
Efficient Determination of Dynamic Split Points in a Decision Tree

David Maxwell Chickering
Microsoft Research

Redmond WA, 98052-6399
dmax@microsoft.com

Christopher Meek
Microsoft Research

Redmond WA, 98052-6399
meek@microsoft.com

Robert Rounthwaite
Microsoft Research

Redmond WA, 98052-6399
robertro@microsoft.com

Abstract

We consider the problem of choosing split points for con-
tinuous predictor variables in a decision tree. Previous ap-
proaches to this problem typically either (1) discretize the
continuous predictor values prior to learning or (2) apply
a dynamic method that considers all possible split points
for each potential split. In this paper, we describe a num-
ber of alternative approaches that generate a small num-
ber of candidate split points dynamically with little over-
head. We argue that these approaches are preferable to
pre-discretization, and provide experimental evidence that
they yield probabilistic decision trees with the same predic-
tion accuracy as the traditional dynamic approach. Fur-
thermore, because the time to grow a decision tree is pro-
portional to the number of split points evaluated, our ap-
proach is significantly faster than the traditional dynamic
approach.

1 Introduction

Decision trees have proven to be useful tools for both
solving classification tasks and for modeling conditional
probability distributions. The literature is rich with studies
of various decision-tree learning systems. Examples of such
systems include CLS (Hunt, Marin and Stone [8]), CART
(Breiman, Friedman and Olshen [1]), ID3 (Quinlan [11]),
C4.5 (Quinlan [10]) and SLIQ (Mehta, Agrawal and Risa-
nen [9]) to name just a few.

When a predictor variable (that is, a variable that is in-
cluded as a decision in the tree) is continuous, the learning
algorithm (conceptually) converts the values of that vari-
able into two or more discrete bins. For example, a node in
a decision tree may test whether or not the value of a contin-
uous predictor is greater than some threshold; defining the
threshold effectively converts the continuous variable into a
binary one.

Methods for discretizing continuous predictor variables
can generally be classified as either static or dynamic. Static

discretization methods discretize all of the continuous pre-
dictors before the decision tree is learned, and the same
“buckets” that result are used throughout the tree. Dynamic
discretization methods, on the other hand, determine the
discretization dynamically as the decision tree is being con-
structed. Thus, the threshold(s) used in one part of the tree
for a particular continuous variable can be different from
those used in another part of the tree.

Dougherty, Kohavi, and Sahami [5] examine the rela-
tive performance of various discretization techniques when
learning both naive-Bayes models and decision trees. 1

Rather surprising, they show that the performance of C4.5
across a number of datasets did not degrade significantly
when a particular static discretization algorithm was used
instead of the usual dynamic discretization algorithm of
C4.5.

Although we have not performed a formal study similar
to Dougherty et al. [5], we have found that in the domains
we work with, dynamic discretization is, in fact, noticeably
superior to static discretization. This discrepancy can per-
haps be explained because we usually both learn and use
decision trees for the purpose of prediction, whereas the
algorithms mentioned above learn and use decision trees
for the purpose of classification. The distinction is that for
prediction, the goal of the learning algorithm is to identify
the correct conditional probability distribution of the target
variable, whereas the goal of classification is to identify the
correct label of the target variable. As described by (e.g)
Cowell [4] in the context of Bayesian networks, models that
result from optimizing these two criteria may be very differ-
ent.

A second reason to prefer dynamic discretization is that
the discretization itself can be interesting to a data analyst.
For example, suppose we learn a decision tree for predicting
whether or not a customer will buy a certain product, based
on known attributes for that customer. It could be interest-
ing that a good discretization of salary for males is different
than a good discretization for females, and that by exam-

1Daugherty et al. [5] use the terms “global” and “local” to refer to static
and dynamic, respectively.

ining that difference the analyst might gain insight into the
domain.

The traditional dynamic approach to discretization is to
allow splits on arbitrary values of predictor variables. In
practice, because tree growing is directed by a scoring cri-
terion, algorithms typically only consider predictor values
that yield different scores. For example, algorithms often
use values that actually occur in the data, or midpoints be-
tween pairs of consecutive values that actually occur in the
data. To identify these potential split points efficiently, al-
gorithms typically consider predictor values in sorted order.
There are two standard methods: (1) for each leaf under
consideration for a split, re-sort the data that “drops down”
to that leaf by the values for each continuous predictor, or
(2) maintain a sorted list of record pointers for each continu-
ous predictor, and propagate the appropriate portions of the
list to the children when a split is applied. Method (1) re-
quires numerous expensive sorts that can significantly slow
down the algorithm, particularly as the data grows large.
Method (2) requires space that scales with the product of
the number of records in the data and the number of con-
tinuous predictors. Furthermore, the initial sorts of the data
may require a prohibitive amount of time.

