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Abstract

In this paper, we derive optimality results
for greedy Bayesian-network search algo-
rithms that perform single-edge modi�ca-
tions at each step and use asymptotically
consistent scoring criteria. Our results ex-
tend those of Meek (1997) and Chickering
(2002), who demonstrate that in the limit of
large datasets, if the generative distribution
is perfect with respect to a DAG de�ned over
the observable variables, such search algo-
rithms will identify this optimal (i.e. gener-
atve) DAGmodel. We relax their assumption
about the generative distribtion, and assume
only that this distribution satis�es the com-

position property over the observable vari-
ables, which is a more realistic assumption
for real domains. Under this assumption, we
guarantee that the search algorithms identify
an inclusion-optimal model; that is, a model
that (1) contains the generative distribution
and (2) has no sub-model that contains this
distribution. In addition, we show that the
composition property is guaranteed to hold
whenever the dependence relationships in the
generative distribution can be characterized
by paths between singleton elements in some
generative graphical model (e.g. a DAG, a
chain graph, or a Markov network) even when
we allow the generative model to include un-
observed variables, and the observed data to
be subject to selection bias.

1 Introduction

The problem of learning Bayesian networks (a.k.a di-
rected graphical models) from data has received much
attention in the UAI community. A simple approach
taken by many researchers, particularly those con-

tributing experimental papers, is to apply|in con-
junction with a scoring criterion|a greedy single-edge
search algorithm to the space of Bayesian-network
structures or to the space of equivalence classes of
those structures. There are a number of important
reasons for the popularity of this approach. First,
a variety of hardness results have shown that learn-
ing various classes of Bayesian networks is NP-hard
(e.g. Chickering, 1996; Meek 2001), and it is widely
accepted that heuristic search algorithms are appro-
priate in general. Second, greedy search is simple to
implement and the evaluation of single-edge modi�ca-
tions is computationally eÆcient. Third, and perhaps
most important, this class of algorithm typically works
very well in practice.

In this paper, we investigate large-sample optimality
guarantees for a particular greedy single-edge search
algorithm|called greedy equivalence search or GES

for short|when that algorithm is used in conjunc-
tion with any asymptotically consistent scoring crite-
rion. An asymptotically consistent scoring criterion
is one that, in the limit of large number of samples,
assigns the highest score to the parameter optimal

model{that is, the model with fewest parameters that
can represent the generative distribution exactly. It
is well known that several Bayesian-network scoring
criteria|including the Bayesian criterion and the min-
imum description length (MDL) criterion|are asymp-
totically consistent.

Any greedy algorithm that is used in conjunction with
an asymptotically consistent scoring criterion will (by
de�nition) have a local maximum at a parameter-
optimal model; the problem is that greedy search can
get trapped in other local maxima. Furthermore, in
order to apply the algorithm in practice, the connec-
tivity of the search space must be sparse (i.e. the num-
ber of models considered at each step of the algorithm
must be reasonably small). For example, because the
number of models grows super-exponentially with the
number of observed variables, the simple (greedy) ap-



proach of enumerating every model and selecting the
best one is not realistic.

Meek (1997) shows that GES|under the assump-
tion that \Meek's Conjecture" is true|will provably
terminate at the parameter-optimal model whenever
the generative distribution is perfect with respect to
that model; that is, whenever the independence con-
straints among the observable variables in that dis-
tribution are precisely the independence constraints
in the parameter-optimal model. This result is some-
what surprising because the connectivity of the search
space for GES is sparse. Chickering (2002) proves
that Meek's Conjecture is true|thus establishing the
asymptotic optimality of GES|and provides an eÆ-
cient implementation of the search operators used by
GES. Furthermore, the experimental results of Chick-
ering (2002) suggest that the large-sample guarantees
of GES can hold with reasonably small sample sizes.

