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have P12 = 1. A similar argument gives P12 = -1 when 
-2 - 0. Thus, since we required that 21 P 1, oS 

and o-2 will never equal 0 in our applications. 
To extend Pitman's approach to obtain a simultaneous 

test for the means and variances, consider the expectation 
of D given S. Since XI and X2 are bivariate normal, it follows 
that D and S are also bivariate normal. So, noting that E(S) 
= yt + p2 and E(D) = yl - A2, from any standard 
mathematical statistics textbook (e.g., Hogg and Craig 1978, 
p. 118), we have 

E(D I S) =( I P) + PSD(JD /S)(S -A(I + A)) 

= - ii,-) + [(os9 - -(2)/ ps] [S- (/ + pj] 

= ,60 + ,1BS, 

where 

Po = (/t1-/2) - [(c4-o22)/2] (/1I +? ) 

and 

I3 = (0f1 - cr 2)/ 
-2 

Now, o- 2 = oJ2 and ,'k = i2 iff I30 = = 0, so a 
simultaneous test of the equivalence of the means and vari- 
ances of XI and X2 is an F test calculable from standard 
results from the regression of D on S. The test statistic is 

F = [(d? - SSE)/2]/[SSE/(n - 2)], 

where n is the number of pairs of data observed, Id? is the 
sum of the squares of the n observed differences, and SSE 
is the residual error sum of squares from the regression of 
D on S. For an a level test, reject the null hypothesis of 
equal means and variances if F exceeds the upper a point 
of an F(2, n - 2) distribution. 

[Received May 1988. Revised Januaiy 1989.] 
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Using U Statistics to Derive the Asymptotic Distribution of 
Fisher's Z Statistic 

D. L. HAWKINS* 

A simple derivation of the asymptotic distribution of Fish- 
er's Z statistic for general bivariate parent distributions F is 
obtained using U-statistic theory. This method easily reveals 
that the asymptotic variance of Z generally depends on the 
correlation p and on certain moments of F. It also reveals 
the particular structure of F that makes the asymptotic vari- 
ance of Z independent of p, and shows that there are many 
distributions F with this property. The bivariate normal is 
only one such F. 

KEY WORDS: Central limit theorem; Delta method. 

1. INTRODUCTION 

LetX[ = (XIi, X2i), i = 1, . . .,n, be iid random vectors 
with cdf F, mean FL = (kI , A2), variances o1= var(Xh), 
(j2 =var(X2i), and correlation p. Let r,1 be the usual sample 
correlation coefficient and Z,1 = f(r,1) = 1/2 ln((l + r,)/ 
(1 - r,1)) be Fisher's Z statistic. It is well known (see, e.g., 
Anderson 1984) that when F is bivariate normal (BVN), Z, 
is asymptotically normal with mean f(p) and variance in- 
dependent of p. What is perhaps less well known is that if 

F is not BVN, Z,1 is still asymptotically normal with the 
same mean, but the asymptotic variance may depend on p 
and on certain moments of F. This may be seen, for ex- 
ample, in the work of Gayen (195 1), who obtained the exact 
pdf of Z,, for finite n when F is a bivariate Type A Edgeworth 
distribution. 

The purpose of this note is to illustrate how U-statistic 
theory may be used to simply obtain the limit distribution 
of Z,, for any F with finite fourth moments, in a form that 
clearly reveals how this distribution depends on F. The 
derivation of the main result might make a good exercise 
in a large-sample theory class. 

2. DERIVATION OF THE LIMIT DISTRIBUTION 

The idea is to express Z,, as a function of a U statistic 
and then to use the delta method along with the central limit 
theorem for U statistics. Let 

zAX1X)( X X1) all(n) a12(n) A? j=1 E(Xj-X)(X Xj- )T Lal2(n) a22(n) 

where X,1 = 1/n 
1j?=I X. 

and U,s = (n - 
I)-'[ajj(n), a22(n), a12(n)]T. Then Z,, = (U,,), where, for u = (ul, 

U2, u3)T, 72(u) = f(g(u)), g(u) = u3/(uu2)9112, andf(x) 
= 1/2 ln[(l + x)/(1 - x)]. 

*D. L. Hawkins is Assistant Professor, Department of Mathematics, 
University of Texas, Arlington, TX 76019. 
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Next observe that U,, is a (vector-valued) U statistic. Let 

E~ ~~ PU,2 Of2 1 21 
a2 2 

denote the covariance matrix of X . Consider the (matrix- 
valued) kernel h(X,, X2) = XIXf - XXI . Then E[h(X, 
X2)] = X, and the symmetrized version of h is h*(XI, X2) 
= ?/2[h(XI, X2) + h(X2, X)] = /2(XI - X2)(XI - 

X2)T. Finally, observe that 

(n - 1)<A,1 = ( h*(X/31, X32), 2 
1-131 <132-11 

so (n - 1) A,, is a (matrix-valued) U statistic for 1. If we 
now let ? be the linear map taking a symmetric 2 x 2 
matrix with elements bll, bl 2, b22 to the vector (b l l, b92, 
b12)T in R3, then it follows that 

U,l 
n 

O )?h*(X/31 , Xx 3, 
I !c 11< 132 

1 

is a U statistic for the parameter = (o2, 2, PU j 

corresponding to the symmetric kernel Oh*, which has de- 
gree 2. 

