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CONFIRMATORY TETRAD
ANALYSIS

Kenneth A. Bollen*
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A “tetrad” refers to the difference in the products of certain
covariances (or correlations) among four random variables. A
structural equation model often implies that some tetrads should
be zero. These “vanishing tetrads” provide a means to test struc-
tural equation models. In this paper we develop confirmatory
tetrad analysis (CTA). CTA applies a simultaneous test statistic
for multiple vanishing tetrads developed by Bollen (1990). The
simultaneous test statistic is available in asymptotically
distribution-free or normal-distribution versions and applies to
covariances or to correlations. We also offer new rules for deter-
mining the nonredundant vanishing tetrads implied by a model
and develop a method to estimate the power of the statistical test
for vanishing tetrads. Testing vanishing tetrads provides a test
for model fit that can lead to results different from the usual
likelihood-ratio (LR) test associated with the maximum likeli-
hood methods that dominate the structural equation field. Also,
the CTA technique applies to some underidentified models. Fur-
thermore, some models that are not nested according to the
traditional LR test are nested in terms of vanishing tetrads. Fi-
nally, CTA does not require numerical minimization and thus
avoids the associated convergence problems that are present
with other estimation approaches.
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In 1904 Spearman laid the groundwork for what was to become
factor analysis. In this and more clearly in his later work (e.g., Spear-
man 1927), he demonstrated that a single factor underlying four or
more observed variables implies that the difference in the products
of certain pairs of the covariances (or correlations) of these variables
must be zero. These came to be referred to as “vanishing tetrads.”
The use of vanishing tetrads to examine models with latent variables
dominated the work on factor analysis for the first third of the twenti-
eth century. This approach eventually gave way to other techniques
such as principal components (Hotelling 1933) and later to the maxi-
mum likelihood (e.g., Lawley and Maxwell 1971) and weighted least
squares (e.g., Browne 1984) estimators that dominate today’s factor
analyses. The general structural equation models (SEM) that have
now swept through most of the social sciences initially also flirted
with the tetrad approach to model testing (e.g., Costner 1969; Dun-
can 1972; Kenny 1974), but it has been replaced by the maximum
likelihood method popularized by Joreskog (1973) in the LISREL
program (Joreskog and Sérbom 1989).

The tetrad approach to SEM was all but forgotten until
Glymour et al. (1987) proposed vanishing tetrads as a viable method
to search for models that are consistent with the covariance matrix of
observed variables. Their emphasis has been exploratory tetrad
analysis (ETA) based on a computer intensive search algorithm to
formulate models with a good match to the tetrads of the observed
variables. In this paper we propose a confirmatory tetrad analysis
(CTA) that tests one or several specific models. CTA is “confirma-
tory” in that models are specified in advance. The structure of each
model often implies population tetrads that should be zero. A test of
a model’s vanishing tetrads is a test of the model’s fit. Significant
nonzero tetrads for the model implied vanishing tetrads cast doubt
on the appropriateness of the model.

The relation between ETA and CTA is analogous to that be-
tween exploratory and confirmatory factor analysis. Our CTA ap-
proach differs from Glymour et al.’s ETA in several ways. First,
CTA is meant to fest rather than to generate models, the latter being
the purpose of ETA. As such, CTA and ETA are not rival methods.
Second, we employ a simultaneous test for vanishing tetrads that
applies to normal or nonnormal variables (Bollen 1990). Glymour et
al. (1987) use Wishart’s (1928) single tetrad test that assumes
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multinormally distributed observed variables and that does not con-
trol for multiple testing problems. Third, we also provide a modifica-
tion for the test statistic so that it applies to correlations as well as
covariances. Fourth, we look only at the nonredundant vanishing
tetrads whereas Glymour et al. (1987) examine all vanishing tetrads.

A natural question is why should we consider CTA when we
already have confirmatory factor analysis and the other maximum
likelihood (ML)/weighted least squares (WLS) approaches to the gen-
eral SEM? There are several good reasons. First, testing vanishing
tetrads provides a goodness-of-fit test for a model that can lead to
results different from the usual likelihood-ratio (LR) test associated
with the ML/WLS methods.! We do not claim that our test is superior
to the LR test, but it may be possible to reveal specification errors that
are not evident in the LR test. Second, the CTA technique applies to
some underidentified models. We can have a test of model fit even if
the parameters of the model cannot be uniquely determined.? Third,
some models that are not nested according to the conventional LR test
are nested in terms of vanishing tetrads.> CTA allows the overall fit of
some “nonnested” models to be compared directly. Finally, as men-
tioned previously, we have asymptotically distribution-free tests that
apply to covariances and correlations. Although distribution-free esti-
mators also are available for SEM through the work of Browne (1984)
and others, the main advantage of our technique is that CTA uses a

'We use the term “likelihood ratio (LR)” test here and throughout the
paper to refer to the tests that are based on ML estimation as well as on WLS
estimation. Strictly speaking, the LR test refers only to the test statistic from ML
methods. However, Browne (1984), among others, justifies the usual ML fitting
functions and test statistics under the less restrictive WLS family of estimators.
Thus, for the sake of brevity, we use LR test to mean the overall fit tests derived
from ML or WLS methods.

ZShapiro (1986) discusses the theoretical conditions where it is possible
to have an LR or WLS test statistic that follows an asymptotic chi-square distribu-
tion for some underidentified models. We know of no empirical applications of
this work.

3It is possible to compare the fit of nonnested models using some of the
overall fit measures in structural equation models that take the degrees of free-
dom of a model into account (see, for example, Bollen 1989, pp. 256-81).
However, these typically do not provide a test of the statistical significance of the
differences in fit for nonnested models. A growing literature on significance
testing for nonnested models is accumulating (e.g., MacKinnon 1983; Judge et
al. 1985, pp. 881-85), but little of this work has penetrated the structural equa-
tion literature. On the other hand, this literature on nonnested models has not
considered vanishing tetrads as a test for such models.
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noniterative estimator that does not have nonconvergence problems
as is sometimes true for the commonly used procedures.