In this paper, we present a number of simple methods for
performing dynamic discretization. As opposed to the tra-
ditional approaches, these methods efficiently identify only
a small number of potential split points for each continuous
predictor variable. Unlike the traditional approach—where
the number of split points depends on the number of values
in the data, and where sorting contributes super-linear over-
head in either time or space—our methods scale linearly in
both the number of continuous predictor variables and the
size of the data. Two of our methods generate split points
using simple summary statistics from the data; these statis-
tics can be gathered in time that is linear in the size of the
relevant data. The third method generates split points by
dividing the predictor values into k-tiles, which for a con-
stant number of split points can be accomplished in time
that grows linearly with both the size of the relevant data
and the number of continuous predictors. In Section 2, we
introduce notation and provide details on the standard meth-
ods for dynamic discretization.

The paper is organized as follows. In Section 3, we de-
scribe our methods and discuss their time and space com-
plexity. In Section 4, we provide experimental evidence that
some of the proposed methods work as well as the standard
methods when trees are evaluated using the prediction ac-
curacy (i.e. the log-likelihood of a holdout set). Finally, in
Section 5, we conclude with a discussion of future work.

2 Background and Notation

In this section, we provide background information
about decision trees and present our notation.

A probabilistic decision tree T is a structure used to en-
code a conditional probability distribution of a target vari-
able Y , given a set of predictor variables fX1; :::; Xng. The
structure is a tree, where each internal node I stores a map-
ping from the values of a predictor variable X j to the chil-
dren of I in the tree. Each leaf node L in the tree stores a
conditional probability distribution for Y given some subset
of the values of the predictor values.

For a given set of predictor values fx1; :::; xng, we ob-
tain the probability p(Y jX1 = x1; :::; Xn = xn) by start-
ing at the root of T and using the internal-node mappings to
traverse down the tree to a leaf node. We refer to the map-
pings in the internal nodes as splits. When an internal node
I maps values of the predictor variable Xj to its children
nodes, we say that Xj is the predictor variable of node I ,
and that I is a split on Xj .

For example, Figure 1 shows a decision tree for a proba-
bility distribution p(Y jX1; X2; X3). In the Figure, X1 and
X3 are continuous predictor variables defined on the real
line, and Y and X2 are binary (with values 1 and 2). As-
sume that we would like to traverse the decision tree to ex-
tract the probability p(Y jX1 = 12:3; X2 = 2; X3 = 2:4).
We start at the root node, and see that this node is a split on
X2. Because X2 = 2 in the conditioning set of our proba-
bilistic query, the traversal moves next to the right child of
the root. This node is a split on X1, which equals 12.3 in
the query, so we move next to the left child. Finally, be-
cause X3 = 2:4 (and consequently greater than zero), we
finish the traversal by moving to the right child which is a
leaf node. The conditional probability is stored in the leaf,
and we conclude that p(Y = 1jX1 = 12:3; X2 = 2; X3 =
2:4) = 0:2 and p(Y = 2jX1 = 12:3; X2 = 2; X3 = 2:4) =
0:8:

Algorithms for learning decision trees from data typi-
cally try to maximize a scoring criterion by repeatedly re-
placing leaf nodes by internal splits. The majority of the
classification-tree learning algorithms greedily replace each
leaf node with the split that yields the highest entropy in
the data. After this initial “growing phase”, the tree is then
pruned back by greedily eliminating leaves using (e.g.) a
holdout score on a test data set.

In the experiments presented in Section 4, we instead
apply the greedy growing phase using a Bayesian scoring
criterion described in detail by Chickering, Heckerman and
Meek [2]. This criterion avoids over-fitting by (both explic-
itly and implicitly) penalizing model complexity, and con-
sequently no pruning phase is needed.