In this paper, we consider the large-sample behavior
of GES when we eliminate the requirement that the
generative distribution be perfect with respect to the
parameter-optimal model. In particular, using a more
realistic set of assumptions about the generative distri-
bution, we show that the algorithm identi�es a model
that satis�es a weaker form of optimality that we call
inclusion optimality. A model is inclusion optimal for
a distribution if it can represent the distribution ex-
actly and if no sub-model can also do so.

Our results hold whenever the composition axiom of
independence (see, e.g., Pearl, 1988) holds among
the observable variables, the contrapositive of which
states that whenever a variable X is (conditionally or
marginally) dependent on a set of variables Y, then
there is a singleton Y 2 Y on which X depends.
A stronger but more intuitively appealing assump-
tion that we make to guarantee that the composition
holds is that the dependence relationships in the gen-
erative model can be characterized by paths between
singleton nodes in some graphical model. Because
the d-separation criterion identi�es dependencies us-
ing paths of this type, it is easy to show that if the
generative distribution is perfect with respect to some
Bayesian network|where any subset of the nodes may
be hidden|then we can guarantee inclusion optimality
in the limit. Our results also apply when the genera-
tive distribution is perfect with respect to other types
of graphical models including Markov random �elds
and chain graphs. In all of these situations, we allow
for the presence of hidden variables in the generative
model and selection bias in the observed data.

The paper is organized as follows. In Section 2, we
describe our notation and previous relevant work. In
Section 3, we prove the main results of this paper. In

Section 4, we describe a set of experiments we per-
formed that demonstrate the practical importance of
our results. Finally, in Section 5, we conclude with a
summary and discussion of future relevant work.

2 Background

Throughout the paper, we use the following syntac-
tical conventions. We denote a variable by an upper
case letter (e.g. A;Bi; Y;�) and a state or value of
that variable by the same letter in lower case (e.g.
a; bi; y; �). We denote sets with bold-face capitalized
letters (e.g. A;Pai) and corresponding sets of values
by bold-face lower case letters (e.g. a;pai). Finally, we
use calligraphic letters (e.g. G;B) to denote statistical
models and graphs.

2.1 Directed Graphical models

In this paper, we concentrate on Bayesian networks
for a set of variables O = fX1; : : : ; Xng, where each
Xi 2 O has a �nite number of states. A parameter-

ized Bayesian-network model B for a set of variables
O = fX1; : : : ; Xng is a pair (G;�). G = (V;E) is a
directed acyclic graph|or DAG for short|consisting
of (1) nodes V in one-to-one correspondence with the
variables O, and (2) directed edges E that connect
the nodes. � is a set of parameter values that specify
all of the conditional probability distributions; we use
�i � � to denote the subset of these parameter val-
ues that de�ne the (full) conditional probability table
of node Xi given its parents in G. A parameterized
Bayesian network represents a joint distribution over
O that factors according to the structure G as follows:

pB(X1 = x1; : : : ; Xn = xn)

=

nY

i=1

p(Xi = xijPa
G
i = paGi ;�i) (1)

where PaGi is the set of parents of node xi in G. A
Bayesian-network model (or DAG model) G is simply a
directed acyclic graph and represents a family of distri-
butions that satisfy the independence constraints that
must hold in any distribution that can be represented
by a Bayesian network with that structure. We say
that Bayesian network G includes a distribution p(O)
if the distribution is de�ned by some parameterized
Bayesian network with structure G.

The set of all independence constraints imposed by the
structure G via Equation 1 can be characterized by the
Markov conditions, which are the constraints that each
variable is independent of its non-descendants given its
parents. That is, any other independence constraint
that holds can be derived from the Markov conditions



(see, e.g., Pearl, 1988). Pearl (1988) provides a graph-
ical condition called d-separation that can be used to
identify any independence constraint that necessarily
follows from the factorization. We use A??GBjS to de-
note the assertion that DAG G imposes the constraint
that A is independent of B given set S.