In this paper we propose CTA and illustrate its application to
the previously mentioned issues. We view CTA not as a replacement
for the standard methods of SEM but rather as a technique that
complements current methods of model evaluation. For models that
are not easily testable under the conventional methods, CTA some-
times can be a useful tool for model evaluation. In the following
sections, we will discuss the concept of vanishing tetrads, propose
new rules for selecting nonredundant vanishing tetrads, provide a
method of significance testing, and develop a method to estimate the
power of the vanishing tetrad test. Finally, we will illustrate the
applications of CTA with examples.

1. MODEL IMPLIED VANISHING TETRADS

The idea of vanishing tetrads is best introduced by way of examples.
Figure 1(a) is a path diagram of a factor model with one latent
variable (¢;) and four observed variables (x, to x,). We use the usual
path analysis conventions where an oval or circle signifies a latent
variable and boxes denote observed variables. Disturbances (or er-
rors) are not enclosed. A single-headed straight arrow indicates an
effect of the variable from the base of the arrow to the variable at the
head of the arrow. The equations corresponding to this diagram are
of the form:

X, = Ay + (1)

where §; is the random measurement error (disturbance) term with
E(8) = 0 for all i, COV(§,, 8,) = 0 fori # j, and the COV(&;, §) = 0
for all i. All variables are written as deviations from their means to
simplify the algebra.

The population covariances (o;;) of the observed variables are

of the following form:
O = Aphjd. (2)

where oy, is the population covariance of the / and j variables and ¢ is
the variance of &,. If the model is correct, then we can use covariance
algebra (e.g., Bollen 1989, p. 21) to prove that the equalities below
must hold:
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FIGURE 1. Two factor models.

Tio34 = 013034 = 013024 = 0

Ti32 = 01304 — 01403, = 0 (3)

Tips = 014023 — 01043 = 0,

where 7, is the population tetrad difference that equals the quantity
to its right. We use the Kelley (1928) notation for tetrads, where 7,
refers to o0 — 0,05, When 7,,:is zero for a model, this is referred to
as a vanishing tetrad. The model in Figure 1(a) implies the three
vanishing tetrads in equation (3). Due to sampling errors, the sample
counterpart, Z,,;, is likely to be nonzero. A simultaneous significance
test described later can be used to determine whether the model in
Figure 1(a) is consistent with the sample data. A nonsignificant test
statistic means that the implied vanishing tetrads hold and the model
is a legitimate candidate for consideration. If the significance test
indicates otherwise, the one-factor model in Figure 1(a) would be
rejected.

Figure 1(b) shows a two-factor model with two indicators for
each latent variable. The only vanishing tetrad implied by this model
is

Tiza2 = 01304 — 01403 = 0. 4)

A significance test of this vanishing tetrad provides a test of the
model in Figure 1(b). Notice that the vanishing tetrad implied by the
model in Figure 1(b) [see equation (4)] is a subset of the vanishing
tetrads implied by the model in Figure 1(a) [see equation (3)]. When-
ever the vanishing tetrads of one model are a subset of those in
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another, we refer to such models as having “nested tetrads.” If the
difference in the test statistics for the two models is not significant,
this lends support to the model that implies the most vanishing
tetrads. If the test result is significant, we would prefer the model
with the fewest vanishing tetrads. In Figure 1 we would favor the one
factor model if the test statistic for the vanishing tetrads in equation
(3) is not significantly greater than the test statistic for the vanishing
tetrads in equation (4).

2. IDENTIFYING VANISHING TETRADS

To perform significance tests, we need to identify the vanishing
tetrads implied by a model. We propose three methods for this task:
covariance algebra, a new rule for factor analysis models, and a new
empirical method for general SEM .4

2.1. Covariance Algebra

The first method uses covariance algebra to show the vanishing
tetrads for a model. The starting point is the structural equations and
assumptions for a model (for example, see equation [1]). A few
simple rules of covariance algebra (Bollen 1989, p. 21) allow us to
express the covariance of any two variables in terms of the parame-
ters of the model (for example, see equation [2]). A more general
way of obtaining the covariances of the observed variables in terms
of the model parameters is to use matrix methods to form the model
implied covariance matrix for a model (see Joreskog and S6rbom
1989, p. 5). We can then compare two pairs of covariances in a tetrad
and conclude whether a vanishing tetrad is implied by the model.
Whether a vanishing tetrad is implied does not depend on the value
of the coefficients unless one or more have a trivial zero coefficient
or the unlikely coincidence occurs that the combination of values of
the parameters lead to zero. In other words, in practice the structure
of a model determines the vanishing tetrads, not the specific values
of the parameters.

4Another possibility is to use Glymour et al. (1987) computer algorithms
to determine the vanishing tetrads of models.
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2.2. A Factor Analysis Rule

Using covariance algebra, as we did for the models in Figure 1,
becomes tedious for models with more than four variables. The sec-
ond method, which can simplify the task, works for factor analysis
models where each indicator is influenced only by one latent variable
and an error variable, though this rule permits correlated errors of
measurement. A vanishing tetrad is implied when two conditions are
met: (1) none of the four covariances in a tetrad equation involve
correlated error terms and (2) the two pairs of latent variables associ-
ated with the two covariances in the first term match those in the
second term of the equation.

