A Discovery Algorithm for Directed Cyclic Graphs

Thomas Richardson
Philosophy Department
Carnegie-Mellon University
Pittsburgh, PA 15213
e-mail: tsr+@andrew.cmu.edu

Abstract

Directed acyclic graphs have been used fruitfully
to represent causal structures (Pearl 1988).
However, in the social sciences and elsewhere
models are often used which correspond both
causally and statistically to directed graphs with
directed cycles (Spirtes 1995). Pearl (1993)
discussed predicting the effects of intervention in
models of this kind, so-called linear non-recursive
structural equation models. This raises the
question of whether it is possible to make
inferences about causal structure with cycles,
from sample data. In particular do there exist
general, informative, feasible and reliable
procedures for inferring causal structure from
conditional independence relations among
variables in a sample generated by an unknown
causal structure? In this paper I present a
discovery algorithm that is correct in the large
sample limit, given commonly (but often
implicitly) made plausible assumptions, and
which provides information about the existence
or non-existence of causal pathways from one
variable to another. The algorithm is polynomial
on sparse graphs.

1 DIRECTED GRAPH MODELS

A Directed Graph G consists of an ordered pair <V E>
where V is a set of vertices, and E is a set of directed
edges between vertices.! If there are no directed cycles? in
E, then <V E> is called a Directed Acyclic Graph or
(DAG). A Directed Cyclic Graph (DCG) model (Spirtes
1995) is an ordered pair <G,P> consisting of a directed
graph G (cyclic or acyclic) and a joint probability
distribution P over the set V in which certain conditional
independence relations, encoded by the graph, are true.?
Directed Acyclic Graph (DAG) models correspond to the

Ly <A B>€E, A, B distinct , then there is said to be an edge from A to
B, represented by A—B. If <A B>EE or <B,A>€EE, then in either case
there is said to be an edge between A and B.
2By a‘directed cycle’ I mean a directed path Xg—X;...=»X,.1—=>Xg
of n distinct vertices, where n=2.

Since the elements of V are both vertices in a graph, and random
variables in a joint probability distribution the terms ‘variable’ and
‘vertex' can be used interchangeably.

special case in which G is acyclic. The independencies
encoded by a given graph are determined by a graphical
criterion called d-separation, as explained for the acyclic
case in Pearl (1988), and extended to the cyclic case in
Spirtes (1995) (See also Koster 1994). The following
definition can be applied to cyclic and acyclic cases and is
equivalent to Pearl’s in the latter:

Definition: d-connection/d-separation for directed graphs
For disjoint sets of vertices, X,Y and Z, X is
d-connected to Y given Z if and only if for some XEX,
and YEY }/ there is an (acyclic) undirected path U between
X and Y, such that:

(i) If there is an edge between A and B on U, and an edge
between B and C on U, and BEZ, then B is a collider
between A and C relative to U, ie. A=B<—Cis a
subpath of U.

(ii) If B is a collider between A and C relative to U, then
there is a descendant D3 of C, and DEZ.

For disjoint sets of vertices, X,Y and Z,if X and Y are
not d-connected given Z, then X and Y are said to be
d-separated given Z.

The constraint relating G and  in a DCG model <G,P>
is:

1.1 The Global Directed Markov Condition

A DCG model <G,P> is said to satisfy the Global
Directed Markov Property if for all disjoint sets of
variables A, B and C, if A is d-separated from B given C
inG, then Al BICinP.0

This condition is important since a wide range of
statistical models can be represented as DAG models
satisfying the Global Directed Markov Condition,
including recursive linear structural equation models with
independent errors, regression models, factor analytic
models, and discrete latent variable models (via extensions
of the formalism). An alternative, but equivalent,
definition is given by Lauritzen ez al. (1990).

4Upper case Roman letters (V) are used to denote sets of variables,
and plain face Roman letters (V) to denote single variables. IVI denotes
the cardinality of the set V.

5'Descendant’ is defined as the reflexive, transitive closure of the
‘child’ relation, hence every vertex is its own descendant. Similarly
every vertex is its own ancestor.

6X 1 Y |Z’ means that ‘X is independent of Y given Z°.



However, not all models can be represented thus as DAG
models. Spirtes (1995) has shown that the conditional
independencies which hold in non-recursive linear
structural equation models’ are precisely those entailed by
the Global Directed Markov condition, applied to the
cyclic graph naturally associated with a non-recursive
structural equation model® with independent errors. It can
be shown that in general there is no DAG encoding the
conditional independencies which hold in such a model.
Non-recursive structural equation models are used to model
systems with feedback, and are applied in sociology,
economics, biology, and psychology.

We make two assumptions connecting the probability
distribution 2 and the true causal graph G:

The Causal Markov Assumption

A distribution generated by a causal structure represented
by a directed graph ¢ satisfies the Global Directed Markov
condition.

