

Algorithm AS 136
A K-Means Clustering Algorithm

By J. A. HARTIGAN and M. A. WONG
Yale University, New Haven, Connecticut, U.S.A.

Keywords: K-MEANS CLUSTERING ALGORITHM; TRANSFER ALGORITHM

LANGUAGE
ISO Fortran

DESCRIPTION AND PURPOSE

The K-means clustering algorithm is described in detail by Hartigan (1975). An efficient
version of the algorithm is presented here.

The aim of the K-means algorithm is to divide M points in N dimensions into K clusters
so that the within-cluster sum of squares is minimized. It is not practical to require that the
solution has minimal sum of squares against all partitions, except when M, N are small and
K =2. We seek instead “local” optima, solutions such that no movement of a point from one
cluster to another will reduce the within-cluster sum of squares.

METHOD
The algorithm requires as input a matrix of M points in N dimensions and a matrix of
K initial cluster centres in N dimensions. The number of points in cluster L is denoted by
NC(L). D(1,L)is the Euclidean distance between point 7 and cluster L. The general procedure

is to search for a K-partition with locally optimal within-cluster sum of squares by moving
points from one cluster to another.

STATISTICAL ALGORITHMS 101

Step 1. For each point I (I =1,2,..., M), find its closest and second closest cluster centres,
IC1(I) and IC(I) respectively. Assign point [to cluster IC1(J).

Step 2. Update the cluster centres to be the averages of points contained within them.

Step 3. Initially, all clusters belong to the live set.

Step 4. This is the optimal-transfer (OPTRA) stage:

Consider each point / (/ = 1,2,...,M) in turn. If cluster L (L = 1,2,...,K) is updated in the
last quick-transfer (QTRAN) stage, then it belongs to the live set throughout this stage.
Otherwise, at each step, it is not in the live set if it has not been updated in the last M optimal-
transfer steps. Let point I be in cluster L1. If L1 is in the live set, do Step 4a; otherwise,
do Step 4b.

Step 4a. Compute the minimum of the quantity, R2 = [NC(L) * D(1, L)*>}/[NC(L) + 1], over
all clusters L(L#L1,L=1,2,...,K). Let L2 be the cluster with the smallest R2. If this
value is greater than or equal to [NC(L1) * D(I, L1)?}/[NC(L1)— 1], no reallocation is necessary
and L2 is the new IC2(I). (Note that the value [NC(L1) * D(1, L1)?}/[NC(L1)— 1] is remembered
and will remain the same for point / until cluster L1 is updated.) Otherwise, point / is allocated
to cluster L2 and L1 is the new IC2(I). Cluster centres are updated to be the means of points
assigned to them if reallocation has taken place. The two clusters that are involved in the
transfer of point [/ at this particular step are now in the live set.

Step 4b. This step is the same as Step 4a, except that the minimum R2 is computed only
over clusters in the live set.

Step 5. Stop if the live set is empty. Otherwise, go to Step 6 after one pass through the
data set.

Step 6. This is the quick-transfer (QTRAN) stage:

Consider each point /(I =1,2,...,M) in turn. Let L1 = IC1(J) and L2 = IC2(I). It is not
necessary to check the point I if both the clusters L1 and L2 have not changed in the last M
steps. Compute the values

R1 = [NC(L1) * D(I, L1)?}/[INC(L1)—1] and R2=[NC(L2)#* D(I,L2)?]/[NC(L2)+1].

(As noted earlier, R1 is remembered and will remain the same until cluster L1 is updated.)
If R1 is less than R2, point I remains in cluster L1. Otherwise, switch IC1(J) and IC2(]) and
update the centres of clusters L1 and L2. The two clusters are also noted for their involvement
in a transfer at this step.

Step 7. If no transfer took place in the last M steps, go to Step 4. Otherwise, go to Step 6.