Regardless of the size of the model, we consider four variables
at a time and repeat the process for every foursome of variables in
the model. For every four variables, there are three possible vanish-
ing tetrads, and each of them has to be checked regarding whether it
fulfills the above two conditions. Suppose x, x,, X3, X, are four indica-
tors in a factor model with each observed indicator affected only by
one latent variable and an error variable. The four measurement
equations are:

Xy = Apg t+ 6y, and X3 = Ay + 05,

Xy = A€+ 0y, Xy = A€ + 64

For instance, whether 7,3, = 0,03, — 0,305, = 0 is implied by a model
depends on 0,03, and o0;;0,,. Each correlated error of COV(§,,6,),
COV(83,8,), COV(8,,8;), and COV($,,8,) has a unique effect on the
covariance of o0;,, 03,, 0,3, and o,, respectively. If any of the four
correlated error terms is nonzero, o;,073, will not equal o7;0,,, except
under the very unlikely case where the effects of correlated errors on
the four covariances cancel each other out. A vanishing tetrad is
implied only under the condition that none of the four covariances
involves a correlated error term. (This condition can be used to rule
out vanishing tetrads in models other than the one described here.)

If we assume that the latent variables do not correlate with the
error terms and the correlated errors of COV(8,,6,), COV(8;,6,),
COV(8;,8;), and COV(8,,8,) are zero, then 07,03, and o,;0,,equal the
following:
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012034 = ApiAyAzd gy and 013024 = AiAyAyi Ay by

It becomes obvious that 0,03, — 0,305, = 0iff ¢, = ¢y Py, provided
that none of the A; is zero. This equality holds only if a vanishing
tetrad satisfies the second condition that the two pairs of latent vari-
ables associated with 0,03, match with those associated with o;;0,. In
this example, §; = £ is necessary and sufficient to make ¢;¢,;, = ¢y ;.

We illustrate this rule with the four examples in Figure 2. In
Figure 2(a), we add a correlated error between x; and x, to the two-
factor model in Figure 1(b). Figure 2(a) becomes an underidentified
model. The vanishing tetrad, 7,3, = 0, is implied in Figure 1(b) and
continues to be true in Figure 2(a). The correlated error term that
appears in o3, has no effects on this tetrad equation, and the two pairs

FIGURE 2. Four factor models.
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of latent variables, (¢,,£,) and (&,,¢;), of 0,;0,, match those of o,,073,.
This vanishing tetrad is no longer implied in Figure 2(b), however,
because a correlated error term appears in o,,. The other two tetrad
equations, 7,3, = 0 and 7,,,; = 0, are not implied in the two-factor
models in Figure 2(a) and 2(b) because the corresponding pairs of
latent variables in the first and the second terms of the tetrad equa-
tions do not match each other. The correlated error term in Figure
2(a) alone is sufficient to rule out these two vanishing tetrads. Conse-
quently, one tetrad is implied in Figure 2(a) and none is implied in
Figure 2(b). As such, we have nested tetrads and we can compare the
two models. Note that these two models are not nested in terms of an
LR test, though they are nested for a tetrad test.

The same procedure applies to models with more variables.
With five variables, such as the models in Figures 2(c) and 2(d), we
have five sets (5!/1!4!) of tetrad equations. The task in Figure 2(c) is
simplified because the model is composed of only two basic struc-
tures. Consider x;, x,, x3, and x, with two indicators for each latent
variable. This part of the model is identical to the model in Figure
1(b), and it implies the same vanishing tetrad, 7,5,,. In an analogous
fashion we can find the vanishing tetrads for x,, x,, x;, and x;, and for
X7, X5, X4, and x5 since they share the same basic structure of two
indicators per latent variable.

The second basic structure has one indicator for ¢, and three
indicators for §,. Consider x;, x;, x,, and x5. All three vanishing
tetrads (73,5 = 0, 7,453 = 0, and 7,53, = 0) are implied. First, no corre-
lated errors exist in any of the covariances, and second, (£,;,£) and
(&,,¢;) are the two pairs of latent variables in the first and the second
terms of each tetrad equation. Similarly, the three vanishing tetrads
among x,, x3, x4, and x5 are also implied for the same reasons.

We modify Figure 2(c) by adding one more latent variable and
one correlated error term in Figure 2(d). The rule for determining
implied vanishing tetrads is no different from that used in the previ-
ous three examples. If we consider x, to x,, the model structure is
identical to the one in Figure 1(b), and only 7,54, = 0 is implied. For
X1, X5, X3, and Xs, 7535 = 0 and 7553 = 0 are not implied because o3,
which is in both equations, has a correlated error term. The two pairs
of latent variables associated with o ;05, and o503, are (£,,§,) and
(&,¢;) and (¢;,¢;) and (&,,¢,) respectively, and no correlated error term
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appears in the four covariances in this tetrad equation. As such, 735,
= O is implied in the model. Among x,, x,, x,, and x5, only 7;,5, = 0'is
implied. Finally, application of our general rule to the set of xy, x3, x,,
and x5 and the set of x, to x5 shows no vanishing tetrads.

The same strategy for determining vanishing tetrads applies to
other factor analysis models where each indicator is influenced by a
single latent variable and an error term.

2.3. An Empirical Method

The covariance algebra technique for determining vanishing tetrads
is perfectly general but too tedious to implement for complex mod-
els. The factor analysis rule is inapplicable to models with factor
complexity greater than one or to general SEM. In this subsection we
describe a simple but new empirical means to determine model im-
plied vanishing tetrads. The procedure has four steps:

1. Arbitrarily specify the values of model parameters.

Use model parameters specified in step 1 to generate the implied

covariance matrix through structural equation programs such as

LISREL (Joreskog and S6rbom 1989), EQS (Bentler 1989), or

CALIS (Hartmann 1991).

Calculate all tetrads.