For linear structural equation models this is true by
definition if the error terms are independent.

The Causal Faithfulness Assumption

All conditional independence relations present in P are
consequences of the Global Directed Markov condition
applied to the true causal structure G.

This is an assumption that any conditional independence
relation true in 2 is true in virtue of causal structure rather
than a particular parameterization of the model. (For
further justification and discussion see Spirtes et al. 1993)

2 DISCOVERY

(Cyclic or Acyclic) graphs Gp and G, are Markov
equivalent if any distribution which satisfies the Global
Directed Markov condition with respect to one graph
satisfies it with respect to the other, and vice versa. The
class of graphs which are Markov Equivalent to G is
denoted Equiv(G).

It can be shown to follow from the fact that the Global
Directed Markov condition only places conditional
independence constraints on distributions, that, under this
definition, two graphs are Markov equivalent if and only if
the same d-separation relations hold in both graphs.

2.1 THE DISCOVERY PROBLEM

Given an oracle for conditional independencies in a
distribution P, satisfying the Global Markov and
Faithfulness conditions w.r.t. some directed (cyclic or
acyclic) graph G without hidden variables, is there an
efficient, reliable algorithm for making inferences about
the structure of G?

7 A non-recursive structural equation model is one in which the matrix
of coefficients not fixed at zero is not lower triangular, for any
ordering of the equations. (Bollen 1989)

8je. the directed graph in which X is a parent of Y, if and only if the
coefficient of X in the structural equation for Y is not fixed at zero by
the model.

Since if P satisfies the Global Markov and Faithfulness
conditions w.rt. to G, then it also satisfies them w.r.t.
every graph G in Equiv(G), conditional independencies
cannot be used to distinguish between graphs in Equiv(G).
Thus a procedure solving the Discovery Problem will
determine causal features common to all graphs in a given
Markov equivalence class Equiv(G), given an oracle for
conditional independencies in P.

I present a feasible (on sparse graphs) algorithm which
outputs a list of features common to all graphs in
Equiv(§G), given an oracle for conditional independence
relations in a distribution 2, satisfying the Global Markov
and Faithfulness conditions w.r.t. some directed (cyclic or
acyclic) graph G. The strategy adopted is to construct a
graphical object, called a Partial Ancestral Graph (PAG)
which represents features common to all graphs in the
Markov equivalence class (See Figure 1).

/
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Figure 1: Strategy For Discovery Algorithm

2.2 PARTIAL ANCESTRAL GRAPHS (PAGs)

A PAG consists of a set of vertices V, a set of edges
between vertices, and a set of edge-endpoints, two for each
edge, drawn from the set {0, —, >}. In addition, pairs of
edge endpoints may be connected by underlining, or dotted
underlining. In the following definition '*' is a meta-
symbol indicating the presence of any one of {o—,>}.

Definition: Partial Ancestral Graph (PAG)

W is a PAG for Directed Cyclic Graph G with vertex set
V, if and only if

(1) There is an edge between A and B in W if and only if A
and B are d-connected in G given all subsets W C
V\{AB}.

(>ii) If there is an edge in ¥, A—=+B, marked with a '-' at

A, then in every graph in Equiv(G), A is an ancestor of
B.

(>iii) If there is an edge in W, A*—>B, marked with a '>' at
B, then in every graph in Equiv(§), B is not an ancestor
of A.

(iv) If there is an underlining A*—*B* —*C in W, then B
is an ancestor of (at least one of) A or C in every graph
in Equiv(G).

(v) If there is an edge from A to B, and from C to B,
(A—>B<—C), then the arrow heads at B in ¥ are joined

graph in Equiv(G) B is not a descendant of a common
child of A and C.

(vi) Any edge endpoint not marked in one of the above
ways is left with a small circle thus: o—*.



Condition (i) differs from the other five conditions in
stating necessary and sufficient conditions for a symbol,
an edge, to appear in a PAG; (ii)-(vi) merely give
necessary conditions. For this reason there are in fact
many different PAGs for a graph G, though they all have
the same edges, though not necessarily endpoints. Some
of the PAGs provide more information than others about
causal structure, e.g. they have fewer 'o's at the end of
edges.? Some PAGs (providing less information) represent
graphs from different Markov equivalence classes.
However, the PAGs output by the discovery algorithm I
present provide sufficient information so as to ensure that
graphs with the features described by a particular PAG all
lie in one Markov equivalence class. By the definition of a
PAG, if*‘lJ is a PAG for G, then W is also a PAG for
every G €Equiv(G). Hence, a PAG W produced by the
algorithm represents a unique Markov equivalence class.