For almost all scoring criteria, including entropy and the
Bayesian criterion we use, the score for replacing a leaf

X2

X3

X1

X3 X3

p(Y=1) = 0.5
p(Y=2) = 0.5

p(Y=1) = 0.4
p(Y=2) = 0.6

p(Y=1) = 0.2
p(Y=2) = 0.8

p(Y=1) = 0.7
p(Y=2) = 0.3

p(Y=1) = 0.3
p(Y=2) = 0.7

p(Y=1) = 0.2
p(Y=2) = 0.8

21

< 4.5 4.5 < 100 100

< -1 -1< 0 0

Figure 1. Example decision tree for the distri-
bution p(Y jX1; X2; X3)

node L by a split is a function of the subset of the train-
ing dataset that is said to be relevant to L: For any record
in a training dataset, the case is “dropped down” the tree
by traversing the tree the same way as was accomplished in
the example above, using the values of the variables in the
record. For every case that ends up at leaf node L, the case
is said to be relevant to L.

For discrete-valued predictors, a typical candidate split
considered by the learning algorithm is a binary split, where
one child corresponds to exactly one of the discrete states,
and the other child corresponds to all other states. Another
type of discrete split is a complete split, where there is ex-
actly one child corresponding to every value of the discrete
predictor. The most general type of split maps subsets of
the predictor’s values to different children.

For continuous variables, the children of split nodes cor-
respond to intervals of the predictor variable. In principle,
for a given number of children (two in the example above),
there are an infinite number of possible intervals that a split
could define due to the fact that the interval boundaries are
continuous. In the tree shown in Figure 1, for example, the
left child node of the split on X1 could correspond to < c

and the right child could correspond to � c, for any thresh-
old c in the continuous range of predictor variable X 1. The
number of interval-defining thresholds that can be distin-
guished by most scoring criteria, however, is limited by the
number of examples in the training data that are relevant
to the given leaf. Furthermore, Fayyad and Irani [6] prove
that, for the entropy scoring criterion on a discrete target
variable, only a restricted set of thresholds can ever achieve
the maximum score, and consequently only this set need be
considered when using a greedy search. As a result, split
points are typically chosen as the midpoint between suc-
cessive predictor values in the training data or as a specific
predictor value in the training data.

For simplicity, we consider only binary splits on con-
tinuous predictors so we can concentrate our discussion on
the problem of identifying a single split point (i.e. thresh-
old). We note, however, that all of the methods for choosing
a good split point can be used directly to choose multiple
split points (see, e.g. Fayyad and Irani [6], for a discussion
of methods for choosing multiple split points).

The standard method for choosing candidate split points
for a split on leaf node L is as follows. For each continu-
ous predictor Xi, we visit all of the records relevant to L

in sorted Xi order, and consider for split points those val-
ues that are half-way between the Xi values in each pair of
consecutive records. The optimization of Fayyad and Irani
[6] allows us to avoid scoring all possible split points, but it
still requires us to examine the records in sorted order.

There are two methods for handling the ordering require-
ment: (1) whenever a node N is considered for expansion,
we can perform a separate sort of the data records relevant to
N on each continuous predictor, or (2) we can pre-sort all of
the records on each continuous predictor, retaining the sort
information that can then be propagated through the tree.

Let m denote the number of records in the training data,
and let mL denote the number of these records that are rel-
evant to node L in the decision tree. Let
 denote the num-
ber of continuous predictor variables. Method (1) requires
time O(
 �mL logmL) for each nodeL considered for split-
ting in the algorithm. For large
 and large datasets, this
time overhead can be prohibitive. If the sort is done in-
place on the data records, method (1) requires no additional
space. Method (2) avoids the per-node sort, but incurs an
initial O(
 � m logm) time hit for the initial sort, and re-
quires O(
 �m) space to retain the individual sort order for
each continuous predictor. For large
 and large m, either
the time overhead or space overhead (or both) may be pro-
hibitive.

3 Some Efficient Discretization Methods

In this section, we describe three simple methods for
identifying split points that have time and space complexi-
ties that grow linearly with the number of relevant records.
All three methods use a common approach to discretization
which we call the quantile approach. Using this approach,
we assume a distribution over split point values at each node
in the decision tree, and choose the split points such that this
distribution is divided into equal-probability regions.