Following standard U-statistic theory, define the projec- 
tion function, for x =(xI, X2)T, as 

p(x) = E{fh*(x, XI)} 

(XI - XI,)2 
- 2Et (X2 - X2I)2 ' (2.1) 2 

(XI - XII)(x2 - X21) 

and the projections as = p(X1) - ?>. The gj's are iid 
with mean zero and variance r, = E( jg T) (the existence 
of which requires finite fourth moments). Then by a gen- 
eralization of the standard central limit theorem for scalar 
U statistics (see, e.g., Randles and Wolfe 1979, chap. 3), 
we have the following: 

Lemma. Assume that F has finite fourth moments. Then 
n 12(,1 - f >r) - N3(0, 4rF), as n -c oo* 

The lemma and the delta method (see, e.g., Bishop, Fien- 
berg, and Holland 1975, chap. 14) then imply, since Z, = 

rj(U,,) and -q is differentiable, the following: 

Theorem. Assume that F has finite fourth moments. 
Then as n -> oc, \/7n[Z, - ij(?bt)] 4 N(0, F), where 

F= 4 *VT?X) r lV ) and V - denotes the gradient 
of q. 

3. DEPENDENCE OF THE LIMIT DISTRIBUTION 
ON F 

It is clear that the asymptotic mean, -q(?b1) = f(p), does 
not depend on F. We now compute T2 and find that it varies 
with F, in general. We have VT(u) =[1-g2(u)] -1l [- ?/2 

U U-12u /2- ?/u3uj"12u 3/2, uj"/22 u7"2], and hence 

To get F1, we need p(x), which is simplified if we note 
that Z,1 is location and scale invariant, so we may assume 
that ,u = ,2= 0 and U21 = U22 = 1 with no loss in 

generality. Hence we obtain, for x = (xI, x2)T, p(x) 
?/2[X2 + 1, X2 ? 1, x1x2?p]T, so += p(X1) - 

1/2[X 1- 1, X2 - 1, Xl;X2;-p] T. Writing m,.. = m,.,(F) = 

EF(X'/I X5/), one obtains 

1 m40- m22-l m31-p 
F, = EF( j) I m04- m13-p 4 symmetric in22 - p2 

Combining these results, we obtain 

F ( -p2)2 ?/4{(M40 + 2M22 + m04)p2 

-4(m31 + ? l3)p + 4m22}- (3.1) 

This result may be compared with Gayen's (1951) finite- 
n approximation noted in the introduction, and 42 will be 
found to be the limit (as ni -> oo) of n times his variance 
approximation. Gayen's result, however, though valid for 
all finite n, applies only to the Edgeworth distributions; (3.1) 
holds for any F with finite fourth moments, but only as 

Several features of (3. 1) are notable. First, the asymptotic 
variance 42 of Z, depends on F only through the moments 
1n,.s appearing in (3.1). Second, generally, T2 depends on 
p. Third, if F is BVN, we have (see, e.g., Kendall and 
Stuart 1979, vol. 1, p. 91) in92 =1 +?2p2, in40= O= 
3, and in31 = m13 = 3p, giving TF 1 regardless of p, 
agreeing with the classical result. 

From these observations we realize that there are many 
distributions F those in the set iN' say, with moments 
m,.a in (3.1) matching those of the BVN distribution with 0 
means and unit variances under which Th equals 1. Such 
a distribution F may be constructed by the following method, 
due to Professor George Woodworth. Let Wd and W2 be 
independent random variables with (possibly different) dis- 
tributions CF and C2 satisfying EG,Wi 0 O, EGWing 1, 
EG 0o PrO, EGsWo = 3 (i =d1, 2). Let W be defined so 
that ?> (1, 1, p), and let Xl1 c11W1 ? c12W2 and 
X2p=c21Wt ? co2W2, where ca l wih = [(1 ?+p)n ? 
(1 -p) to2]/2 and cG2 =atisi[(g1 Gp)1/2 - (1 -p)"W2]12. 