A—»X A—> X A
21O
B—»Y B—» Y B
G Equiv(G)

Figure 2: Graph G and Equiv(G)

Consider the graph G in Figure 2. This graph entails that
All B, and AIL BOI {X,Y} in any distribution P with
respect to which it satisfies the Global Directed Markov
condition. In this case it can be proved that Equiv(§)
includes only the two graphs shown.1? Figure 3 shows
the PAG given by the algorithm I give, given a
conditional independence oracle for a distribution 2
satisfying the Global Directed Markov and Faithfulness
wirt. G.

A—mX
><\,

B—»Y B —*Y
PAG for Ggiven Other PAGs
by CCD algorithm for G

Figure 3: PAGs for Graph G in Fig.2

The PAG given by the algorithm allows us to make the
following inferences (among others) about every graph in
Equiv(G), and hence about G:

(a) X is an ancestor of Y, and vice versa, so there is a
cycle between X and Y.

(b) Neither X nor Y is an ancestor of A or B.
(c) Both A and B are ancestors of X and Y.

91f one PAG has a '>' at the end of an edge, then every other PAG for
the same graph either has a >' or a 'o' in that location. Similarly if one
PAG has a '-' at the end of an edge then every other PAG either has a
'—'or an '0' in that location.

10Note that adding the A—Y, and/or B—X edges to G produces a
graph that is not Markov Equivalent to G; with these edges added A and
B are no longer d-separated given {X, Y}, though they are in G.

Note that not every edge in the PAG appears in every
graph in Equiv(§G), e.g. in the example in Figure 2. This
is because an edge in the PAG indicates only that the two
variables connected by the edge are d-connected given any
subset of the other variables. In fact it is possible to show
that if there is an edge between two vertices in a PAG,
then there is a graph represented by the PAG in which that
edge is present. The algorithm I present does not always
give the most informative PAG for a given graph G; there
may be features common to all graphs in the Markov
equivalence class which are not captured by the PAG the
algorithm outputs. In this sense the algorithm is not
complete, though the algorithm is 'd-separation complete'
in the sense that each PAG it outputs represents a unique
Markov equivalence class.

3 CYCLIC CAUSAL DISCOVERY
(CCD) ALGORITHM

Two vertices, X, Y in a PAG are adjacent if there is an
edge between them, i.e. A*—*B. Adjacent(¥ X) is the
set of vertices adjacent to X in PAG W.1!

Input: A conditional independence oracle for a
distribution P, satisfying the Global Directed Markov and
Faithfulness conditions w.r.t. a directed (cyclic or acyclic)
graph G with vertex set V.

(In practice of course statistical tests of conditional
independence in sample data take the place of the
conditional independence oracle.)

Output: A PAG ¥ for the Markov equivalence class
Equiv(G).
JA Form a PAG W with an edge Xo—0Y between every
pair of vertices in V.
n=0
repeat
repeat
Select an ordered pair of variables X and Y that are
adjacent in ¥ s.t. |IAdjacent(¥ X)\{Y}IR @, and
a set SC Adjacent(W ,X)\{Y} s.t. ISI =n..
If XA YOI S, delete edge Xo-0Y from ¥ and
record S in Sepset(X,Y) and Sepset(Y,X).!2
until all pairs of adjacent variables X,Y such that
[Adjacent(W ,X)\{Y}IO=0Or and all sets SC
[Adjacent(W ,X)\{Y}! s.t. IS =n have been tested.
n=n+l;
until for all ordered pairs of adjacent vertices X,Y,
[Adjacent(¥ X)\{Y}I<n

IB. For each triple of vertices A,B,C s.t. the pair A,B
and the pair B,C are each adjacent in W but the pair A, C
are not adjacent in W, orient A* — *B*—*C as A—
>B<—C if and only if B & Sepset<A,C>; orient A% —
*B*x — %C as Ax— *B#*— *C if and only if B €
Sepset<A,C>.

11Agam is a meta-symbol indicating any of the three ends -, 0, >.

12 Adjacent(¥ .X) is updated when the graph W changes durmg JA. So
Y¢&OAdjacent(W X), X¢OAdjacent(¥,Y), after the edge Xo—oY is
removed.



JC. For each triple of vertices <A, X,Y> in W such that
(a) A is not adjacent to X or Y, (b) X and Y are adjacent,
(c) X & Sepset<A,Y> then orient X #—*Y as X<—Y if
A N X ISepset<A,Y>.

ID. For each vertex V in W form the following set:
X€ELocal(W,V) « X is adjacent to V in W, or there is a
vertex Y s.t. X—>Y<—V in ¥ .13
m =0
repeat
repeat
select an ordered triple <A,B,C> such that A—
>B<—C, A and C are not adjacent, and
ILocal(W ,AN\{B,C}| = m, and a set T C
Local(¥ A\{B,C}, ITl=m, and if AlL C|TU{B}
then orient A—>B<—C as A—>B<—C, and
record TOUO{B} in Supset<A,B,C>.
until for all triples such that A—>B<—C, (not A—
>B<—C), A and C are not adjacent,
[Local(W ,A\{B} = m, every subset TC
Local(W,A), ITI =m has been considered.
m=m+1;
until for all ordered triples <A ,B,C> s.t. A—>B<—C, A
and C not adjacent, are such that ILocal(¥, A)\{B}| < m.