2.2 Equivalence, Inclusion and Optimality

There are two common notions of equivalence for
Bayesian networks. Bayesian networks G and G0 are
distributionally equivalent (G �D G0) if for every para-
metric Bayesian network B = (G;�), there exists a
parametric Bayesian network B0 = (G0;�0) such that
B and B0 de�ne the same probability distribution, and
vice versa. Two DAGs G and G0 are independence

equivalent (G �I G
0) if the independence constraints

in the two DAGs are identical. These two notions of
equivalence are not generally the same, but they are
for the Bayesian-network models that we consider in
this paper (i.e. the conditional distributions are speci-
�ed with full tables) and thus we say that two DAGs G
and G0 are equivalent|denoted G � G0|to mean that
they are both distributionally equivalent and indepen-
dence equivalent.

Similarly, there are two corresponding types of inclu-
sion relations for Bayesian networks. A Bayesian net-
work G is distributionally included in a Bayesian net-
work H (G �D H) if every distribution included in G
is also included in H. A Bayesian network G is inde-
pendence included in a Bayesian network H (G �I H)
if every independence relationship in H also holds in
G. The relationship G �I H is sometimes described
in the literature by saying that H is an independence

map of G. If we assume that �I is equivalent to �D for
a family of parametric Bayesian-network models then
it is easy to show that �D is equivalent to �I . Thus,
because we are using complete tables, the two types
of inclusion are equivalent and we use G � H to de-
note that G is included|that is, both distributionally
and independence|in H. Note that we are using \in-
cluded" to describe the relationship between a model
and a particular distribution, as well as a relationship
between two models. We say that G is strictly included

in H|denoted G < H|if G is included in H and G is
not equivalent to H.

In this paper, we are interested in two types of op-
timality. A Bayesian network G is parameter opti-

mal for distribution p if G includes p and there is no
Bayesian network that includes the distribution with
fewer parameters. A Bayesian network G is inclusion
optimal for distribution p if G includes p and there is
no Bayesian network G0 such that (1) G0 � G and (2)
G0 also includes p.

2.3 Learning Directed graphical models

Approaches to the Bayesian-network learning prob-
lem typically concentrate on identifying one or more
Bayesian networks for a set of variables O =
fX1; : : : ; Xng that best �t a set of observed data D for
the set of variables O according to some scoring crite-
rion S(G;D); once the structure of a Bayesian network
is identi�ed, it is usually straightforward to estimate
the parameter values for a corresponding (parameter-
ized) Bayesian network.

A scoring criterion S(G;D) is score equivalent if, for
any pair of equivalent DAGs G and H, it is necessarily
the case that S(G;D) = S(H;D). A scoring criterion
S(G;D) is decomposable if it can be written as a sum
of measures, each of which is a function only of one
node and its parents. In other words, a decomposable
scoring criterion S applied to a DAG G can always be
expressed as:

S(G;D) =

nX

i=1

s(Xi;Pa
G
i ) (2)

Note that the data D is implicit in the right-hand side
Equation 2. When we say that s(Xi;Pa

G
i ) is only a

function of Xi and its parents, we intend this also to
mean that the data on which this measure depends is
restricted to those columns corresponding to Xi and
its parents.

Many commonly-used scoring criteria are both score
equivalent and decomposable. For a discussion of why
score equivalence is an important (and sometimes nec-
essary) property, see Heckerman, Geiger and Chicker-
ing (1995). One main advantage to using a decompos-
able scoring criteria is that if we want to compare the
scores of two DAGs G and G0, we need only compare
those terms in Equation 2 for which the correspond-
ing nodes have di�erent parent sets in the two graphs.
This proves to be particularly convenient for search
algorithms that consider single edge changes.