4. Take those tetrads within rounding of zero as the model implied
vanishing tetrads.

w

In step 1 we recommend use of the parameter estimates for a model,
if available, since the implied covariance matrix for step 2 is readily
accessible in the above-mentioned programs. The essence of this
method is to generate a covariance matrix that is consistent with the
model so that when you calculate the tetrads, those that should be
zero will be within rounding error of zero. Researchers having any
doubt regarding whether a value is zero or not can apply the covari-
ance algebra method to the specific tetrads that are in question as an
additional check. Our experience suggests that this method is ex-
tremely accurate. Coupled with its generality, this makes it the
method of choice for most models. We will illustrate the procedure in
the examples section.
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3. REDUNDANT VANISHING TETRADS

Previous tetrad analyses, such as those of Glymour et al. (1987),
focused on tests of individual vanishing tetrads; redundancy was
rarely a concern except in the simple case where all three vanishing
tetrads are implied by a set of four variables. As a result, there is no
guidance on how to select nonredundant vanishing tetrads among all
those implied by a model. For a simultaneous test of a set of implied
vanishing tetrads, we have to determine which vanishing tetrads are
redundant and should be excluded from the test. Otherwise, the
covariance matrix of the tetrads that is part of the test statistic can be
singular, and its inverse will not exist. In the material that follows we
develop a procedure to deal with this problem.s

Algebraic substitution between vanishing tetrads will show
that some of the vanishing tetrads can be derived from the others and
are redundant for the test. When none of the covariances are in
common between vanishing tetrads, algebraic substitution is impossi-
ble. When two vanishing tetrads have three or more covariances in
common, they must be identical. Therefore, we need to consider
only two cases: those vanishing tetrads having either one or two
covariances in common.

When two covariances in one vanishing tetrad are identical
with the covariances in another vanishing tetrad, it is a sufficient
condition that a third vanishing tetrad must be implied and should be
eliminated in the simultaneous test. The simplest case is when all
three vanishing tetrads are implied for a set of four variables, only
two of them are needed for the simultaneous test due to redundancy.
For instance, if

Tabcd — Oab%cd ™~ OacOpa = 0,
Tacdb = TacOab ™ Ogq0ch = 0’ and
Tadbe ~ OadObc ~ OapTca = 0’

then any two of them imply the third—that is, only two vanishing
tetrads are independent. Suppose we have two vanishing tetrads

SIn comments on this paper, Yu Xie suggested a method for determining
the nonredundant vanishing tetrads by using an analogy to methods of determin-
ing the odds-ratios in a contingency table. However, the method was suggested
for single factor models without correlated errors of measurement, and it is not
clear whether the procedure generalizes to other models.
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Tacdb = TacOab — OadOch = 0 and (5)

Tadeb = OadTeb ~ TaTap = 0, (6)
where o, and o, appear in both vanishing tetrads. Algebraic manipu-
lation between (5) and (6) will show that

Taceb = TacTeb ~ OgeOch = 0 (7)

is implied.

In the case where there is only one common covariance be-
tween two vanishing tetrads, algebraic substitution will lead to a
vanishing equation with six covariances, and no additional vanishing
tetrad will be implied. For example,

Tabed = OapOca ~ Oac0pq =0 and (8)
Tabef = OabTef — OaeOpr = 0 )]

imply
O4c0bd0ef ~ OeOpf0cq = 0. (10)

Introducing more vanishing tetrads with one common covariance
with equation (10) only will further expand the equation. The single
possibility is to have another vanishing tetrad that has three covari-
ances in common with equation (10) such that three covariances can
be eliminated and a new covariance term will be added to equation
(10). Consider

Taeed = TaeOcd — TacUed = 0. (11)

In vanishing tetrad (11), o, o,,, and o,; appear in equation (10).
Equations (10) and (11) together imply a redundant vanishing tetrad,

Tofde = Obf0de — OpaTfe = 0. (12)

That means given vanishing tetrads (8), (9), and (11), vanishing
tetrad (12) should be excluded in the simultaneous test.
Alternatively, with the rule of two common covariances, van-
ishing tetrad (12) can be concluded from pairwise algebraic substitu-
tion between vanishing tetrads. Notice that o, 0., 0., and o, appear
twice in vanishing tetrads (8), (9), and (11). These four covariances
can be eliminated through algebraic substitution and the remaining
four covariances form vanishing tetrad (12). We begin with vanishing
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tetrads (8) and (11) because o,, and o, appear in both equations. As
a result, another vanishing tetrad

Taebd = TaeTbd ~ OapTeq = 0, (13)

is implied. In vanishing tetrads (9) and (13), both have o, and o,
and (9) and (13) together lead to the redundant vanishing tetrad
(12). This example illustrates that pairwise comparisons between
those vanishing tetrads with two common covariances are an ade-
quate means for identifying redundant vanishing tetrads.

The above example shows that vanishing tetrads (8), (9), (11),
(12), and (13) are linearly dependent among each other; only three
of them are needed for model testing. If the model is correct and the
null hypothesis is true, then the choice of the three vanishing tetrads
matters little. With an incorrect model and a false null hypothesis, it
is possible that the selection might matter more. In our experience
with the examples in the empirical example section, we found similar
results regardless of the choice of the nonredundant vanishing
tetrads. However, as a precaution one could select a different set of
redundant vanishing tetrads to exclude and recalculate the test of
significance. Since more than one significance test is being per-
formed, the researcher should adjust the individual alpha levels for
the significance tests to maintain an overall alpha level for the family
of tests. A Bonferroni correction is probably the easiest one to imple-
ment. Consistent test results increase our confidence in the initial
results while inconsistent test results indicate that the model is not
correct.6

4. SIGNIFICANCE TESTING OF VANISHING TETRADS

Spearman and Holzinger (1924), Kelley (1928), Wishart (1928), and
Kenny (1974) have proposed significance tests for a vanishing tetrad.
All these tests are asymptotic, assume a multivariate normal distribu-
tion among the observed variables, and are not simultaneous tests for
multiple vanishing tetrads. Bollen (1990) proposed a less restrictive

