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have p;, = 1. A similar argument gives p;, = —1 when
0% = 0. Thus, since we required that —1 < p;, < 1, 0%
and o3 will never equal 0 in our applications.

To extend Pitman’s approach to obtain a simultaneous
test for the means and variances, consider the expectation
of D given §. Since X, and X, are bivariate normal, it follows
that D and S are also bivariate normal. So, noting that E(S)
= uw + wm, and E(D) = u; — p,, from any standard
mathematical statistics textbook (e.g., Hogg and Craig 1978,
p. 118), we have

ED |S) = (= p2) + psp(0p/05)(S — (k1 + )
= (p1— ) + [(aF — oD)/TFIS — (i + )]
=B+ BiS,
where
Bo = (mi— ) — [(af— a3/ 0§ (w1 + o)
and

B = (o} = o3)/o%.

Now, 0 = o3 and u;, = m, iff By = B, = 0, s0 a
simultaneous test of the equivalence of the means and vari-
ances of X, and X, is an F test calculable from standard
results from the regression of D on S. The test statistic is

F = [(2d? — SSE)/2]/[SSE/(n — 2)],

where 7 is the number of pairs of data observed, 2d? is the
sum of the squares of the n observed differences, and SSE
is the residual error sum of squares from the regression of
D on S. For an «a level test, reject the null hypothesis of
equal means and variances if F' exceeds the upper a point
of an F (2, n — 2) distribution.

[Received May 1988. Revised January 1989.]
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Using U Statistics to Derive the Asymptotic Distribution of

D. L. HAWKINS*

A simple derivation of the asymptotic distribution of Fish-
er’s Z statistic for general bivariate parent distributions F is
obtained using U-statistic theory. This method easily reveals
that the asymptotic variance of Z generally depends on the
correlation p and on certain moments of F. It also reveals
the particular structure of F that makes the asymptotic vari-
ance of Z independent of p, and shows that there are many
distributions F with this property. The bivariate normal is
only one such F.

KEY WORDS: Central limit theorem; Delta method.

1. INTRODUCTION

Let X! = (X,;,X,;),i = 1, . . ., n, be iid random vectors
with cdf F, mean p7 = (w,, u,), variances o = var(X,,),
o3 = var(X,;), and correlation p. Let r, be the usual sample
correlation coefficient and Z, = f(r,) = Y2 In((1 + r,)/
(1 — r,)) be Fisher’s Z statistic. It is well known (see, e.g.,
Anderson 1984) that when F is bivariate normal (BVN), Z,
is asymptotically normal with mean f(p) and variance in-

dependent of p. What is perhaps less well known is that if

*D. L. Hawkins is Assistant Professor, Department of Mathematics,
University of Texas, Arlington, TX 76019.
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Fisher’s Z Statistic

F is not BVN, Z, is still asymptotically normal with the
same mean, but the asymptotic variance may depend on p
and on certain moments of F. This may be seen, for ex-
ample, in the work of Gayen (1951), who obtained the exact
pdf of Z, for finite n when F is a bivariate Type A Edgeworth
distribution.

The purpose of this note is to illustrate how U-statistic
theory may be used to simply obtain the limit distribution
of Z, for any F with finite fourth moments, in a form that
clearly reveals how this distribution depends on F. The
derivation of the main result might make a good exercise
in a large-sample theory class.

2. DERIVATION OF THE LIMIT DISTRIBUTION

The idea is to express Z, as a function of a U statistic
and then to use the delta method along with the central limit
theorem for U statistics. Let

= S -X X\ = |anm ap) ,
A jZl X~ X (X; = %) [aIZ(n) azz(n)]
where X, = 1/n 3, X;and U, = (n — )7 '[ay(n),
ax(n), ajp(m)]”. Then Z, = n(U,), where, for u = (u,,
Uy, u3)", m(u) = f(g(w)), gw) = uz/(u;u)"?, and f(x)
= Y In[(1 + x)/(1 — x)].
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Next observe that U, is a (vector-valued) U statistic. Let
s _[ o pno
poyoy 03
denote the covariance matrix of X;. Consider the (matrix-
valued) kernel A(X,, X,) = X, X! — X,X?. Then E[h(X,,
X,)] = X, and the symmetrized version of 4 is h*(X,, X,)

= X, Xy) + (X, X))] = (X, — X)X, —
X,)T. Finally, observe that

—1
— DA, = (" h(Xg, Xg),
(l’l ) n <2> ISBZBZSH ( B, Bz)

so (n—1)"'A, is a (matrix-valued) U statistic for 3. If we
now let ¢ be the linear map taking a symmetric 2 X 2
matrix with elements b,,, b, by, to the vector (b,,, b,y,
b;»)T in R3, then it follows that

-1
Un = <n> 2 (bh*(xﬁ ’ XB )
2 1=B1<By=n ! 2

is a U statistic for the parameter ¢ = (03, 03, po,0,)”
corresponding to the symmetric kernel ¢ph*, which has de-
gree 2.