To simplify the presentation in this paper, we con-
centrate on using the Bayesian scoring criterion, but
emphasize that our results are more broadly applica-
ble. For the Bayesian scoring criterion we de�ne, for
each model G, a corresponding hypothesis Gh, which
for our purposes can simply denote the assertion that
G is an inclusion-optimal representation of the genera-
tive distribution.1 The scoring criterion is then de�ned
to be the relative posterior (or relative log posterior)

1In practice, the de�nition of DAG hypothesis is im-
portant only to the extent in which it determines how the
second term is evaluated in Equation 3. For most de�ni-
tions found in the literature, the resulting values for this
term are identical.



of Gh given the observed data. Without loss of gen-
erality, we express the Bayesian scoring criterion SB
using the relative log posterior of Gh:

SB(G;D) = log p(Gh) + log p(DjGh) (3)

where p(Gh) is the prior probability of Gh, and p(DjGh)
is the marginal likelihood. The marginal likelihood is
obtained by integrating the likelihood function (i.e.
Equation 1) applied to each record in D over the un-
known parameters of the model with respect to the
parameter prior. Heckerman et al. (1995) describe
parameter priors that guarantee score equivalence and
score decomposability of the Bayesian criterion.

2.4 Asymptotically Consistent Scores

It is well known that the Bayesian scoring criterion
is asymptotically consistent. Simply stated, an asymp-
totically consistent scoring criterion is one that|in the
limit as the number of observed cases grows large|
prefers the model containing the fewest number of
parameters that can represent the generative distri-
bution exactly. Geiger, Heckerman, King and Meek
(2001) show that DAGs containing complete tables are
curved exponenential models; Haughton (1988) derives
the following approximation for the Bayesian criterion
for this model class:

SB(G;D) = log p(Dj�̂;Gh) +
d

2
logm+O(1) (4)

where �̂ denotes the maximum likelihood values for the
network parameters and m is the number of records
in D. The �rst two terms in this approximation are
known as the Bayesian information criterion (or BIC).
The presence of the O(1) error means that, even as m
approaches in�nity, the approximation can di�er from
the true relative log posterior by a constant. As shown
by Haughton (1988), however, BIC is consistent. Fur-
thermore, it can be shown that the leading term in
BIC grows as O(m), and therefore we conclude that
because the error term becomes increasingly less sig-
ni�cant as m grows large, Equation 3 is consistent as
well. Because the prior term p(Gh) does not depend
on the data, it does not grow with m and therefore is
absorbed into the error term of Equation 4. Thus the
asymptotic behavior of the Bayesian scoring criterion
depends only on the marginal likelihood term.

Consistency of the Bayesian scoring criterion leads,
from the fact that BIC is decomposable, to a more
useful property of the criterion that we call local con-
sistency. Intuitively, if a scoring criterion is locally
consistent, then the score of a DAG model G (1) in-

creases as the result of adding any edge that eliminates
an independence constraint that does not hold in the
generative distribution, and (2) decreases as a result

of adding any edge that does not eliminate such a con-
straint. More formally, we have the following de�ni-
tion.

De�nition (Local Consistency)
Let D be a set of data consisting of m records that are

iid samples from some distribution p(�). Let G be any

DAG, and let G0 be the DAG that results from adding

the edge Xi ! Xj . A scoring criterion S(G;D) is

locally consistent if the following two properties hold:

1. If Xj is not independent of Xi given PaGi in p,

then S(G0;D) > S(G;D)

2. If Xj is independent of Xi given PaGi in p then

S(G0;D) < S(G;D)

Chickering (2002) shows that the Bayesian scoring cri-
terion is locally consistent, a result we present formally
below.

Lemma 1 Chickering (2002) The Bayesian scoring

criterion is locally consistent.

The signi�cance of Lemma 1 is that as long as there
are edges that can be added to a DAG that eliminate
independence constraints not contained in the gener-
ative distribution, the Bayesian scoring criterion will
favor such an addition. Furthermore, if the genera-
tive distribution is included in a DAG, then Lemma 1
guarantees that any deletion of an \unnecessary" edge
will be favored by the criterion.

2.5 Greedy Equivalence Search

In this section, we describe the greedy single-edge
search algorithm that we use for learning Bayesian net-
works. Rather than searching over the space of DAGs,
we use equivalence classes of DAGs de�ned by the (re-

exive, symmetric, and transitive) equivalence relation
� de�ned in Section 2.2. We use E to denote an equiv-
alence class of DAG models. Note that we use the
non-bold character E ; although arguably misleading in
light of our convention to use bold-face for sets of vari-
ables, we use the non-bold character to emphasize the
interpretation of E as a model for a set of independence
constraints as opposed to a set of DAGs. To denote a
particular equivalence class to which a DAG model G
belongs, we sometimes write E(G). Note that G � G0

implies G0 2 E(G) and G 2 E(G0). We extend the de�-
nition of inclusion to pertain to equivalence classes of
DAGs in the obvious way.