There are two other possible sensitivity checks: (1) Take the pool of
redundant tetrads and perform the simultaneous significance test on them, after
eliminating any redundant tetrads in this group, and (2) perform individual
vanishing tetrad tests on the redundant tetrads to see if any are significant. Use a
Bonferroni correction to take into account the multiple tests that are performed.
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test that evaluates multiple tetrads simultaneously, applies to nor-
mally or nonnormally distributed observed variables, and analyzes
correlations or covariances. This test was originally proposed for ETA
but is applicable to CTA as well. The null hypothesisis H,: 7= 0, and
the alternative hypothesis is H,: 7 # 0 where 7 is a vector of the
population tetrads that are implied to be zero for a specific model. A
significant test statistic suggests that the model implied vanishing
tetrads are not zero and casts doubt on the model’s validity.

To derive the test statistic, we begin with a vector S that in-
cludes the nonredundant elements of S, the unbiased sample covari-
ance matrix of the observed variables.” Let o be a similar vector
formed from X, the population covariance matrix of the observed
variables. We assume that the fourth-order moments of the observed
variables exist and are finite. The E(s) is o. The distribution of VN(s
— o) in finite samples is not always known but the limiting distribu-
tion is multivariate normal with a mean of zero and a covariance
matrix of ¥ (e.g., see Browne 1984, p. 64):

VN(s — o) 2 N(0, 3,). (14)
The elements of 3 give the variances and covariances of the sample
covariances. In general the elements of X equal

[Ess]eﬁgh = Ueﬁqh - Uef o-gh’ (15)

where T ofoh is the fourth-order moment for the e, f, g, and 4 variables.

A sample estimator of g, is
Sefgh = N_I [E (Xe - Xe) (Xf - Xf) (Xg - Xg) (Xh - Xh)] (16)

If the observed variables are multinormally distributed, then the
elements of 3 are

Opp O + O O, (17)

Instead of the asymptotic covariance matrix of the sample
covariances, we require the asymptotic variance of the sample tetrad
differences. Define t as the column vector of the independent sample
tetrad differences implied by a model, 7(o) as the column vector of
the population vanishing tetrads that is a function of o, and o as the

"The derivation of this test statistic is based on the description in Bollen
(1990).
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column vector of all o, that appear in one or more of the vanishing
tetrads. The tetrad differences, ¢, are nonlinear functions of the sam-
ple covariances. Assume that 7(c) is a continuously differentiable
function with respect to o in a neighborhood of the true value of o,
say @, that does not vanish at &,. In conjunction with equation (14),
we can use the delta method (Rao 1973, 385-89; Bishop, Fienberg,
and Holland 1975, 486-500) to estimate the asymptotic variance of t.
Using this theorem, we have

VNt N(0,3,) (18)
3, = (07 00)' 3 (37/00), (19)

where 3, is the covariance matrix of the limiting distribution of the
sample tetrad differences and 3, is the covariance matrix of the
limiting distribution of the sample covariances that appear in the
sample tetrad differences. Assume that X is continuous with respect
to the fourth order moments and elements of ¢ of which it is a
function in a neighborhood of the true values of the fourth order
moments and o,. Then all the parameters in (19) can be estimated by
replacing the population parameters by their sample counterparts.
Note also that this can be made a distribution-free estimator of the
asymptotic covariance matrix by the choice of ¥ . The main diagonal
of 3, contains the variances of the sample tetrad differences while
the off-diagonal elements contain their covariances for the limiting
distribution.
A test statistic of whether all tetrad differences are zero is

T=NtZ 't (20)

Asymptotically, T approximates a chi-square variate with df equal to
the number of tetrad differences simultaneously examined. The H, is
that all tetrad differences implied by a model are zero (i.e., 7 = 0).
Failure to reject H, provides support for the model whereas rejection
suggests that one or more tetrad differences are different from zero.
When there is only one tetrad difference in t, then (20) equals:

(11432) TAVAR (143,). (21)

Also, the test statistic generalizes to hypotheses of nonzero values of
7 by replacing t with (t — 7) in equation (20), with 7 containing the
values of the population tetrads under H,,.




162 KENNETH A. BOLLEN AND KWOK-FAI TING

The results can be modified to apply to tetrad differences of
correlation coefficients rather than covariances. The key change is to
replace the covariance matrix of the covariances (i.e., X)) with the
covariance matrix of the correlation coefficients (i.e., %,,). The ele-
ments of ¥, for arbitrary distributions are (Isserlis 1916)

[zrr]ef,gh = pefgh + (1/4)pefpgh(peegg + pﬁ’gg + Peehn + pfjhh)
- (1/ 2) pef(peegh + pffgh) (22)
- (1/2) pgh(pefgg + pefhh),

where p,g, is the standardized fourth order moment and p, is the
population correlation of variable e and f.
For a multinormal distribution, this simplifies to

= 2
[zrr]cf,gh— 172) pengh(ng + ch + P)%g + Pﬂ,)
+ pegpfh + pehpfg — pef(pfgpjh + pegpeh) (23)
- pgh(pfgpeg + pjhpeh)'

Thus all of the above discussion applies to tetrad differences of corre-
lations as well as of covariances.