3.1 Gaussian Approximation

The first method, which we call the Gaussian approxi-
mation method, requires only that the mean and standard
deviation of each continuous predictor be known for the

data records relevant to each leaf node in the tree being con-
sidered for a split. These statistics can be gathered easily
whenever the data is being “dropped down” to the children
of a newly-formed split. For each record dropped down to
leaf node L, a running sum and running sum of squares for
each continuous predictor is updated within L, and when
all data has reached L the mean and standard deviation are
derived from these sums.

We derive the split points for each continuous predictor
Xj at leaf node L as follows. First, we choose the number
of split points k to consider. This choice may be made dy-
namically (i.e. via model selection), or as is shown to work
reasonably in the following section, we can pre-define k for
all predictors in all nodes before running the learning algo-
rithm. Second, we choose the split points that yield k + 1
equal-density regions of the domain of X j , under the (usu-
ally bad) assumption that Xj is distributed normally in the
cases relevant to L. In particular, let fc1; :::; ckg denote the
set of k split points. We choose ci as

ci = �L + �L ���1(
i

k + 1
)

where ��1 is the inverse of the cumulative distribution
function of the standard Gaussian, and �L and �L are the
mean and standard deviation, respectively, of the values of
Xj relevant to L.

Given
 continuous predictors and mL relevant records
at leaf L, this calculation requires O(
) space to store the
Gaussian sufficient statistics and O(
 � mL + k) time to
identify the k split points.

3.2 Uniform Approximation

The second method for computing split points is sim-
ilar to the first except that we choose equal-density re-
gions of the predictor domain under the (again, usually
bad) assumption that the predictor is distributed uniformly
between its minimum and maximum value. As in the
Gaussian-approximation method, we can easily accumulate
the necessary statistics for each predictor—which in this
case are simply the minimum and maximum values—as the
data is dropped down to children nodes during learning.
For a continuous predictor Xj with minimum and maxi-
mum values min(j) and max(j), respectively, the uniform-
approximation approach chooses, for a given k, the split
points fc1; :::; ckg such that:

ci = min(j) + i �
max(j)�min(j)

k + 1

The space and time complexities of this approach are iden-
tical to those of the Gaussian-approximation method.

3.3 K-tile method

In our third and final method for computing split points,
we choose the continuous split points using k-tiles. This
corresponds to the quantile approach using the empirical
distribution function. That is, for continuous predictor X j ,
we choose split points fc1; :::; ckg such that there are (ap-
proximately)mL �

i
k+1

records with Xj � ci and mL �
k�i
k+1

records with Xj > ci.2 For example, if k = 1, the method
simply chooses the median value of Xj in the records rele-
vant to L. As in the previous methods, we can pre-compute
k for all nodes and all predictors.

There are well-known algorithms that identify the jth-
smallest value in a list of m elements. In Section 4, we use
a well-known implementation that runs in timeO(m) on av-
erage rather than a more complicated (but also well-known)
implementation that runs in time O(m) in the worst case.
See (e.g.) Cormen, Leiserson and Rivest [3] for a descrip-
tion of both implementations. These algorithms operate in
space that is O(mL), although the average-caseO(mL) im-
plementation can work on the original data records in-place,
resulting in no additional space requirement. For small k,
we can call such an algorithm k separate times for each
continuous predictor, yielding a total time complexity of
O(k �
 � mL) to identify all split points for all predictors
at leaf L. If k is of the same order as logmL, it is probably
faster to simply sort the records for each Xi. In this case,
we have essentially the same algorithm that is commonly
used in practice, except that we consider only k split points
instead of all possible ones.

4 Experiments

In this section, we present experimental results that sug-
gest that two of our methods of selecting split points result
in trees that have better prediction accuracy than trees that
are learned when considering all possible split points. In
addition, our methods significantly reduce the time needed
to learn trees.

We ran experiments using five real-world datasets. Our
selection of datasets was influenced by the fact that for small
data sets, our optimizations will not provide a significant
absolute speedup because the standard techniques will al-
ready provide adequate performance. We chose the first
three datasets because they were the largest data sets from
the UC Irvine repository that were included in the study by
Mehta et al. [9]. These datasets were German, Hypothy-
roid, and Sick-Euthyroid and contain 1000, 3163, and 3163
records, respectively. In terms of speed, even these largest
datasets are too small to warrant using our approach; as we
see below, even when we use the full-blown sorting ap-

2There may be no such split point that satisfies these conditions exactly.

proach, trees in these domains can be learned in less than
three seconds. We include the results here simply to pro-
vide more evidence that we can achieve good prediction ac-
curacy without considering all possible split points.