JE. If there is a quadruple <A ,B,C,D> of distinct vertices
in ¥ such that (i) A— (ii) A— >D< —C or

*D as B—>D in W if D & Supset<A, B, ,C>
else orient B#—*D as Bx—D.

JF. For each quadruple <A ,B,C,D> of distinct vertices in
W s.t. D is not adjacent to both A and C, D is adjacent to
B,and A—>B< —C,if A )\ C|Supset<A B,C>U{D},

then orient B+—=*D as B—>D in ¥

3.1 SOUNDNESS AND COMPLETENESS
Theorem 1 (Soundness)

Given as input a conditional independence oracle for a
distribution P, satisfying the Global Directed Markov and
Faithfulness assumptions w.r.t. a (cyclic or acyclic) graph
G, the CCD algorithm outputs a PAG W for G.

The proof of Theorem 1 is given in §4.
Theorem 2 (d-separation Completeness)

If the CCD algorithm, when given as input conditional
independence oracles for distributions Py, P satisfying the
Global Directed Markov and Faithfulness w r.t. graphs Gy,
G, respectively, produces as output PAGs Wq, ¥,
respectively, then W = W, if and only if G1 and G, are
Markov equivalent.

The proof, (Richardson, 1996) exploits the
characterization of Markov equivalence in Richardson
(1994) to establish that if G7 and G, are not Markov
equivalent then the algorithm produces different PAGs. (It
follows directly from Theorem 1 that if G7 and G, are
equivalent then ¥, = W5,.)

13Local(‘P,A) is not recalculated as the algorithm progresses.

3.2 TRACE OF CCD ALGORITHM

If given a conditional independence oracle for G in figure 2
the algorithm runs as follows: (Steps §C and JF do not
perform any orientations here.)

A—X

X

XA

JA: A Il B = A o0—o0B edge removed {9A
Sepset<A B> =Sepset<B,A> = A——X

9B: X ¢ Sepset<A,B> = A->X<-B Be |98 °Y
Y & Sepset<A B> = A->Y<-B A—»X

4.

9D: A Il BI{X,Y} B »Y

Supset<A X B> = {X,Y} = A->X<-B 9D
Supset<A,Y B> = {X,Y} = A>Y<-B A—#:X
>

JE: A>X<-B, A>Y<-B,Xo0Y, —=Y
YESupset<A,X,B>= Xo—Y JJE
XESupset<A,Y,B>= X—Y A—X

B>4§.>:‘Y

3.3 COMPLEXITY OF CCD ALGORITHM

Let r=M§€’c|{X |Y <X, or X < Yin G,

k=M rXIX' djacent to Y in any PAG for G|,!*
Yéaé({ is adjacent to Y in any or g}|

and n = no. of vertices in G. It then follows that in
searching (possibly unsuccessfully) for Sepset<X,Y> for
every pair of distinct variables X,Y,

\2) 2( )

_ (ke Dn?(n-2)k*!

k! '
Since k = r2, this step is O(n ). (Even as a worst case
complexity bound this is loose.) JC performs at most one
conditional independence test for each tri ;Jle satisfying the
conditions given, so this step is O(n°). In searching
(possibly unsuccessfully) for sets Supset<X,Y,Z> for
triples of distinct variables <X,Y ,Z>

\3} E( )

(m +1)n3(n - 3)™*!
m!

where m = Max|Local(W,X)l in §D. Since m =< r2, it
Xev

Total no. of tests of

<
conditional independence in dA

r2+3

Total no. of tests of conditional

independence in dD

follows that JD is O(nr2+4). JF performs at most one
test for each quadruple satisfying the conditions, so this

14Note k=r since there may be an edge between two variables X*—*Y
in a PAG for G, even if there is no edge between X and Y in G



step is O(*). (B and YE do not perform any tests).
Hence, the complexity of the algorithm is polynomial in
the number of vertices for graphs of fixed degree (r); it is
of course exponential in r. Although there are
exponentially many conditional independence facts to
check, the algorithm exploits entailment relations to
obviate checking most of them when the graph is sparse.

4 Proof of Theorem 1 (Soundness)

The proof proceeds by showing that each section of the
algorithm makes correct inferences from conditional
independencies in P, to the structure of any graph
satisfying the Global Directed Markov and Faithfulness
conditions w.r.t. to 2. If P satisfies these two conditions
wrt. a graph G, then X Il Y | Z, if and only if X is
d-separated from Y by Z in G. Hence, the oracle for
conditional independencies can be thought of as an oracle
for testing d-separation relations in G.