The connectivity of the search space is de�ned using
the inclusion relation (�) between DAGs. In particu-
lar, two equivalence classes E1(G) and E2(G

0) are ad-
jacent if and only G � G0 or G0 � G and the number
of edges in the graphs G and G0 di�er by one. We say



we are moving in the search space in a forward direc-

tion if we move from a state E1(G) to an adjacent state
E2(G

0) in which G � G0 otherwise the we are moving
in a backward direction.

The greedy equivalence search algorithm (or GES for
short) is a two-phase greedy algorithm that can be
described as follows. The algorithm starts with the
equivalence class corresponding to no dependencies
among the variables (i.e. the class containing the DAG
model with no edges). Then, for the �rst phase, a
greedy search is performed only in the forward direc-
tion until a local maximum is reached. For the second
phase, a second greedy search is performed, starting
from the local maximum from the �rst phase, but this
time only in the backward direction. GES terminates
with the local maximum reached by the second phase.
We �nd it convenient to name the (restricted) greedy
searches in the �rst and second phase of GES forward

equivalence search (FES for short) and backward equiv-

alence search (BES for short), respectively. GES can
thus be described as running FES starting from the
all-independence model, and then running BES start-
ing from the resulting local maximum.

Chickering (2002) describes an implementation of GES
for which all of the legal operators for a given state
both can be identi�ed eÆciently and can be scored|
when using a decomposable scoring criterion|by eval-
uating only a small subset of the terms in Equation 2.

We end this section by presenting a transformational
characterization of the inclusion relation for Bayesian
networks. The characterization was initially conjec-
tured to be valid by Meek (1997), and was later proven
to be so by Chickering (2002).

Theorem 2 (Chickering, 2002) Let G and H be

any pair of DAGs such that G � H. Let r be the num-

ber of edges in H that have opposite orientation in G,
and let a be the number of edges in H that do not exist

in either orientation in G. There exists a sequence of

at most r+2a distinct edge reversals and additions in

G with the following properties:

1. Each edge reversed is a covered 2 edge

2. After each reversal and addition G is a DAG and

G � H

3. After all reversals and additions G = H

This theorem plays an essential role to understand-
ing how the GES algorithm|and more speci�cally the
BES algorithm|leads to an inclusion-optimal model.
The key feature in the characterization is that it is
based on single edge transformations.

2An edge Xi ! Xj is covered in DAG G if PaGj =

Pa
G
i [Xi.

3 Results

In this section, we prove the main results of this pa-
per. Throughout the section, we use p to denote the
distribution over the observable variables from which
the observed data D was generated, and we use m to
denote the number of records in D.

We �rst show that the second phase of the algorithm
(i.e. the BES algorithm) is guaranteed (in the limit
of large m) to identify an inclusion-optimal model if it
starts with an equivalence class that includes p.

Theorem 3 If E� includes p then, in the limit of large

m, the result of running BES, starting from E� and

using any locally consistent scoring criterion, results

in an inclusion-optimal model.

Proof: After each step in the backward equivalence
search, we are guaranteed that the current state E will
include p by the following argument. Suppose this
is not the case, and consider the �rst move made by
BES to a state that does not include p. Because this
move corresponds to an edge deletion in some DAG,
it follows immediately from the fact that the scoring
function is locally consistent that any such deletion
would decrease the score, thus contradicting the fact
that BES is greedy.