STRUCTURE

SUBROUTINE KMNS (4, M, N, C, K, IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE,
ITER, WSS, IFAULT)

Formal parameters

A Real array (M, N) input: the data matrix

M Integer input: the number of points

N Integer input: the number of dimensions

C Real array (X, N) input: the matrix of initial cluster centres

output: the matrix of final cluster centres

K Integer input: the number of clusters

IC1 Integer array (M) output: the cluster each point belongs to

1C2 Integer array (M) workspace: this array is used to remember the cluster which
each point is most likely to be transferred to at
each step

NC Integer array (K) output: the number of points in each cluster

AN1 Real array (K) workspace:
AN2 Real array (K) workspace:

102 APPLIED STATISTICS

NCP Integer array (K) workspace:
D Real array (M) workspace:
ITRAN Integer array (K) workspace:
LIVE Integer array (K) workspace:

ITER Integer input: the maximum number of iterations allowed
WSS Real array (K) output: the within-cluster sum of squares of each cluster
IFAULT Integer output: see Fault Diagnostics below

FAuLT DIAGNOSTICS
IFAULT =0 No fault
IFAULT =1 At least one cluster is empty after the initial assignment. (A better set of initial
cluster centres is called for)
IFAULT =2 The allowed maximum number of iterations is exceeded
IFAULT =3 Kis less than or equal to 1 or greater than or equal to M

Auxiliary algorithms

The following auxiliary algorithms are called: SUBROUTINE OPTRA (A, M, N, C, K,
IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, LIVE, INDEX) and SUBROUTINE QTRAN
(4, M, N, C, K, IC1, IC2, NC, AN1, AN2, NCP, D, ITRAN, INDEX) which are included.

RELATED ALGORITHMS

A related algorithm is AS 113 (A transfer algorithm for non-hierarchial classification) given
by Banfield and Bassill (1977). This algorithm uses swops as well as transfers to try to overcome
the problem of local optima; that is, for all pairs of points, a test is made whether exchanging
the clusters to which the points belong will improve the criterion. It will be substantially more
expensive than the present algorithm for large M.

The present algorithm is similar to Algorithm AS 58 (Euclidean cluster analysis) given by
Sparks (1973). Both algorithms aim at finding a K-partition of the sample, with within-cluster
sum of squares which cannot be reduced by moving points from one cluster to the other.
However, the implementation of Algorithm AS 58 does not satisfy this condition. At the
stage where each point is examined in turn to see if it should be reassigned to a different
cluster, only the closest centre is used to check for possible reallocation of the given point;
a cluster centre other than the closest one may have the smallest value of the quantity
{m/(m+ 1)} d?, where n, is the number of points in cluster / and d, is the distance from cluster /
to the given point. Hence, in general, Algorithm AS 58 does not provide a locally optimal
solution.

The two algorithms are tested on various generated data sets. The time consumed on the
IBM 370/158 and the within-cluster sum of squares of the resulting K-partitions are given in
Table 1. While comparing the entries of the table, note that AS 58 does not give locally
optimal solutions and so should be expected to take less time. The WSS are different for the
two algorithms because they arrive at different partitions of the sets of points. A saving of
about 50 per cent in time occurs in KMNS due to using “live” sets and due to using a quick-
transfer stage which reduces the number of optimal transfer iterations by a factor of 4. Thus,
KMNS compared to AS 58 is locally optimal and takes less time, especially when the number
of clusters is large.

TIME AND ACCURACY
The time is approximately equal to CMNKI where [is the number of iterations. For an
IBM 370/158, C = 2-1 x10~°sec. However, different data structures require quite different

numbers of iterations; and a careful selection of initial cluster centres will also lead to a
considerable saving in time.

Storage requirement: M(N+3)+K(N+7).

STATISTICAL ALGORITHMS 103

TABLE 1
Time (sec) WSS
1. M = 1000, N = 10, K = 10 AS 58 63-86 7056-71
(random spherical normal) KMNS 36-66 7065-59
2. M =1000, N =10, K = 10 AS 58 43-49 7779-70
(two widely separated random normals) KMNS 19-11 7822-01
3. M=1000, N =10, K = 50 AS 58 135-71 4543-82
(random spherical normal) KMNS 76-00 456148
4. M = 1000, N = 10, K = 50 AS 58 95-51 5131-04
(two widely separated random normals) KMNS 5796 5096-23
5. M=5,N=2,K=28 AS 58 0-17 21-03
(two widely separated random normals) KMNS 0-18 21-03

Missing variate values cannot be handled by this algorithm.

The algorithm produces a clustering which is only locally optimal; the within-cluster sum
of squares may not be decreased by transferring a point from one cluster to another, but
different partitions may have the same or smaller within cluster sum of squares.