4.1 SECTION 9JA

Lemma 1: Given a PAG W for graph G, if in G either (i)
X—Y or (ii)) Y<X or (iii) there is some vertex Z, s.t.
X—Z<Y, and Z is an ancestor of X or Y (or both) then
X and Y are adjacent in ¥, i.e. X and Y are d-connected
given any subset SCV\{X,Y} of the other vertices in G.

Proof: If (i) holds then the path X—Y d-connects X and
Y given any subset SCV\{X,Y}, hence X and Y are
adjacent in any PAG W for graph G. The case in which
(ii) holds is equally trivial: X<-Y is a d-connecting path
given any set SCV\{X,Y}. If (iii) holds there is a
common child (Z) of X and Y which is an ancestor of X
or Y; therefore either there is a directed path

X—=Z—=A1—...Ap—Y (nO=00), or there is a directed path

Y—=Z—A1—...Ap—X. Suppose without much loss of
generality that it is the former. Let S be an arbitrary
subset of the other variables (SCV\{X,Y}). If SN {Z,
Aq...Ap}= & then X—Z <Y is a d-connecting path
given S.If S N{Z, A;...Ap}=D then X—=Z—A|—
...Ap—Y is d-connecting given S. .".

Lemma 2: In a graph G, with vertices V, if all of the
following hold:!5

(i) X'is not a parent of Y in G

(i) Y is not a parent of X in G

(iii) there is no vertex Z s.t. Z is a common child of X
and Y, and Z is an ancestor of X or Y

then for any set Q, X and Y are d-separated given T
defined as follows:

S = Children(X) N Ancestors({X,Y}U Q)

T = [Parents(SU{X}) U S|\
[Descendants (Children(X) NChildren(Y)) U {X,Y}]

Proof: Every vertex in S is an ancestor of X or Y or Q.
Every vertex in T is either a parent of X, a vertex in S, or
a parent of a vertex in S, hence every vertex in T is an
ancestor of X or Y or Q.

15] e. None of the conditions in the antecedent of Lemma 1 hold.

Claim: If (i),(ii) and (iii) hold then X and Y are
d-separated by T.

Suppose there is an undirected path P d-connecting X and
Y. Let W be the first vertex on P. ((i) and (ii) imply
W=Y.) There are two cases:

Case 1 The path P goes X<—W...Y.

Subcase A: W is not a descendant of a common child of
X and Y. In this case WET (Since W is a parent of X).
Thus since W is a non-collider on P, P is not d-
connecting given T. Contradiction.

Subcase B: W is a descendant of a common child of X
and Y. In this case since X is a child of W, then X is a
descendant of some common child Z of X and Y. But then
Z is an ancestor of X, contradicting (iii).

Case 2 The path P goes X—=W... Y.

Subcase A: W is not a descendant of a common child of
Xand Y.

Let V be the next vertex on the path.
Sub-subcase a: The path P goes X—=W<V...Y.

If P is d-connecting, then some descendant of W is in T,
but then some descendant of W is an ancestor of X or Y or
Q. So W is an ancestor of X, Y or Q, hence W € S.
Moreover, since W is (by hypothesis) not a descendant of
a common child, V = Y, and V is not a descendant of a
common child of X and Y. V is a parent of W, WES,
X=V=Y, so VET. Hence P fails to d-connect given T.

Sub-subcase b: The path P goes X—=W—V...Y.

If P d-connects given T, then W is either an ancestor of Y
or some vertex in T. However, if W is an ancestor of
some vertex in T, then W is an ancestor of X, Y or Q, so
WES. Since W is (by hypothesis) not a descendant of a

common child of X and Y, and XO=OWO=OY, W €T.

Since in this case W occurs as a non-collider on P, P fails
to d-connect given T. (This allows for the possibility that
v=Y).

Subcase B: W is a descendant of a common child.

Thus Descendants (W) N T = &, since descendants of W
are also descendants of common children of X and Y and
so cannot occur in T.

Since no descendant of W is in T, if W occurs on
d-connecting path P, then W is a non-collider on P.
Suppose that there is a collider on P, take the first
collider on the path after W, let us say <A ,B,C>, so that
P now takes the form: X—-=W—...—...—-A—-B<C...Y.
Since <A ,B,C> is the first collider after W, it follows
that B is a descendant of W. But if P is d-connecting then
there is some descendant D of B, s.t. DE T. But then
since D is a descendant of B, and B is a descendant of W,
DE&Descendants (W) which is a contradiction since
Descendants (W) N T = J. Hence every vertex on P is a
non-collider.

As there are no colliders on P it follows that W is an
ancestor of Y. But then W is a descendant of a common
child of X and Y, and an ancestor of Y. But this



contradicts (iii).
This completes the proof of Lemma 2..-.