5. POWER OF VANISHING TETRAD TEST

The power of a statistical test is the probability of rejecting a false null
hypothesis when an alternative hypothesis is true. Recent research in
SEM has provided ways to estimate the power of the chi-square likeli-
hood ratio test of H,: 3 = 3/(6), where % is the population covariance
matrix of the observed variables, 3(0) is the covariance matrix implied
by the hypothesized model, and 8 is the vector of free parametersin a
model (Satorra and Saris 1985; Matsueda and Bielby 1986; Bollen
1989, pp. 338-49). It would be helpful to know the power of the
simultaneous vanishing tetrad test of H,: 7 = 0 for several reasons.
One is that with it we could determine if a significant (nonsignificant)
test statistic is due to too much (or too little) power. This information
would aid our assessment of a tetrad test. For instance, if we find that a
vanishing tetrad has low power, yet the test statistic is highly signifi-
cant, this would cast serious doubt on any model that implies the set of
vanishing tetrads that were tested. Alternatively, if a tetrad test had
high power and the test statistic was not statistically significant, the
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plausibility of the vanishing tetrads would be increased. Second, the
power estimate for the vanishing tetrad test would be helpful in the
situation where conflicting results occur for the LR test and the tetrad
test. Knowing the power of both tests could partially or totally explain
the discrepancy.

The rationale for our method to assess the power of the vanish-
ing tetrad test is as follows. Suppose that we replace (18) with the
more general expression of

VNt-2N(z,,3,), (24)

where 7, is the column vector of the tetrads that are hypothesized to
be zero for a specific model and all other symbols are defined as
previously. Equation (24) equals equation (18) if we set 7, to zero.
However, in equation (24) we allow some or all of the population
tetrads to be nonzero, an outcome that runs counter to the vanishing
tetrads implied by the hypothesized model.

Under equation (24), the test statistic, 7, in equation (20)
asymptotically approximates a noncentral chi-square variate with df
equal to the number of nonredundant tetrad differences simulta-
neously examined and with a noncentrality parameter of

k=Nr1,/3 s, (25)

By knowing the df, k, and the Type I alpha level at which we test the
vanishing tetrads, we can estimate the power of the simultaneous
vanishing tetrad test. The df are obvious by counting the number of
nonredundant vanishing tetrads implied by a model. The alpha value
is the probability of a Type I error chosen by a researcher and is
typically 0.05. The value of N is known and equation (19) enables us
to get 3, .8 The only remaining quantity in equation (25) is 7,. To get
7,» We must formulate an alternative model with respect to which we
are testing the power.® Give values to all of the parameters in the
alternative model and form the implied covariance matrix [3(8,)] for
the observed variables at these values. Based on the tetrads that

8For variables with the same multivariate kurtosis as a normal distribu-
tion, the elements of ¥ that are needed to form ¥, can be taken from 3(8,),
which is the implied covariance matrix under the alternative model. For
nonnormal data with excessive multivariate kurtosis, the elements of 3 can be
estimated from the sample data as described in the previous section.

“The same step of formulating an alternative model with all the parame-
ter values is necessary in the usual power tests for structural equation models.
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should be zero for the hypothesized (not the alternative) model and
the implied covariance matrix, we can calculate the values of 7,.
In brief, the steps to the procedure are:

1. Determine 0,, the specific values for the parameters in the alter-
native model.

2. Generate the implied covariance matrix, 3(6,).

3. Form 7,, the vector of nonredundant tetrads implied under H,
using 3/(6,) instead of S.

4. Form N 7,'3,'r, as the noncentrality value.

5. Calculate the power of the tetrad test based on the df, the Type 1
probability, and the noncentrality value.

We will illustrate the procedure in the next section.
6. EXAMPLES
6.1. Example 1: Sympathy and Anger Confirmatory Factor Analysis

The first example illustrates the use of the CTA test statistic in testing
the fit of a factor analysis model. Figure 3 is the path diagram for a
two-factor model with each factor measured with three indicators.

FIGURE 3. Sympathy and anger.

The data are taken from a social psychological experiment by
Reisenzein (1986). As part of the experiment, he measures the feel-
ings of sympathy and anger of 138 subjects. The covariance matrix
for the six indicators is:
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[ 6.982 i
4.686 6.047
4.335 3307 5.037

—2.294 —1.453 —1.979 5.569

—2.209 —1.262 —1.738 3.931 5.328

| —1.671 —1.401 —1.564 3.915 3.601 4.977

In Table 1, we use the sympathy and anger example of Figure
3 to illustrate the three methods of determining the vanishing
tetrads. For the empirical method, the estimates of model parame-
ters are used to generate the covariance matrix. This covariance
matrix is used to calculate the tetrads. When comparing with the
covariance algebra method and the factor model rules, it becomes
apparent that the empirical method is effective in showing which
vanishing tetrads are implied by the model. The model implied van-
ishing tetrads as determined by the covariance algebra and factor
analysis analytic methods are virtually zero using the empirical
method.

Eliminating the redundant vanishing tetrads, we identify eight
independentvanishingtetrads (7534 =0, 71935 =0, 71336 = 0, 71456 = 0, 71403
=0, 753 =0, 7153 = 0, and 7,445 = 0). With raw data kindly provided by
Reisenzein, we tested for excessive multivariate kurtosis. Mardia and
Foster’s (1983) “normalized” estimate of multivariate kurtosis is 6.60
(Bollen 1989, p. 424), indicating substantial positive multivariate
kurtosis. The simultaneous asymptotically distribution-free test of
these eight tetrads results in a chi-square of 6.71 with 8 df and a p-value
of 0.57. We cannot reject the null hypothesis that all eight population
tetrads are zero. Thus the sample tetrads are consistent with this
model structure. Using the usual structural equation procedures, the
asymptotic distribution free test statistic (weighted least squares
[WLS] estimator) for this model is 6.49 with 8 df (p = 0.59), which
leads to the same conclusion.