The number of iterations required to attain local optimality is usually less than 10,

ADDITIONAL COMMENTS

One way of obtaining the initial cluster centres is suggested here. The points are
first ordered by their distances to the overall mean of the sample. Then, for cluster
L(L=1,2,...,K), the {1+(L—1)*[M/K]}th point is chosen to be its initial cluster centre.
In effect, some K sample points are chosen as the initial cluster centres. Using this initialization
process, it is guaranteed that no cluster will be empty after the initial assignment in the
subroutine. A quick initialization, which is dependent on the input order of the points, takes
the first K points as the initial centres.

ACKNOWLEDGEMENTS
This research is supported by National Science Foundation Grant MCS75-08374.

REFERENCES
BANFIELD, C. F. and Bassiir, L. C. (1977). Algorithm AS113. A transfer algorithm for non-hierarchical
classification. Appl. Statist., 26, 206-210.
HARTIGAN, J. A. (1975). Clustering Algorithms. New York: Wiley.
SpARKS, D. N. (1973). Algorithm AS 58. Euclidean cluster analysis. Appl. Statist., 22, 126-130.

SUBROUTINE KMNS(A, M, N, C, K, IC1, IC2, NC, AN1, AN2, NCP,
* D, ITRAN, LIVE, ITER, WSS, IFAULT)

c
c ALGORITHM AS 136 APPL. STATIST. {1979) VOL.28, NO.1
c
c DIVIDE M POINTS IN N-DIMENSIONAL SPACE INTO K CLUSTERS
c §0 THAT THE WITHIN CLUSTER SUM OF SQUARES IS MINIMIZED,
c
DIMENSION A(M, N}, IC1(MY, IC2(M), D(M)
DIMENSION C(K, N), NC(K), AN1(K), AN2(K), NCP(K)
DIMENSION ITRAN(K), LIVE(K), WSS/K), DT(2)
c
c DEFINE BIG TO BE A VERY LARGE POSITIVE NUMBER
c

DATA BIG /1,0E10/

104

anooon

a0a a0

aaonoanaao

10

20

30

50

60

8o
Q0

100

110

APPLIED STATISTICS

IFAULT = 3
IF (K .LE, 1 ,0R, K ,GE, M) RETURN

FOR EACH POINT I, FIND ITS TWO CLOSEST CENTRES,
IC1(I) AND IC2(I), ASSIGN IT TQ IC1(I),

PO50I=1,M

ICI(I) =1
IC2(IY =2

DO 10 1L =1, 2
DT(ILY = 0,0

miioJ=1, N

DA = A(I, J) - C(IL, J)
DT(ILY = DT(IL) + DA * DA
CONTINUE

IF (DT(1) ,LE, DT(2)) GOTO 20
IC1(I) = 2

IC2(IY =1

TEMP = DT(1)

DT(1) = DT(2)

DT(2) = TEMP

J=1, 8

AL, JY = C(L, I

DB = DB + DC % IC

IF (DB .GE, DT(2)) GOTO 50
CONTINUE

IF (DB LT, DT(1)) GOTO 40
DT(2) = DB

DT(1) = DB
ICI(IY = L
CONTINUE

UPDATE CILUSTER CENTRES TO BE THE AVERAGE
OF POINTS CONTAINED WITHIN THEM

DO 70 L
NC(L) =
DO 60 J
c(L, I
CONTINUE

DODOI=1, M

L = IC1(I)

NC(L) = NC(L) + 1

D080 J =1, N

c(L, JY = C(L, J) + ACI, 3
CONTINUE

1, X

1, N
0,0

nuons

CHECK TO SEE IF THERE IS ANY EMPTY CLUSTER AT THIS STAGE

IFAULT = 1
DO100 L =1, K

IF (NC(L) ,EQ, O) RETURN
CONTINUE

IFAULT = 0

DO 120 L =1, K

AA = NC(L)

P10 T =1, X

(L, J) =C(L, 3 / A

INITIALIZE AN1, AN2, ITRAN AND NCP
AN1(L) IS EQUAL TO NC(LY / (NC(L) - 1)
AN2(L) I5 EQUAL TO NCIL) / (NC(L) + 1

ITRAN(LV=1 IF CILUSTER L IS UPDATED IN THE QUICK-TRANSFER STAGE

ITRAN{LY=0 OTHERWISE

IN THE OPTIMAL-TRANSFER STAGE, NCP(L) INDICATES THE STEP AT °

WHICH CLUSTER L IS LAST UPDATED

aao

120

[NeNeRe N2 N} aooon [NeNsNeNe N

aa0n

aoon

130
140

s NeNeNeNe]