Corollary A: Given a graph G, and PAG W for G, X
and Y are adjacent in W if and only if one of the following
holds in G: (a) X is a parent of Y, (b) Y is a parent of X
(c) There is some vertex Z which is a child of both X and
Y, such that Z is an ancestor of either X or Y (or both)

Proof: 'If' is proved by Lemma 1, 'Only if' by Lemma 2
with Q= .-.

X and Y are said to be adjacent in G if at least one of (a),
(b), (c) holds for X,Y in G . By Corollary A, X and Y are
adjacent in G if and only if X and Y are adjacent in every
PAG for G. Therefore I refer to a pair of variables as
adjacent without specifying whether in a graph G or a
PAG for G.

Corollary B: In a graph G, if X and Y are d-separated by
some set R, then X and Y are d-separated by a set T in
which every vertex is an ancestor of X or Y. Further,
either T is a subset of the vertices adjacent to X or X is an
ancestor of Y.

Proof: Let S, T be the sets defined in Lemma 2 with
Q=Y. By Lemma 2, X and Y are d-separated given T.
Every vertex in S is an ancestor of X or Y. Every vertex
in T is either a parent of X, a vertex in S, or a parent of a
vertex in S, hence T C Ancestors{X,Y}. Moreover, every
vertex in T is either a parent of X, a child of X, or a
parent V of some vertex C in S, s.t. X—C. Any vertex in
the first two categories is clearly adjacent to X. Any
vertex in the last category is adjacent to X if C is an
ancestor of X. Since C is in S, C is an ancestor of X or
Y.

If X is not an ancestor of Y, then no child C of X is an
ancestor of Y, so C is an ancestor of X; hence any parent
V of C is also adjacent to X..".

Lemma 3: If A and B are not adjacent, then either A and
B are d-separated by a set T A of vertices adjacent to A or
by a set Tg of vertices adjacent to B.

Proof: By Corollary B to Lemma 2, if A and B are not
adjacent, then A and B are d-separated given TA where:

SA = Children(A) N Ancestors({A,B})

TA = (Parents(S U {A}) U S)\
(Descendants (Children(A)NChildren(B)) U {A B}),

Case 1: A is not an ancestor of B. From the Corollary B

to Lemma 2, since A is not an ancestor of B, TACO{X0Ol

XOadjacent to A}.

Case 2: B is not an ancestor of A. It follows again by
symmetry that A and B are d-separated given Tg, where
Tp is defined symmetrically to T in Case 1.

Case 3: B is an ancestor of A and A is an ancestor of B.

Now any vertex V in T4 is either a child of A, a parent of
A or a parent of some vertex C in SA, s.t. A—=C. Clearly
vertices in the first two categories are adjacent to A; as
before, vertices in the last category are adjacent to A if C
is an ancestor of A. Any vertex in Sp is an ancestor of A
or B. Since A is an ancestor of B, and B is an ancestor of

A, it follows that every vertex in Sp is an ancestor of A,
hence every vertex in Ty is adjacentto A. .-

Let G be any graph satisfying the Global Markov and
Faithfulness conditions w.r.t. the distribution 7 given as
input. To find a set which d-separates some pair of
variables A and B in G the algorithm tests subsets of the
vertices adjacent to A in W, and subsets of vertices
adjacent to B in W to see if they d-separate A and B. Since
the vertices which are adjacent to A and B in G are at all
times a subset of the vertices adjacent to A and B in W6
Lemma 3 implies that step JA is guaranteed to find a set
which d-separates A and B, if any set d-separates A and B

in G.
4.2 SECTION 9B

Lemma 4: Suppose that Y is not an ancestor of X or Z
or a set R. If there is a set S, RCS, such that YES and
every proper subset T s.t. RETCS, not containing Y,
d-connects X and Z then S d-connects X and Z.

Proof Let T*= Ancestors({X,Z}UR)NS. Now, RCT
and T" is a proper subset of S, so by hypothes1s there i 1s
a d-connecting path, P, conditional on T By the
definition of a d-connecting path, every element on P is
either an ancestor of one of the endpomts or T
Moreover, by definition, every element in T is an
ancestor of X or Z or R. Thus every element on the path
Pis an ancestor of X or Z or R. Since neither Y nor any
element in S\T™ is an ancestor of XorZ or R, it follows
that no vertex in S\T™ lies on P. Since T CS the only
way in which P could fa11 to d-connect given S would be
if some element of S\T™ lay on the path (every collider
active given T* will remain active given S). Hence P
still d-connects X and Z given S...

S is said to be a minimal d-separating set for X and Y if
X and Y are d-separated given S, and are d-connected given
any proper subset of S.

Corollary: If S is a minimal d-separating set for X and
Y, then any vertex in S is an ancestor of X or Y.

Proof: Follows by contraposition from Lemma 4 with
RO=0O4Y. ..