The power of these statistical tests helps in evaluating model
fit. As the alternative model, we take the WLS estimates of the
parameters of the original model in Figure 3 and add to it three
correlated errors of measurement. The covariances of these errors
are set to be equivalent to correlations of 0.1 and we generated the
implied covariance matrix. Following the power procedure described
in the previous section, the noncentrality parameter is 1.45 with df of



TABLE 1

Model Implied Vanishing Tetrads for Sympathy and Anger Example

Cov. Algebra/

Tetrads Factor Rules Empirical Method
T1234 implied —0.00000000
Ti423 implied —0.00000005
T340 implied 0.00000006
Tio3s implied —0.00000004
Tisn implied 0.00000011
T35 implied —0.00000007
Ti236 implied 0.00000003
Ti623 implied 0.00000011
Ti62 implied —0.00000014
Ti4s 14.97524804
Tisoa —14.97524810
Tias2 implied 0.00000006
Tia46 14.75163923
Ti6o4 —14.75163932
Tia62 implied 0.00000010
Tiase 13.53462924
Ti625 —13.53462927
Tisea implied 0.00000003
Ti3as 13.99787900
Tis34 —13.99787907
Tias3 implied 0.00000008
Tiz46 13.78886419
Ti634 —13.78886426
Tis63 implied 0.00000008
Ti3s6 12.65128313
Ti63s —12.65128313
Tis63 implied 0.00000000
Tlase implied —0.00000028
Ti64s implied 0.00000024
Tysea implied 0.00000004
Tosas 10.72377520
Tas34 —10.72377521
Toas3 implied 0.00000001
To3a6 10.56364895
Ta634 —10.56364894
Toa63 implied —0.00000001
T 9.69214805
‘rzzz —9.69214803
Tas63 implied —0.00000002
Tagss implied —0.00000010
Taeas implied 0.00000001
Tasea implied 0.00000009
Tass6 implied —0.00000007
T3645 implied 0.00000003
Tise4 implied 0.00000003

166
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8. With a type I error of 0.05, the power of the tetrad test is 0.11.
Using the same alternative model and estimating the power of the
WLS-based test statistic, we find the same 0.11 value. Thus the
tetrad test and the WLS test have low power to detect the correlated
errors, and the fit of the model appears less ideal than an examina-
tion of p-value for the test of null hypothesis alone would lead one to
believe. Though we found the power of the tetrad test and the WLS
test to be the same in this example, this will not always be the case.

6.2. Example 2: Union Sentiment: An SEM Without Latent Variables

The second example illustrates that CTA also applies to SEM that do
not contain any latent variables. Figure 4 is the path diagram for the
model taken from Bollen (1989, pp. 82-83). The data are from a
study of union sentiment among southern nonunion textile workers
(McDonald and Clelland 1984). The variables are deference (or sub-
missiveness) to managers (y,), support for labor activism (y,), senti-
ment toward unions (y;), the logarithm of years in textile mill (x;),
and age (x,). The sample covariance matrix (N = 173) is (Bollen
1989, p. 120):

14.610
—5.250 11.017
S = —8.057 11.087 31.971
—0.482 0.677 1.559 1.021
—18.857 17.861 28.250 7.139 215.662

The null hypothesis of multivariate normality could not be rejected
for these data where the normalized test statistics for multivariate

FIGURE 4. Union sentiment.
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skewness was 0.74 and was —1.14 for multivariate kurtosis (Bollen
1989, p.424). Thus we use the CTA and LR test statistics that are
based on the normality assumption.

With either covariance algebra or our empirical method, we
find the only vanishing tetrad to be 7,;,;,,,,. The CTA test statistic is
0.73 with 1 df (p = 0.39). This excellent fit is consistent with the LR
test statistic of 1.26 with 3 df (p = 0.74).

6.3. Example 3: Comparison of “Nonnested” Models with
Simulated Data

Some models that are not nested for the usual SEM likelihood ratio
(LR) test comparison of fit are nested in the implied vanishing
tetrads. The implication is that model comparisons are possible for
some models that we have traditionally believed to be nonnested. We
take an example from Glymour et al. (1987) to illustrate this. The
three models in Figure 5 differ in the relation between the x; and y,
variables. In Figure 5(a), x; affects y,, while in 5(b) the opposite
relation holds. Figure 5(c) shows only correlated errors between
these two variables. Clearly, from the perspective of LR test compari-
sons, these models are nonnested. However, the implied vanishing
tetrads in Figures 5(a) and 5(b) are subsets of those implied in Figure
5(c). Figure 5(¢), which has the most implied vanishing tetrads, is the
most restrictive model of the three, and we can compare whether this
more restrictive model fits as well as the less restrictive ones in
Figures 5(a) and 5(b). We use the simulated “Data Set 2, Study 1” (N
= 2000) from Glymour et al. (1987, p. 128). The correlation matrix
g q
0.73218 1
0.71263 0.61605 1
0.65140 0.56910 0.88900 1
0.75321 0.65899 0.64722 0.82760 1
L0.69263 0.60523 0.60106 0.76872 0.87026 1 |

is generated from the model in Figure 5(c). The models in Figures
5(a) and 5(b) have 6 df and chi-squares of 2.76 and 3.26 (p-values of
0.84 and 0.78) respectively. The model in Figure 5(c) has 7 df and a
chi-square value of 3.39 (p-value of 0.85). Chi-square difference tests
of the first two models compared to Figure 5(c) reveal no significant
differences, lending support to the validity of Figure 5(c); therefore
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FIGURE 5. Simulated data.

we retain the model with a correlated error and select the true
model. Note also that this example illustrates how the simultaneous
test statistic developed here can be applied in the exploratory tetrad
analyses proposed by Glymour et al. (1987) to compare alternative
models that have nested vanishing tetrads.

6.4. Example 4: Four-Wave Developmental Model

McArdle and Epstein (1987) introduce the path model in Figure 6 to
study the developmental changes in intelligence measured by the
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(a)

(b)

£ &
FIGURE 6. Four-wave developmental model.