[+ X2 K+)

150

100

170

180

190

STATISTICAL ALGORITHMS 105
IN THE QUICK-TRANSFER STAGE, NCP(L) IS EQUAL TO THE STEP AT
WHICH CLUSTER L IS LAST UPDATED PLUS M

AN2 (L)
AN1(L) = BIG

IF (AA ,GT, 1,0) AN1(L) = AA / (AA - 1,0)
ITRAN(L) =1

NCP(L) = =1

CONTINUE

INDEX = O

DO 140 1J = 1, ITER

= AA / (AA + 1,0)

IN THIS STAGE, THERE IS ONLY ONE PASS THROUGH THE DATA,
EACH POINT IS REALLOCATED, IF NECESSARY, TO THE CLUSTER
THAT WILL INDUCE THE MAXIMUM REDUCTION IN WITHIN-CLUSTER
SUM OF SQUARES

CALL OPTRA(A, M, N, C, X, IC1, IC2, NC, AN1, AN2, NCP,

D, ITRAN, LIVE, INDEX)

STOP IF NO TRANSFER TOOK PLACE IN THE LAST M
OPTIMAL-TRANSFER STEPS

IF (INDEX .EQ. M) GOTO 150
EACH POINT IS TESTED IN TURN TOQ SEE IF IT SHOULD BE
REALUICATED TO THE CLUSTER WHICH IT IS MOST LIKELY TO
BE TRANSFERRED T (IC2(I)) FROM ITS PRESENT CLUSTER (IC1(I)),
1oop THROUGH THE DATA UNTIL NO FURTHER CHANGE IS TO TAKE PLACE

CALL QTRANCA, M, N, C, K, IC1, IC2, NC, AN1, ANZ,

* NCP, D, ITRAN, INDEX)

IF THERE ARE (NLY TWO CLUSTERS,
N0 NEED TQ RE-ENTER (OPTIMAL-TRANSFER STAGE

IF (K EQ. 2) GOTO 150
NCP HAS T BE SET TN O BEFORE ENTERING OPTRA

D0.130 L= 1, K
NCP(LY = 0
CONTINUE

SINCE THE SPECIFIED NUMBER OF ITERATIONS IS EXCEEDED
IFAULT IS SET TO BE EQUAL TO 2,
THIS MAY INDICATE UNFORESEEN LOOPING

IFAULT = 2
COMPUTE WITHIN CLXSTER SUM OF SQUARES F(R EACH CLUSTER

D0 160 L = 1, K

VSS(L) = 0,0

PO 160 J =1, N

c(L, JY = 0,0

CONTINUE

DO170 I =1, M

II = IC1(I)

M1 J=1, N

C(II, JY = C(II, J) + ACI, I)
CONTINUE

DD 1gn J =1, N

DO 180 L =1, K

C(L, J) = C(L, JY / FLOAT(NC(L))
DO1go I =1, M

11 = ICI(I)

DA = A(I, J) = C{II, J)
WSS(IX) = WSS(IX) + DA * DA
CONTINUE

RETURN
END

106 APPLIED STATISTICS

SUBROUTINE OPTRA(A, M, ¥, C, K, IC1, IC2, NC, AN1i,
= AN2, NCP, D, ITRAN, LIVE, INDEX)

ALGORITHM AS 136.1 APPL, STATIST, (1g79) VOL.28, NO.1
THIS IS THE OPTIMAL~TRANSFER STAGE
EACH POINT IS REALLOCATED, IF NECESSARY, TO THE

CLUSTER THAT WILL INDUCE A MAXIMUM REDUCTION IN
THE VITHIN-CLUSTER SUM OF SQUARES

[NeNesNeNoNeNeNeoNe]

DIMENSINN A(M, WY, ICL(M), IC2/M), D(M)
DIMENSION C(K, N), NC(K), AN1{K), AN2(K), NCP(K)
DIMENSION ITRAN(K), LIVE(K)

DEFINE BIG TO BE A VERY LARGE POSITIVE NUMBER

(s XeNe]

DATA BIG /1,0E10/

IF CLUSTER L IS UPDATED IN THE LAST QUICK-TRANSFER STAGE,
IT BELONGS TO THE LIVE SET THROUGHOUT THIS STAGE.