The fourth dataset, Census, was extracted from the
United States Census Bureau. The data consists of the val-
ues for a set of 37 demographic variables for approximately
300,000 citizens. Eleven of these demographic variables are
continuous. The fifth dataset, Media Metrix, contains demo-
graphic and internet-use data for about 5,000 people during
the month of January 1997. There are 24 demographic vari-
ables in this dataset, six of which are continuous. There are
13 categorical variables that indicate the type of the web
page (e.g. educational, news).

The first three (small) datasets were originally collected
for the purpose of predicting a single output variable. For
the German dataset, the goal is to predict whether or not
a person has good credit. For Hypothyroid and Sick-
Euthyroid, the goal is to predict whether or not a person
has a specific medical problem. As a result, we evaluate our
approaches by learning a single decision tree for the appro-
priate target variable in these domains.

In contrast, Census and Media Metrix are datasets col-
lected with no such obvious prediction task; for such
datasets, probabilistic decision trees are important for ex-
ploratory data analysis and density estimation (e.g. Heck-
erman, Chickering, Meek, Rounthwaite and Kadie, 2000).
In particular, we assume that every variable in the domain
is a target variable, and we learn a separate decision tree
for each. As a result, these datasets effectively provide an
“independent” learning problem for each variable.

To evaluate the performance of our discretization meth-
ods on a particular dataset, we first divided the dataset into
a training set (consisting of a random sample of roughly 70
percent) and a test set (consisting of the remainder). For the
Census dataset, we further sub-sampled the training set so
that our trees were learned using roughly 20,000 records.
Next, we ran a series of trials to evaluate predictive accu-
racy, relative to the traditional sorting method, as a function
of the number of split points k. In particular, for the ith

trial, we (1) set k = 2i � 1, (2) learned a decision tree for
each target variable in the domain, and (3) evaluated the av-
erage relative increase in predictive accuracy that resulted
from using k split points over sorting the data and using all
possible split points.

To measure the predictive accuracy of a tree built to pre-
dict Yj , we took the average log probability or log density
that the tree assigned to the given value yj in each test case.
The average relative increase in predictive accuracy for a
particular dynamic split algorithm was computed as fol-
lows. Let sj denote the predictive accuracy of tree j using
the traditional sorting method, and let aj(k) denote the pre-
dictive accuracy of the jth tree using the given method with

k split points. The relative increase in predictive accuracy
for tree j, rj(k) is defined as

rj(k) =
aj(k)� sj

jsj j

For a discrete target variable Yj , rj is simply the relative
increase in the average number of bits needed to encode an
observation of Yj .

The average increases reported in the figures for Census
and Media Metrix below are the simple average of r j(k)
for those trees that had a continuous split using at least one
method. For the Census data, there were 31 such trees, and
for the Media Metrix data, there were 16 such trees.

As mentioned in Section 1, we used a greedy learning
algorithm in conjunction with a Bayesian scoring criterion.
We grew trees using binary splits only. For discrete predic-
tors, we used the method where the first child corresponds
to one state and the second child corresponds to all others.

For discrete target variables, we learned multinomial dis-
tributions in the leaf nodes, and used a flat Dirichlet param-
eter prior. For continuous target variables, we chose either
a Gaussian distribution or a log-Gaussian distribution ahead
of time for all leaves of the tree; the choice was made based
on which distribution had a better maximum-likelihood fit
on the marginal. If we chose a log-Gaussian distribution, we
implemented the learning algorithm by simply taking the
log of the target variable in each case. Next, we standard-
ized the (possibly logged) data so that the target had mean
zero and standard deviation one. We learned Gaussian dis-
tributions in the leaf nodes for the standardized values, us-
ing a Normal-Wishart parameter prior that had a prior mean
of zero (equivalent sample size one) and a prior precision
of one (equivalent sample size two). After learning these
Gaussian distributions, we transformed the parameters to
correspond to the original data space. We used a structure
prior of the form �f , where f is the number of free parame-
ters of the tree structure. For the three small datasets and for
Census, we used � = 0:1, and for Media Metrix, we used
� = 0:01; these values have proven to work well in previ-
ous (unrelated) experiments in these domains. We also used
the non-Bayesian rule that a split is never applied if one of
the resulting leaves has less than 10 relevant records.