To complete the proof, assume that BES terminates
with some equivalence class E that is not inclusion op-
timal, and let E 0 < E be any inclusion optimal equiv-
alence class that is strictly included in E . Let H be
any DAG in E , and let G be any DAG in E 0. Be-
cause G < H we conclude from Theorem 2 that there
exists a sequence of covered edge reversals and edge
additions that transforms G into H. There must be
at least one edge addition in the sequence because by
assumption G 6� H. Consider the DAG G0 that pre-
cedes the last edge addition in the sequence. Clearly
E(G0) is one step backwards from E and because G0 has
fewer parameters than H, we conclude from the local
consistency of the scoring criterion that E cannot be a
local minimum, yielding a contraction. 2

Theorem 3 is important from a theoretical point of
view because we can always start BES with the com-

plete equivalence class that asserts no independence
constraints; this model is guaranteed to include p. The
problem with starting from the complete model is that
for any realistic domain, the number of parameters in
the model will be prohibitively large. Put another way,
in order for the asymptotic properties of the algorithm
to apply to a real (�nite m) problem, we would need
an unrealistic number of records in the data. As we
shall see in Theorem 4, the result becomes important
in a practical sense if the composition property holds



in p among the observable variables: given that a vari-
able X is not independent of the set Y given set Z,
then there exists a singleton element Y 2 Y such that
X is not independent of Y given set Z.

Theorem 4 If p satis�es the composition property

then, in the limit of large m, GES using any locally

consistent scoring criterion �nds an inclusion optimal

model.

Proof: Given Theorem 3 we only need to show that
the forward search (FES) in the �rst phase of GES
identi�es an equivalence class that includes p. Sup-
pose this is not the case, and consider any DAG G
contained in the (local maximum) equivalence class
reached at the end of the �rst phase of GES. Because
G does not include p, there must be some independence
constraint from G that does not hold in p. Because the
independence constraints of G are characterized by the
Markov conditions, it follows that in p, there must ex-
ist some node Xi in G for which Xi is not independent
of its non-descendants Y given its parents Pai. Be-
cause the composition axiom holds for p, there must
exist at least one singleton non-descendant Y 2 Y for
which this dependence holds. By Lemma 1, this im-
plies that the DAG G0 that results from adding the
edge Y ! Xi to G (which cannot be cyclic by de�ni-
tion of Y) has a higher score than G. The equivalence
class E(G0) is one step forward from E which contra-
dicts the fact that E is a local maximum. 2

Theorem 4 is a very general result in the sense that
we assume nothing about p except that the composi-
tion property holds over the observable variables; the
composition property need not hold among any of the
variables involved that are not observed. The \compo-
sition assumption" in isolation, however, may not be
intuitively appealing to many. In what situations is
this assumption violated? Can we expect the compo-
sition assumption to be reasonable in many domains?

To help gain a better understanding of the types of
situations for which the composition property holds,
we introduce the notion of a graphical path condition.
A graphical path condition PCG(X;Y;Z) is a function
of a graphical model G that maps two singleton nodes
and a set of nodes to either zero or one. Intuitively,
the function checks whether or not there is a \path"
from X to Y given \context" Z. The d-separation cri-
terion, for example, is a graphical path condition for
DAG models: in this case PCG(X;Y;Z) has the value
one if and only if there is an active path fromX to Y in
G given set Z. As another example, the presence of an
undirected path between X and Y that does not pass
through a node in Z is a graphical path condition for a
Markov random �eld (undirected graphical model). As
we discuss below, when there exists a graphical path

condition that characterizes the dependencies among
the variables|as is the case with both of the previous
examples|then we are guaranteed that the composi-
tion property will hold. To simplify the discussion, we
provide the following de�nition.

De�nition (Path Property)
A graphical model M has the path property if there

exists a path condition PCM(�; �; �) that characterizes

the dependencies implied by M as follows:

X 6??MYjZ, 9X 2 X; Y 2 Ys:t:PCM(X;Y;Z) = 1

We now show that if the generative distribution is per-
fect with respect to a model that has the path prop-
erty, then the composition axiom holds even in the
presence of hidden variables and selection variables.
Selection variables are hidden variables that are in a
particular state for each record in the observed data.
In a mail survey, for example, a selection variable
might correspond to \the person �lled out the survey
and mailed it back"; the presence of such variables can
lead to biased results because those who respond to the
survey may not be representative of the population as
a whole.