(OTHERVISE, AT EACH STEP, IT IS NOT IN THE LIVE SET IF IT
HAS NOT BEEN UPDATED IN THE LAST M OPTIMAL-TRANSFER STEPS

[EeNesNeE2Ke!

P10 L=1, K .

IF (ITRANCL) EQ, 1) LIVE(L) = M + 1.
10 CONTINUE

DO 100 I =1, M

INDEX = INDEX + 1

L1 = IC1(I)

12 = 1C2(I)

LL = 12

IF POINT I IS THE ONLY MEMBER OF CLUSTER L1, NO TRANSFER

Qoo

IF (NC(L1) EQ, 1) GOTO g0

IF L1 HAS NROT YET BEEN UPDATED IN THIS STAGE
NO NEED TO RECOMPUTE D(I)

a0ooan

IF (NCP/L1) ,EQ., O) GOTO 30
DE = 0,0
DO20J =1, K
DF = ACI, 3V = C(L1, d)
DE = DE + DF * DF
20 CONTINUE
D(I) = DE * ANL(L1)

FIND THE CLUSTER WITH MINIMUM R2

aaQo

"
el
(=]

30

SEEE
(]
>
”~
lal
o
2
|
Q
”~
B
-
[
e

40

SO
:
Z
E|

g
g’ n
&

IF I IS GREATER THAN OR EQUAL TO LIVE L1), THEN L1 IS
NOT IN THE LIVE SET, IF THIS IS5 TRUE, WE ONLY NEED TQ
CONSIDER CLUSTERS THAT ARE IN THE LIVE SET FOR POSSIBLE
TRANSFER OF POINT I, OTHERWISE, WE NEED TO CONSIDER
ALL POSSIBLE CLUSTERS

acaaaaa

IF (I ,GE, LIVE(IL1) ,AND, I ,GE, LIVE(L) .OR,
* L ,BQ, Ll ,OR, L ,EQ, LL) GOTO 60

RR = R2 / AN2(L)

DC = 0,0

DO50Jd =1, N

ACI, JY - C°L, I

DC + DD * DD

IF (DC .GE, RR)Y GOTD 60

aoao

e NeNrNe]

ancooan

a0 aaa0

Qoo

STATISTICAL ALGORITHMS 107

50 CONTINUE

R2 = DC * AN2(L) -
12 =L

60 CONTINUE

IF (R2 LT, D{IV GOTO 70
IF NO TRANSFER IS NECESSARY, 12 IS THE NEW IC2(I)

1C2°1Y = 12
GOTQ a0

UPDATE CIUSTER CENTRES, LIVE, NCP, AN1 AND AN2
FOR CLUSTERS L1 AND 12, AND UPDATE IC1(I) AND IC2(I)

20 INDEX = 0

LIVE(L1Y = M + I

LIVE'T2) = M + I

NCP(L1) = X

NCP(12) = I

ALl = NC(L1)

ALY = ALL - 1,0 '

AL2 = NC(I12)

ALT = AL2 + 1,0

o8 J=1, N

C(L1, JY = (C(L1, J) = ALl - ACX, J)) / AL¥

c(12, JY = (C(Lz, J) * A2 + ACI, J)) / ALT
80 coNnTiNuE

NC(L1) = NC(L1) = 1

Q0

100

NC(L2) = NC(I2) + 1
AN2(L1Y = ALV / ALl
AN1(11) = BIG

IF (ALW ,GT, 1.0% AN1{L1) = AW / (ALW - 1,0)
AN1(I2) = ALT / AL2
AN2(12Y = ALT / (ALT + 1,0}
ICL(IY = 12

IC2(I) = 11

CONTINUE

IF (INDEX ,EQ., MY RETURN
CONTINUE

nM110 L =1, K

ITRAN/LY IS SET TO ZERO BEFORE ENTERING QTRAN,
ALSO, LIVE(L) HAS TO BE DECREASED BY M BEFORE
RE-ENTERING OPTRA

ITRANCLY = O
LIVE(L) = LIVE(LY - M

110 CONTINUE

RETURN
END

SUBROUTINE QTRAN(A, M, N, C, K, IC1, IC2, NC, AN1,
* AN2, NCP, D, ITRAN, INDEX)