Following standard U-statistic theory, define the projec-
tion function, for x = (x,, x,)7, as

p(x) = E{¢h*(x, X))}

1 (xi — X1)?
= EE (2 = X31)* > (2.1
= XD — Xy)

and the projections as §, p(X;) — ¢X. The &’s are iid
with mean zero and variance I'} = E({;“ng) (the existence
of which requires finite fourth moments). Then by a gen-
eralization of the standard central limit theorem for scalar
U statistics (see, e.g., Randles and Wolfe 1979, chap. 3),
we have the following:

Lemma. Assume that F has finite fourth moments. Then
n'2(U, — ¢3) 5 N4(0, 4T,), as n — .

The lemma and the delta method (see, e.g., Bishop, Fien-
berg, and Holland 1975, chap. 14) then imply, since Z, =
n(U,) and 7 is differentiable, the following:

Theorem. Assume that F has finite fourth moments.

Then as n — @, \V/n[Z, — n(¢2)] = N(O, 72), where

7 =4-Vin(¢2)I', Vn(¢p2) and V7 denotes the gradient
of n.

3. DEPENDENCE OF THE LIMIT DISTRIBUTION
ONF

It is clear that the asymptotic mean, () = f(p), does
not depend on F. We now compute 72 and find that it varies
with F, in general. We have VIn(u) = [1 — g?(w)] ' [— %
usiy ¥2us 2 = Vauzu; Y2uy 32, uy V2uy 1], and hence
Vin@2) = (1-p») " '[-p/(Q2 02), —pl(2 03), 1/(gy0)].
To get I'}, we need p(x), which is simplified if we note
that Z, is location and scale invariant, so we may assume

that o, = u, = 0 and o2 = 0% = 1 with no loss in
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(xl, x2)T’ p(X)
pX)) — ¢% =
Writing m,, = m,(F) =

generality. Hence we obtain, for x =
Wix? + 1,x3 + 1, x;x,+ p]” ,80 & =
VXY - 1L X3 — 1, XX — ol
Er(X';X3;), one obtains

1 My — 1 my—1 my—p
[ = Ep(§¢)) =7 Mmes—1 myz—p
symmetric My — p?

Combining these results, we obtain
T = (1= p?) "2 Va{(myo + 2myy + moy) p?
—4(my, +my3)p+4myt. (3.1)

This result may be compared with Gayen’s (1951) finite-
n approximation noted in the introduction, and 7% will be
found to be the limit (as n — ) of n times his variance
approximation. Gayen’s result, however, though valid for
all finite n, applies only to the Edgeworth distributions; (3.1)
holds for any F with finite fourth moments, but only as
n— o,

Several features of (3.1) are notable. First, the asymptotic
variance 7% of Z, depends on F only through the moments
m,, appearing in (3.1). Second, generally, 7+ depends on
p. Third, if F is BVN, we have (see, e.g., Kendall and
Stuart 1979, vol. 1, p. 91) my, = 14+ 2p%, myy = mg, =
3, and m3; = m; = 3p, giving 7% = 1 regardless of p,
agreeing with the classical result.

From these observations we realize that there are many
distributions F—those in the set %, say, with moments
m,, in (3.1) matching those of the BVN distribution with 0
means and unit variances—under which 7% equals 1. Such
a distribution F' may be constructed by the following method,
due to Professor George Woodworth. Let W, and W, be
independent random variables with (possibly different) dis-
trlbutlons G, and G, satisfying Eg W; = 0, Eg, w? = 1,
EgW; =0, EGW! =3 (i =1, 2). Let 3 be defined so
that d)E = (1, 1, p), and let X, = ¢ W, + ¢,,W, and
X, = ¢y W, + c;,W,, where ¢;; = ¢ = [(1 +p)'? +
(I1=p)'"?l2and ¢y = ¢ = [(1+p)"* = (1—p)?)/2.
Then it may be checked that X; and X, have the same product
moments m,, (0 = r +s = 4) as the BVN distribution with
mean 0 and covariance 3. In particular, the moments m,,,
Mgy, Moy, M3y, and m;3 of X; and X, match those of this
BVN distribution, as required. To obtain an explicit example
of F we must produce a G, and G, with the required moment
structure. A simple example is obtained if we take G, =
G, and let G| be a discrete distribution that places masses
DPbs Pas Pus @and p, on the real numbers —b, —a, a, and b,
where b > a > 0. G, is obviously symmetric about 0, so
it has mean and third moment 0, and the numbers a, b, p,,
and p,, can be chosen to give variance 1 and fourth moment
3 (e.g., taking a = 2, b = 1.913, p, = .39, b, = .11
will do this, as follows from setting up and solving obvious
equations for the required conditions).