Let aM be a graphical model for variables V = fO[
H[Sg where O is a set of observed variables, H a set
of hidden variables and S is a set of selection variables.

Proposition 1 If q is a distribution that is perfect

with respect to a model M that has the path prop-

erty, then the composition property holds for p(O) =P
H
q(O;H;S = s).

Proof: Follows immediately from De�nition 3 and the
fact that because q is perfect with respect toM, q and
M have precisely the same dependence relations. 2

This proposition tells us that if our data is generated
from a distribution that is perfect with respect to some
graphical model with the path property then the distri-
bution is guaranteed to satisfy the composition prop-
erty even if there are hidden variables and the data is
generated with selection bias. This naturally leads the
next corollary.

Corollary 5 If p is perfect with respect to either a

DAG, a Markov random �eld, or a chain graph, then in

the limit of large m, GES using any locally consistent

scoring criterion �nds an inclusion optimal model.

Proof: This follows immediately because all of these
types of graphical models have the path property. 2



4 Experiments

In this section, we present experimental results demon-
strating that we can attain the large-sample bene�ts
of the GES algorithm|that is, we can identify the
inclusion-optimal model|when the generative distri-
bution is not DAG-perfect and when given a �nite
sample size. Our approach is to sample data from
known gold-standard models for which we can analyt-
ically determine the inclusion-optimal models de�ned
over the observable variables. By generating synthetic
data from the gold-standard models, we can evaluate
how well GES performs by checking whether or not it
identi�es the corresponding inclusion-optimal model.

We concentrate on two speci�c gold-standard struc-
tures for all of our experiments; we sample the cor-
responding generative parameters|using a random-
sampling technique described below|to produce the
generative distribution. The �rst gold-standard struc-
ture is the p-structure model shown in Figure 1a in
which all variables are binary and H is hidden. The
second generative structure we consider is the selection
four-cycle model shown in Figure 1b in which all vari-
ables are binary except for the four-valued X1. The
variable S is a selection variable with a corresponding
selection value of one; in other words, given a random
sample of cases from this model, we only allow ones for
which S = 1 to be included in the observed data. The
resulting distribution over the observable variables is
included in an undirected four cycle, which has no per-
fect map in a DAG model.

(a) (b)

X2 X1

X3 X4

S

X2 X1

X3 X4

X2 X1

X3 X4

X1 X2 X3 X4

H

(c) (d) (e)

X2 X1

X3 X4

Figure 1: (a) the p-structure (b) the selection four-
cycle (c) the parameter-minimal model for the p-
structure (d) the parameter-minimal model the selec-
tion four-cycle and (e) an inclusion-minimal but not
parameter-minimal model for the selection four-cycle.

In Figure 1c we show a representative DAGmodel from
the (unique) inclusion-optimal equivalence class corre-
sponding to the p-structure model. In Figure 1d and
Figure 1e we show representative DAG models from

the two inclusion-optimal equivalence classes corre-
sponding to the selection four-cycle model. The model
in Figure 1d, which contains 19 parameters, is param-
eter optimal, whereas the model in Figure 1e, which
contains 21 parameters, is not parameter optimal.

In order to produce a random generative distribution,
we sampled each of the conditional parameter dis-
tributions from the gold standard as follows. For a
variable Xi with k states, we constructed a \basis"
mean value ~� for p(XijPa

G
i ) by normalizing the vec-

tor ( 1
1
; 1
2
; : : : ; 1

k
). For the jth \instantiation" paGi of

PaGi we produced the mean value ~�j by shifting ~� to
the right j places when j modulo k was not one. For
example, if ~� = � � (1; 1

2
; 1
3
) (where � is the normaliza-

tion constant), then ~�1 = � �( 1
3
; 1; 1

2
), ~�2 = � �( 1

2
; 1
3
; 1),

and so on. We then sampled p(XijPa
G
i = paGi ) from

a Dirichlet distribution with mean ~�j and equivalent
sample size of 10. The choice of this prior distribution
for the conditional parameters was made to ensure a
reasonable level of dependence between adjacent vari-
ables in the generative structure.