Then it may be c k tha Xl and X2 have the same product 
moments m,.s (0 ? r ? s ? 4) as the BVN distribution with 
mean 0 and covariance =. In particular, the moments i22, 

h40, in4 m, b1, and mc13 of XI and X2 match those of this 
BVN distribution, as required. To obtain an explicit example 
ofmF we must produce a C. and C2 with the required moment 
structure. A simple example is obtained if we take C1 
C2 and let C1 be a discrete distribution that places masses 
Pb, Ps' pbu, and Pb on the real numbers -b, -a, a, and b, 
where b > a > 0. C1 is obviously symmetric about 0, so 
it has mean and third moment 0, and the numbers a, , p1, 
and Pb can be chosen to give variance 1 and fourth moment 
3 (e.g., taking a on/2, b = 1.913, Pa = .39, a, = .11 
will do this, as follows from setting up and solving obvious 
equations for the required conditions). 

Interesting problems would be to characterize ~iN in a 
more lucid manner, to devise tests for F E fo versus F m 
3N, or to determine if there exist F b =N such that Tb iS 
independent of F and p. 

[Received November 1988. Revi.sed Ma) 1989.] 
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An Empirical Nonlinear Data-Fitting Approach for 
Transforming Data to Normality 

LAWRENCE I-KUEI LIN and EDWARD F. VONESH* 

A general method is proposed by which nonnormally dis- 
tributed data can be transformed to achieve approximate 
normality. The method uses an empirical nonlinear data- 
fitting approach and can be applied to a broad class of 
transformations including the Box-Cox, arcsine, general- 
ized logit, and Weibull-type transformations. It is easy to 
implement using standard statistical software packages. 
Several examples are provided. 

KEY WORDS: Iteratively reweighted least squares; Non- 
linear model; Normal scores; Order statistics. 

1. INTRODUCTION 

Suppose that Ul, U2, . . ., U,, constitute a random sample 
from a probability density function that is not necessarily 
normal. We assume there exists an invertible and strictly 
monotone transformation, Yi = go(Uj), such that Yi is nor- 
mally distributed with mean /t and variance U2. For ex- 
ample, letting 0' = (A, c), the power and logarithmic 
transformations are encompassed by the Box-Cox trans- 
formation (Box and Cox 1964): 

(U (U + c)A - 1 i + g0(U) -u A i f A #0 

log, (U + c) if A = 0. (1.1) 

When the data have a positive skewness, a common choice 
for go(U) is log,(U + c); for data with a negative skewness, 
a reasonable choice for go(U) is (UA - 1)/A or, more 
simply, UA. 

Various methods have been proposed for estimating the 
values of 0' = (A, c). Box and Cox (1964) suggested using 
maximum likelihood (ML) techniques or a Bayesian ap- 

proach to estimate A and/or c. All subsequent analyses and 
inference would then be conditioned on the estimate 0. 
Carroll and Ruppert (1984) introduced the transformation 
on both sides of a general nonlinear model and used ML 
techniques for estimating 0. Their approach allows 0 to be 
random rather than fixed with respect to inference on es- 
timated model parameters. Berry (1987) suggested using 
estimates of c, for the transformation loge(U + c), by 
minimizing, with respect to the residuals Y - 2, both skew- 
ness and kurtosis. Subsequent analysis would then be based 
on fixing c = c. 

Our goal is to find a 0 such that we may transform the 
data "as close to" normality as possible given any appro- 
priate monotone go(U). Here, "as close to" reflects the use 
of nonlinear least squares as the method by which we es- 
timate 0. In other words, our criterion is to achieve a straight 
line on a normal probability plot of the residuals. We can 
use any software that has a nonlinear regression program to 
do such an evaluation. Our approach has an advantage over 
the Box-Cox method in that our method does not restrict 
the form of the transformation to (1. 1). Other popular trans- 
formations, such as the generalized logit, arcsine, inverse 
hyperbolic sine, and Weibull, may also be performed. In 
addition, this method has a natural extension and is easily 
implemented in applications involving general linear or non- 
linear models. 

2. METHODS FOR TRANSFORMING DATA 

2.1 The Single-Sample Case 

Let U(1), . . ., U(n) be the order statistics of U1, . . 

U,,. We can write 

cr (Y(i) - MJ) = -cr1Ip. + c`r1g0(U(i)), 

where the Y(i) denote the order statistics of Yi (i = 1, .. 

n). As indicated by Blom (1958) and Tukey (1962), the 
expected value of the normal score o- I(Y( - ju) can be 
approximated by the Z score 

Z(i) = q/[(ri - 3/8)/(n + 1/4)], (2.1) 

*Lawrence I-kuei Lin and Edward F. Vonesh are Senior Research Stat- 
isticians, Statistical Services, Baxter Healthcare Corporation, Round Lake, 
IL 60073. The authors express their sincere gratitude to the editor, associate 
editor, and referee for their valuable comments and criticisms, to Laurene 
Strauch and Beverly Adelphia for their assistance in preparing the manu- 
script, and to their fellow statisticians at Baxter Healthcare Corporation 
for their support and comments. 
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