Figure 2 shows the results of our experiments for all of
the datasets. For the three small datasets, each point corre-
sponds to a single learning instance. For the Census dataset
results in Figure 2(d), each point is an average across the 31
trees for which at least one method resulted in a split on a
continuous variable. Similarly, for the Media Metrix dataset
results in Figure 2(e), each point is an average across the 16
trees for which at least one method resulted in a split on a
continuous variable. In all five plots, the zero axis corre-
sponds to a zero increase in predictive accuracy. In other
words, this line corresponds to performance that is equiva-

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
1 3 7 15 31 63 12

7
25

5
51

1
10

23
20

47

(a) Hypothyroid (b) Sick-Euthyroid
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015
1 3 7 15 31 63 12

7
25

5
51

1
10

23
20

47

(c) German
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
1 3 7 15 31 63 12

7
25

5
51

1
10

23
20

47

Gaussian

K-tile

Uniform

Gaussian

K-tile

Uniform

Gaussian

K-tile

Uniform

(d) Census (e) Media Metrix
-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005
1 3 7 15 31 63 12

7
25

5
51

1
10

23
20

47

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
1 3 7 15 31 63 12

7 25
5

51
1

10
23

20
47

Gaussian

K-tile

Uniform

Gaussian

K-tile

Uniform

Figure 2. Relative increase in predictive accuracy (y-axis) for all of the data sets as a function of the
number of split points k (x-axis) for the three proposed methods.

lent to the method of sorting and scoring all predictor val-
ues. As k grows large, all three of the methods should con-
verge to something very close to this line because, at some
point, every split point considered by the sorting method
will be available for consideration by the other algorithms.
It is possible, however, for the asymptotic performance of
the Gaussian- and uniform-approximation methods to con-
verge to some non-zero value; because the performance is
measured on a test set, arbitrary choices of split points that
have identical scoring criterion values for the training set
may result in different prediction accuracy on the test set.
As the size of the training data grows large, we expect such
differences to be minimal. Note that the k-tile method,
implemented using midpoints instead of endpoints as de-
scribed, will be equivalent to the sorting method as soon as
k is equal to one less than the number of cases for the given
leaf.

For the small datasets Hypothyroid and Sick Euthyroid,
the Gaussian-approximation and the k-tile method both
worked as well as the full sort method using only a few split
points. Although in the German data set the relative predic-

tion accuracy appears not to be very monotonic in k, note
that none of the approximations are ever less that a percent
and a half worse than the full sort method. We believe the
variance in the accuracies in the German domain are a result
of the small sample size.

In none of the small datasets did the full sort method take
longer than three seconds to construct the tree. Although
the approximation techniques are faster, it does not make
sense to adopt an approximation technique to speed up an
algorithm that is already extremely fast.

We now turn our attention to the results for the Census
dataset and the Media Metrix dataset. Both the Gaussian-
approximation method and the k-tile method worked as well
as the full-blown sorting method using only a few split
points. In particular, we see that in both domains, these
methods attain or surpass the sorting approach using only
15 split points.

In Figure 3 and Figure 4, we show the running times for
all algorithms as a function of the number of split points, for
Census and Media Metrix, respectively. Note that both axes
are on a logarithmic scale in both figures. The time to learn

in these domains grows roughly linearly in k (for k > 511),
and the three approximation approaches all take about the
same time. We expect that in domains with more continuous
variables, the k-tile approach, although still linear in k, will
prove to take longer in practice.

1

10

100

1000

10000

1 3 7 15 31 63 12
7

25
5

51
1

10
23

20
47

T
im

e
(s

ec
)

Gaussian

Ktile

Uniform

Figure 3. Time in seconds to learn all trees in
the Census domain as a function of the num-
ber of split points k for the three proposed
methods.

Although the k-tile method seems to be the best for Me-
dia Metrix and small k, the Gaussian approach works al-
most as well on the Media Metrix trees and just as well (for
k � 15) on the census trees. The results also show that
the uniform-approximation approach does not work well in
these domains.