ALGORITHM AS 136.2 APPL, STATIST. (1079} VOL.28, NO.1

THIS IS THE QUICK TRANSFER STAGE,

IC1<IY IS THE CLUSTER WHICH POINT I BELONGS TO,
IC2(XY IS THE CLUSTER WHICH PDINT I IS MOST

LIKELY TO BE TRANSFERRED TN,

FOR EACH POINT I, IC1(IY AND ICZ(I) ARE SWITCHED, IP
NECESSARY, T REDUCE WITHIN CLUSTER SUM OF SQUARES,
THE CILUSTER CENTRES ARE UPDATED AFTER EACH STEP

DIMENSION ACM, N), IC1(M), IC2(M), DM
DIMENSION C{K, N), NC(K), ANL1(K), AN2(K), NCP(K), ITRAN(K)

DEFINE BIG TO BE A VERY LARGE POSITIVE NUMBER

DATA BIG /1,0E10/

108

[EeNeNoNe]

[N eNe]

o000 s NeNeNsNe Nz Ne]

anoanoon

ao0a

10

20

30

40

50

60
20

APPLIED STATISTICS

IN THE OPTIMAL-TRANSFER STAGE, NCP(L) INDICATES THE
STEP AT WHICH CLUSTER L 1S LAST UPDATED

IN THE QUICK-TRANSFER STAGE, NCP(L) IS EQUAL TQO THE
STEP AT WHICH CILUSTER L IS LAST UPDATED PLUS M

ICOUN = O

ISTEP = O
DO/70OI =1, M
ICOUN = ICOUN + 1
ISTEP = ISTEP + 1
L1 = IC1(I)

12 = IC2(I)
IF POINT I IS THE ONLY MEMBER OF CLUSTER L1, NO TRANSFER

IF (NC(L1) ,EQ. 1) GoTa 6o

IF ISTEP I5 GREATER THAN NCP(1L1), NO NEED TO RECOMPUTE

DISTANCE FROM POINT I TO CLUSTER L1

NOTE THAT IF CIUSTER L1 IS LAST UPDATED EXACTLY M STEPS
AGO WE STILL NEED TQ COMPUTE THE DISTANCE FROM POINT I

TO CLUSTER L1

IF (ISTEP ,GT. NCP(L1)) GOTO 30
DA = 0,0

PD0O20J =1, X

DB = A(I, J) - C(L1, O

DA =DA+ DB * DB

CONTINUE

D(I) = DA = AN1(L1Y

IF ISTEP IS GREATER THAN OR EQUAL TO BOTH NCP(L1) AND
NCP(I2) THERE WILL BE NO TRANSFER OF POINT I AT THIS STEP

IF (ISTEP .GE. NCP(L1) ,AND, ISTEP .GE. NCP{I2)) GOTO Go
R2 = D(I) / AN2(L2)
b = 0,0
PO 40T =1, N

DE = ACI, JY - C{L2, 3

DD = DD + DE * DE

IF (DD .GE. R2) GOTD 6o

CONTINUE

UPDATE CLUSTER CENTRES, NCP, NC, ITRAN, AN1 AND AN2

FOR CLUSTERS L1 AND 12, ALSO, UPDATE IC1(I) AND IC2(I),
NOTE THAT IF ANY UPDATING OCCURS IN THIS STAGE,

INDEX IS SET BACK TO 0

ICOUN = O
INDEX = O
ITRAN(L1) = 1
ITRAN(I2) = 1
NCP(L1) = ISTEP + M

NCP(I2) = ISTEP + M

ALL = NC(L1)

ALW = ALL - 1,0

AL2 = NC(I2)

ALT = AL2 + 1,0

PO30JI=1, N

C(Ll, JY = (C(L1, J) * ALl = A{I, V) / AL
c(12, JY = (C(L2, J) = AL2 + A(I, JV) / ALT
CONTINUE .

NC(L1) = NC(L1) - 1

NC(L2Y = KC(I2) + 1

ANZ2(11) = ALV / AL

AN1(L1) = BIG

IF (AW ,GT. 1,0% AN1(L1) = AIN / (AIW - 1,0)
AN1(L2) = ALT / ALz

AN2(L2) = ALT / ¢ALT + 1.0)

1C1(I) = 12

1c2(¢1) = L1

IF NO REALUXCATION TOOK PLACE IN THE LAST M STEPS, RETURN

IF (ICOUN EQ, M) RETURN
CONTINUE

GOTO 10

END