This shows that the unshielded non-collider orientation
rule in YB is correct: If A and B, and B and C are adjacent,
but Sepset(A,C) contains B, then by the nature of the
search procedure A and C are not d-separated given any
subset of Sepset(A,C) hence it follows that B is an
ancestor of A or C, hence A*—*B%—%C should be oriented
asOOAx=xBx—=*C,

I will make frequent use of the following Lemma, which I
state here without proof (It is a simple extension to the
cyclic case of Lemma 3.3.1 in Spirtes et al., 1993,
p-376) The Lemma gives conditions under which a set of
d-connecting paths may be joined to form a single
d-connecting path.

16This is because if a pair of vertices X,Y are adjacent in G then no set
is found which d-separates them hence the edge between X and Y in W
is never deleted.



Lemma 3.3.1+ (Richardson 1994, p.82)

In a directed (cyclic or acyclic) graph G over a set of
vertices V, IF R is a sequence of distinct vertices in V
from A to B, R = <A=Xy,...Xp+1=B>, SOC V\{A B}
andOT is a set of undirected paths such that

(i) for each pair of consecutive vertices in R, Xj and Xj;1,
there is a unique undirected path in T that d-connects Xj
and Xj1 given S\{X;,Xj+1}-

(ii)dif some vertex Xk in R, is in S, then the paths in T
that contain Xy as an endpoint collide at X.

(iii)Oif for three vertices Xk_1, Xk, Xk+1 occurring in R,
the d-connecting paths in T between Xk_; and Xk, and Xk
and Xk.1, collide at Xy then Xk has a descendant in S.

THEN there is a path U in G that d-connects A=X( and
B=Xp+1 given S.

Lemma 5: If A and B are adjacent, B and C are adjacent,
and B is an ancestor of A or C, then A and C are
d-connected given any set S\{A,C}, s.t. B&S.

Proof: Without loss of generality, let us suppose that B
is an ancestor of C. It is sufficient to prove that A and C
are d-connected conditional on S. There are two cases to
consider:

Case 1: Some (proper) descendant of B is in S. It
follows from Lemma 1 and the adjacency of A and B, that
given any set S, conditional on S\{A B}, there is a d-
connecting path from A to B, and likewise a d-connecting
path from B to C, conditional on S\{B,C}. Since some
descendant of B is in S\{A,C}, but B & S\{A,C}, it
follows by Lemma 3.3.1+ that A and C are d-connected,
since it does not matter whether or not the path from A to
B and from B to C collide at B.

Case 2: No descendant of B is in S. Again by Lemma 1
there is a path d-connecting from A to B. Since no
descendant of B is in S, the directed path B—...—=C is
also d-connecting. Since BZS, Lemma 3.3.1+ implies A
and C are d-connected by S...

It follows by contraposition from Lemma 5 that if A and
B are adjacent, B and C are adjacent, A and C are
d-separated given Sepset<A,C>, and B&Sepset<A ,C>,
then B is not an ancestor of A or C, hence JB correctly
orients A*—*B*—*C as A—>B<—C.

4.3 SECTION 9C

Lemma 6: Suppose X is an ancestor of Y. If there is a
set S such that A and Y are d-separated given S, X and Y
are d-connected given S, and XS, then A and X are
d-separated given S, and some subset TCS is a minimal
d-separating set for A and X.

Proof: Let X be an ancestor of Y. Let S be any set s.t.
there is a path Q which d-connects X and Y given S,
XS, and A and Y are d-separated by S. Suppose, for a
contradiction, that there is a path P d-connecting A and X
given S. There are now two cases:

Case 1: Some descendant of X is in S. Since X€&S, and
some descendant of X is in S, Lemma 3.3.1+ implies that

the d-connecting paths P and Q, can be joined to form a
path d-connecting A to Y given S, a contradiction.

Case 2: No descendant of X is in S. In this case since X
is an ancestor of Y, there is a d-connecting directed path
Q*, X—...—Y, given S. By Lemma 3.3.1+ P and Q*
can be joined to form a path d-connecting A and Y given
S, a contradiction.

Thus under the conditions in the antecedent, S is a
d-separating set for A and X. Let T be the smallest subset
of S which d-separates A and X, T is a minimal
d-separating set for A and X...

Lemma 7: Let A, X and Y be three vertices in a graph,
s.t. X and Y are adjacent. If there is a set S s.t. X&S, A
and Y are d-separated given S, while A and X are
d-connected given S, then X is not an ancestor of Y.

Proof: If X and Y are adjacent then X and Y are
d-connected by every set S, s.t. X,YES. If there is a set S
which d-separates A and Y, but does not contain any
subset which d-separates A and X, where X is adjacent to
Y, and X &S, then S does not contain a (minimal)
d-separating set for A and X, hence, by Lemma 6, X is
not an ancestor of Y...