In Figure 5, we show the relative accuracy, using 15 split
points, for each of the 31 trees in the Census domain that
had at least one split using one of the three methods. Sim-
ilarly, in Figure 6, we show the relative accuracy, using 15
split points, for each of the 16 trees in the Media Metrix
domain that had at least one split using one of the three
methods.

5 Conclusions and Future Work

We have presented three methods that dynamically de-
termine split points for continuous predictor variables in a
decision tree. We have given experimental evidence that
the predictive accuracy of the trees that result from using
two of them—namely, the Gaussian-approximation method
and the k-tile method—are competitive with the standard
approach of scoring all possible split points, while using
only 15 split points.

1

10

100

1000

10000

1 3 7 15 31 63 12
7

25
5

51
1

10
23

20
47

T
im

e
(s

ec
)

Gaussian

Ktile

Uniform

Figure 4. Time in seconds to learn all trees
in the Media Metrix domain as a function of
the number of split points k for the three pro-
posed methods.

The predictive-accuracy plots that we presented in the
previous section show the gain, as a function of the num-
ber of split points, that we get if we commit to the num-
ber of split points prior to running the learning algorithm.
Alternatively, we could incorporate a model-selection step
in the learning algorithm that decides (dynamically) how
many split points to use at each split in the decision tree.
We expect some modest gains in accuracy and potentially
some gain in running time were we to implement such an
approach.

As mentioned in Section 3, all three of our split-point
selection methods can be viewed as identifying quantiles
in predictor-variable distributions. It might be interest-
ing to investigate and evaluate alternative, computationally
tractable distributions. Additionally, we could try randomly
sampling potential split points from predictor-variable dis-
tributions.

Finally, we point out that in many data sets, the major-
ity of the time that the learning algorithm spends growing
a decision tree is spent scoring candidate splits. If this is
the case, then our methods can save time not only by spend-
ing less computation identifying split points to score, but by
spending less time scoring splits by virtue of the fact that so
few split points are needed for good accuracy.

Acknowledgments

The Media Metrix dataset for this paper was generously
provided by Media Metrix. We thank the anonymous re-

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Gaussian

Ktile

Figure 5. Relative increase in predictive ac-
curacy, corresponding to a fixed k = 15, for
the 31 trees in the Census data for which at
least one methods resulted with a split on a
continuous variable.

viewers for useful comments.

References

[1] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi-
fication and Regression Trees. Wadsworth & Brooks, Mon-
terey, CA, 1984.

[2] D. Chickering, D. Heckerman, and C. Meek. A Bayesian
approach to learning Bayesian networks with local structure.
In Proceedings of Thirteenth Conference on Uncertainty in
Artificial Intelligence, Providence, RI, pages 80–89. Morgan
Kaufmann, August 1997.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduc-
tion to Algorithms. The MIT press, 1990.

[4] R. G. Cowell. On searching for optimal classifiers among
Bayesian networks. In Proceedings of the Eighth Inter-
national Workshop on Artificial Intelligence and Statistics,
pages 175–180, January 2001.

[5] J. Dougherty, R. Kohavi, and M. Sahami. Supervised
and unsupervised discretization of continuous features. In
A. Prieditis and S. Russell, editors, Proceedings of the
Twelfth International Conference on Machine Learning,
pages 194–202. Morgan Kaufman, 1995.

[6] U. M. Fayyad and K. B. Irani. Multi-interval discretization
of continuous-valued attributes for classification learning.
In Proceedings of the 13th International Joint Conference
on Artificial Intelligence, pages 1022–1029. Morgan Kauf-
mann, 1993.

[7] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite,
and C. Kadie. Dependency networks for inference, collab-
orative filtering, and data visualization. Journal of Machine
Learning Research, 1:49–75, October 2000.

[8] E. B. Hunt, J. Marin, and P. T. Stone. Experiments in Induc-
tion. Academic Press, New York, NY, 1966.

[9] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scal-
able classier for data mining. In Proceedings of the Fifth

-0.1

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Gaussian

Ktile

Figure 6. Relative increase in predictive accu-
racy, corresponding to a fixed k = 15, for the
16 trees in the Media Metrix data for which at
least one methods resulted with a split on a
continuous variable.

International Conference on Extending Database Technol-
ogy, pages 18–32, March 1995.

[10] J. Quinlan. Programs for machine learning, 1993.
[11] J. R. Quinlan. Induction of decision trees. Machine Learn-

ing, 1:81–106, 1986.