Our experiments proceeded as follows. We considered
17 sample sizes, starting with m = 10 and then dou-
bling to obtain the next sample size until m = 655360.
For each sample size, we produced 100 random gen-
erative distributions for both of the generative struc-
tures. From each such generative distribution, we sam-
pled a single data set of the appropriate size that con-
tained only those values for the observable variables
fX1; X2; X3; X4g. For the selection four-cycle model,
any sample in which S was not in the section state
was discarded; samples were taken from this model
until the number of non-discarded records was equal
to m. We then ran the GES algorithm using the BDeu
scoring criterion (described by Heckerman et al., 1995)
with a uniform structure prior and an equivalent sam-
ple size of ten. In particular, the version of the crite-
rion that we used can be expressed as:

S(G;D) = log

nY

i=1

qiY

j=1

�( 10
qi
)

�( 10
qi
+Nij)

�

riY

k=1

�( 10

ri�qi
+Nijk)

�( 10

ri�qi
)

where Nijk is the number of records in the data for

which Xi = k and PaGXi
is in the jth con�guration,

and Nij =
P

kNijk . �(�) is the Gamma function,
which satis�es �(y+1) = y�(y) and �(1) = 1. Finally,
after each run of GES, we compared the resulting lo-
cal maximum to the corresponding inclusion-optimal
model(s).

Figure 2a and Figure 2b show the results of our ex-
periments corresponding to the p-structure and selec-
tion four-cycle model, respectively. In these �gures we
record, for each sample size, the percentage of models
identi�ed by GES that are inclusion optimal. As ex-
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Figure 2: Percentage of models identi�ed by GES that are inclusion optimal as a function of the sample size for
(a) the p-structure gold standard and (b) the selection four-cycle gold standard.

pected, as the sample size increases, the algorithm is
more likely to identify the optimal model.

As discussed above, corresponding to the selection
four-cycle model are two di�erent equivalence-class
models that are both inclusion optimal. Only one
of these models is parameter optimal, however, and
the height of the curve in Figure 2b is the sum of (1)
the percent of parameter-optimal models and (2) the
percent of inclusion-optimal models that are not pa-
rameter optimal. When we broke this sum into its
component parts, we found that GES identi�es the
parameter-optimal model in roughly half of the times
it identi�es an inclusion-optimal model for all of the
sample sizes. Our results suggest that even in the
large-sample limit, GES may not be able to reliably
identify the parameter-optimal model.

5 Conclusion and Final Remarks

In this paper, we proved that in the limit of large sam-
ple sizes, the GES algorithm identi�es an inclusion-
optimal equivalence class of DAG models. The result
is an important extension to the results of Meek (1997)
and Chickering (2002) because|although it guaran-
tees a weaker form of optimality|it relaxes the as-
sumption that the generative distribution is DAG-
perfect among the observable variables. Our results
instead rely on the composition property of indepen-
dence holding among the observable variables. This
weaker assumption necessarily holds whenever the gen-
erative distribution is perfect with respect to a model
that has the path property (a more reasonable assump-
tion), regardless of whether that model contains hid-
den variables or whether the observed data is biased
from hidden selection variables.

When the generative distribution is DAG-perfect
among the observable variables, there is a unique
inclusion-minimal model that is identical to the
(unique) parameter-minimal model. As we saw in Sec-
tion 3, however, when the generative distribution is not
DAG-perfect among the observable variables, there

can be multiple inclusion-minimal models, some of
which are not parameter minimal. Furthermore, there
may be many parameter-minimal models as well. Our
experiments with the selection four-cycle model sug-
gest that GES may not be able to identify a parameter-
minimal model, even in the limit of large sample size.
An interesting area for further investigation is to iden-
tify a set of general conditions under which GES (or
BES) will identify the parameter-optimal model.
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