IC simply applies Lemma 7: If A and X are d-connected
given Sepset<A,Y>, and XOZOSepset<A,Y>, then
since Sepset<A,Y> d-separates A and Y, by Lemma 7,
JC correctly orients X*—*Y as X<—Y.

44 SECTION 9D

Lemma 8: If in a graph G, Y is a descendant of a
common child of X and Z, then X and Z are d-connected
by any set S s.t. YES, X,Z&S.

Proof: If Y is a descendant of a common child C of X
and Z, then the path X—C<-Z d-connects X and Z given
any set S, s.t. YES, X, Z&S. ..

Corollary: If in a graph G, X and Y are adjacent, Y and
Z are adjacent, but X and Z are not adjacent, Y is not an
ancestor of X or Z, and there is some set S such that
YES, and X and Z are d-separated given S, then Y is not
a descendant of a common child of X and Z.

Lemma 9: If in graph G, Y is not a descendant of a
common child of X and Z, then X and Z are d-separated by
the set T, defined as follows:

S = Children(X) N Ancestors({X,Y,Z})

T = (Parents(S U {X}) U S)\
(Descendants(Children(X)NChildren(Z)) U {X,Z})

Further, if X and Y, and Y and Z are adjacent then YET.

Proof: Lemma 2, with Q={Y?} implies that X and Z are
d-separated by T. If Y is a child of X, then since Y is an
ancestor of Y, YE S. Since Y is not a descendant of a
common child of X and Z, YET.If Y is a parent of X,
then since Y is not a descendant of a common child of X
and Z, YET. If X and Y have a common child C that is
an ancestor of X or Y, then CES; since Y is a parent of
C, and Y is not a descendant of a common child of X and
Z then YET. So if X and Y are adjacent then YET. ...



9D considers each triple A—>B<—C in W, A and C are
not adjacent, in turn, and tries to find a set RC
Local(W,A)\{B,C} s.t. A and C are d-separated by R U
{B}. If A and C are d-separated by a set containing B,
then Lemma 8 implies that B is not a descendant of a
common child of A and C. It then follows from Lemma 9
that the set T in Lemma 9 is s.t. BET, A and C are d-

separated by T, and TOCOLocal(W,X). So YD will find a

set which d-separates A and C, but contains B, if such a
set exists.

4.5 SECTION YE

Lemma 10: If in a graph G, A and D are adjacent, D and
C are adjacent, A and C are not adjacent, D is an ancestor
of B, then any set S such that BES, and A and C are
d-separated by S, also contains D.

Proof Suppose for a contradiction that A and C were
d-separated by a set S, s.t. BES, DES. Since A is
adjacent to D, (D,A4S), by Lemma 1 there is an
undirected path P d-connecting A and D given S.
Likewise there is a path Q d-connecting D and C given S.
Since D is an ancestor of B, BES, but D&S, Lemma
3.3.1+ implies that P and Q can be joined to form a new
path d-connecting A and C given S. This is a
contradiction.. .

By contraposition Lemma 10 justifies JE in the case

DESupset<A,B,C> Lemma 4, and the nature of the
search for Supset<A,B,C>!7 imply that D is an ancestor
of {A,B,C}. But since there are arrowheads at D on the

an ancestor of B. Hence, JE correctly orients B#—*D as
Bx—D.

implies that, since A and C are d-connected by any set S
s.t. DES, (A,C€S), D is a descendant of a common child
of A and C. Since A and C are d-separated by
Supset<A,B,C>, and BESupset<A,B,C>, then B is
not a descendant of D. So JE correctly orients B¥*—*D as
B<—D.

4.6 SECTION JF

Lemma 11: If X and Z are d-separated by some set R,
then for all sets Q C Ancestors(R U {X,Z})\{X,Z}, X
and Z are d-separated by R U Q.

Proof: Suppose for a contradiction that there is a path P
d-connecting X and Z given ROU Q. It follows that every
vertex on P is an ancestor of either X, Z, or R U Q.

let B be the first collider after A on P which is an ancestor
of Z and not R (or Z if no such exists). The paths
X<...<=A, and B—...—Z are d-connecting given R,
since no vertex on the paths is in R. The subpath of P
between A and B is also d-connecting given R since every
collider is an ancestor of R, and no non-collider lies in R,
since, by hypothesis P d-connects given R U Q. Lemma
3.3.1+ implies that these three paths can be joined to
form a path d-connecting X and Z given R. This is a
contradiction. ..

In JF, since A and C are d-separated by Supset<A,B,C>
=2 {B}, by Lemma 11, if A and C are d-connected given
Supset<A ,B,C>OUO{D}, then D is not an ancestor of B.
Further, since B and D are adjacent, B is an ancestor of D.
So JF correctly orients Bs—*D as B—>D in W.

This completes the proof of the correctness.
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