Interesting problems would be to characterize %, in a
more lucid manner, to devise tests for F € %, versus F &
Fy, or to determine if there exist F & %, such that 72 is
independent of F and p.

[Received November 1988. Revised May 1989.]
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An Empirical Nonlinear Data-Fitting Approach for

Transforming Data to Normality

LAWRENCE I-KUEI LIN and EDWARD F. VONESH*

A general method is proposed by which nonnormally dis-
tributed data can be transformed to achieve approximate
normality. The method uses an empirical nonlinear data-
fitting approach and can be applied to a broad class of
transformations including the Box—Cox, arcsine, general-
ized logit, and Weibull-type transformations. It is easy to
implement using standard statistical software packages.
Several examples are provided.

KEY WORDS: Iteratively reweighted least squares; Non-
linear model; Normal scores; Order statistics.

1. INTRODUCTION

Suppose that U, U,, . . ., U, constitute arandom sample
from a probability density function that is not necessarily
normal. We assume there exists an invertible and strictly
monotone transformation, Y; = g¢(U;), such that Y; is nor-
mally distributed with mean u and variance o?. For ex-
ample, letting @' = (A, ¢), the power and logarithmic
transformations are encompassed by the Box—Cox trans-
formation (Box and Cox 1964):

U+ ot -1
ge(U)=(———cA)—— if A7 0
=log, (U +¢) ifx=0. (1.1)

When the data have a positive skewness, a common choice
for gg(U) is log, (U + c); for data with a negative skewness,
a reasonable choice for g¢(U) is (U* — 1)/A or, more
simply, U*.

Various methods have been proposed for estimating the
values of @' = (A, ¢). Box and Cox (1964) suggested using
maximum likelihood (ML) techniques or a Bayesian ap-

*Lawrence I-kuei Lin and Edward F. Vonesh are Senior Research Stat-
isticians, Statistical Services, Baxter Healthcare Corporation, Round Lake,
IL 60073. The authors express their sincere gratitude to the editor, associate
editor, and referee for their valuable comments and criticisms, to Laurene
Strauch and Beverly Adelphia for their assistance in preparing the manu-
script, and to their fellow statisticians at Baxter Healthcare Corporation
for their support and comments.
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proach to estimate A and/or c. All subsequent analyses and
inference would then be conditioned on the estimate 0.
Carroll and Ruppert (1984) introduced the transformation
on both sides of a general nonlinear model and used ML
techniques for estimating 0. Their approach allows @ to be
random rather than fixed with respect to inference on es-
timated model parameters. Berry (1987) suggested using
estimates of ¢, for the transformation log, (U + c¢), by
minimizing, with respect to the residuals Y — [, both skew-
ness and kurtosis. Subsequent analysis would then be based
on fixing ¢ = ¢.

Our goal is to find a @ such that we may transform the
data “as close to” normality as possible given any appro-
priate monotone go(U). Here, “as close to” reflects the use
of nonlinear least squares as the method by which we es-
timate 0. In other words, our criterion is to achieve a straight
line on a normal probability plot of the residuals. We can
use any software that has a nonlinear regression program to
do such an evaluation. Our approach has an advantage over
the Box—Cox method in that our method does not restrict
the form of the transformation to (1.1). Other popular trans-
formations, such as the generalized logit, arcsine, inverse
hyperbolic sine, and Weibull, may also be performed. In
addition, this method has a natural extension and is easily
implemented in applications involving general linear or non-
linear models.

2. METHODS FOR TRANSFORMING DATA

2.1 The Single-Sample Case

Let Uy, . . ., U, be the order statistics of Uy, . . .,
U,. We can write

o 'Yy —w) = —o tu + o g (Uw),

where the Y;, denote the order statisticsof Y, (i = 1, . . .,
n). As indicated by Blom (1958) and Tukey (1962), the
expected value of the normal score o~ '(Y;, — u) can be
approximated by the Z score

Zi = Yl(r; — 38)/(n + 1/4)], 2.1)
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