Wechsler Scale in a four-wave study of 204 children. The covariance
matrix is (N = 204):

40.628

37.741 53.568

40.051 48.500 60.778

50.643 63.169 70.200 107.869

The model has four latent variables, each of which has one indicator.
Each latent variable is determined only by the immediately preced-
ing latent variable. This is commonly known as the “autoregressive”
or the “simplex” model. The authors did not evaluate this model
against the data partly because without further restrictions this is an
underidentified model. Such a model can be tested with CTA. One
vanishing tetrad, 7,34, = 0, is implied by the model, and the CTA test
statistic is a chi-square estimate of 1.12 with 1 df and a p-value of
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0.29. The CTA results suggest a good fit for the four-wave path
model. We are encouraged to explore this model with the conven-
tional ML method by constraining ,; = B;, = B, and VAR(S;) =
VAR(S,) = VAR(8;) = VAR(8,). The model with these equality
constraints has an excellent fit with a chi-square of 2.93 with 4 df and
a p-value of 0.57. This example shows that multiwave single indicator
panel models can be tested with CTA procedures even when the
model is underidentified.

Dimensionality tests are also possible with CTA. Suppose we
wish to test whether intelligence is a stable latent variable that influ-
ences all four tests. Figure 6(b) contains the path diagram for this
alternative model. Compared to Figure 6(a), this model assumes a
one latent-variable solution rather than a four latent-variable one.
The model in Figure 6(b) implies two independent vanishing tetrads.
The CTA test statistic is 5.42 with 2 df and a p-value of 0.07. The
vanishing tetrad for the four-wave simplex model shown in Figure
6(a) is nested in those implied in the one latent-variable model. The
chi-square difference between these two models is 4.30 with 1 df.
The p-value is less than 0.05, which suggests that the four-wave
model in Figure 6(a) is preferable. Thus this example illustrates a
tetrad test for dimensionality.

7. CONCLUSIONS

Confirmatory Tetrad Analysis holds promise as a model testing proce-
dure in SEM. At a minimum, it provides a check on the LR test
results. When both test statistics agree, it increases our confidence in
a model’s match to the data. Disagreements suggest potential specifi-
cation errors or differences in the power of the tests. In addition,
CTA applies in some situations where the LR test statistic is inappli-
cable or is more complicated to apply. We gave examples of models
that were not nested for LR tests but were nested in their vanishing
tetrads. Thus we can compare and test some models that have long
been considered nonnested. Furthermore, the fit of some under-
identified models can be assessed with the CTA test statistic. This
could help researchers to determine whether it is worth looking for
further restrictions that would help to identify a model. Finally, the
test statistic we have used could also be helpful in ETA when compar-
ing alternative models that have nested vanishing tetrads.
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The characteristics of CTA may be made clearer by contrasting
it with the more common maximum likelihood (ML) and weighted
least squares (WLS) approaches to SEM. In ML/WLS approaches,
the null hypothesis is H,: 3 = 3(0), where X is the population covari-
ance matrix of the observed variables and 3(6) is the model implied
covariance matrix with @ the vector of free parameters in the model.
We have a test statistic that has an asymptotic chi-square distribution
when H, is valid. In CTA the null hypothesisis H,: 7= 0 where 7is the
vector of vanishing tetrads implied by the model. Here, too, we have a
test statistic that has an asymptotic chi-square distribution when H, is
valid. In both cases the chi-square distribution is a large sample result;
the small sample properties require further study. This suggests the
need for Monte Carlo simulation experiments to explore the behavior
of the test statistics in commonly used sample sizes.

Nesting of models in the ML/WLS approach occurs when the
parameters of one model are a restricted version of the parameters in
another model. Nesting in CTA exists when the vanishing tetrads of
one model are a restricted version, typically a subset, of the vanish-
ing tetrads of another model. As we illustrated here, a set of models
can be nested in their vanishing tetrads but not nested in their pa-
rameters, and this allows a test of some models that are nonnested in
their structural parameters.

With ML/WLS methods, it is possible that multiple models
have identical values for the implied covariance matrix and for the
test statistic. The equivalent models are indistinguishable in terms of
their overall fit to the data (Joreskog and S6rbom 1989, pp. 221-24).
Similarly, we can have the same vanishing tetrads implied by multi-
ple models. These “tetrad equivalent” models are indistinguishable
in fit using our test statistic. Thus with both the ML/WLS and CTA
approaches we should not confuse a favorable test statistic with proof
of the validity of a model since other models can have a fit as good as
or better than the ones tested.

The idea of tetrad equivalent models can help explain why it is
possible for models to have tetrads that are nested but parameters that
are not. A given set of vanishing tetrads can be implied by more than
one model. The same is true for a second set of vanishing tetrads that is
nested in the first. A test statistic for the nested tetrads provides a test
of the relative fit of all models that imply the one set of vanishing
tetrads to all models that imply the other set. Some of the models in
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the two sets may be nested in their parameters, but, as we illustrated,
this need not be true. And this leads to situations where we can com-
pare the fit of models not nested in their parameters.

An important difference in methodologies is that ML/WLS is a
structural parameter estimator, while CTA tests only model fit and
does not estimate structural parameters.’® For this reason, CTA
clearly is a complement, not a replacement, for the traditional proce-
dures. Largely because it is not a structural parameter estimator, CTA
does not require iterative methods as do the ML/WLS methods.

We close by pointing out that CTA is in the original spirit of
Spearman’s work of determining the vanishing tetrads implied by a
model and assessing whether they hold. It also is consistent with the
early work on SEM that attempted to test models by examining the
implied vanishing tetrads. This paper furthers the work of Spearman
and others by providing a general simultaneous test of vanishing
tetrads to evaluate models, by giving new rules for determining the
vanishing tetrads implied by a model and eliminating the redundant
ones, and by providing a method to estimate the power of the vanish-
ing tetrad test.
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